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PREFACE

This book is intended to provide the mathematical background need-
ed for calculus, and it assumes that students have taken a geometry
course and two courses in algebra. The text integrates graphing tech-
nology into the course without losing the underlying mathematics,
which is the crucial issue. Mathematics is presented in an informal
manner that stresses meaningful motivation, careful explanations,
and numerous examples, with an ongoing focus on real-world prob-
lem solving.

The concepts that play a central role in calculus are explored from
algebraic, graphical, and numerical perspectives. Students are expect-
ed to participate actively in the development of these concepts by
using graphing calculators or computers with suitable software, as
directed in the Graphing Explorations and Calculator Explorations, 
either to complete a particular discussion or to explore appropriate
examples. 

A variety of examples and exercises based on real-world data are
included in the text. Additionally, sections have been included cover-
ing linear, polynomial, exponential, and logarithmic models, which
can be constructed from data by using the regression capabilities of 
a calculator. 

Chapter 1 begins with a review of basic terminology. Numerical pat-
terns are discussed that lead to arithmetic sequences, lines, and linear
models.  Geometric sequences are then introduced.  Some of this
material may be new to many students.

Chapter 2 introduces solving equations graphically and then reviews
techniques for finding algebraic solutions of various types of equa-
tions and inequalities.

Chapter 3 discusses functions in detail and stresses transformations of
parent functions. Function notation is reviewed and used throughout
the text. The difference quotient, a basic building block of differential

Representations

Organization of 
Beginning Chapters
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calculus, is introduced as a rate-of-change function; several examples
are given. There is an optional section on iterative real-valued
functions.

Chapter 4 reviews polynomial and rational functions, introduces com-
plex numbers, and includes an optional section on the Mandelbrot
set. Finally, the Fundamental Theorem of Algebra is introduced.

Chapter 5 reviews and extends topics on exponential and logarithmic
functions.

Five full chapters offer extensive coverage of trigonometry. Chapter 6
introduces trigonometry as ratios in right triangles, expands the dis-
cussion to include angle functions, and then presents trigonometric
ratios as functions of real numbers. The basic trigonometric identities
are given, and periodicity is discussed. 

Chapter 7 introduces graphs of trigonometric functions and discusses
amplitude and phase shift. 

Chapter 8 deals with solving trigonometric equations by using graph-
ical methods, as well as finding algebraic solutions by using inverse
trigonometric functions. Algebraic methods for finding solutions to
trigonometric equations are also discussed. The last section of
Chapter 8 introduces simple harmonic motion and modeling. 

Chapter 9 presents methods for proving identities and introduces
other trigonometric identities. 

Chapter 10 includes the Law of Cosines, the Law of Sines, polar form
of complex numbers, de Moive’s theorem, and nth roots of complex
numbers. Vectors in the plane and applications of vectors are also
presented.

Chapters 11 through 14 are independent of each other and may be
presented in any order. Topics covered in these chapters include ana-
lytic geometry, systems of equations, statistics and probability, and
limits and continuity.

Chapter Openers Each chapter begins with a brief example of an
application of the mathematics treated in that chapter, together with a
reference to an appropriate exercise. The opener also lists the titles of
the sections in the chapter and provides a diagram showing their
interdependence.

Excursions Each Excursion is a section that extends or supplements
material related to the previous section. Some present topics that
illustrate mathematics developed with the use of technology, some
are high-interest topics that are motivational, and some present mate-
rial that is used in other areas of mathematics. Exercises are included
at the end of every Excursion. Clearly marked exercises reflecting
material contained in each Excursion are also in corresponding
Chapter Reviews. Each Excursion is independent of the rest of the
book and should be considered an extension or enrichment. 

Trigonometry 

Organization of
Ending Chapters

Features
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Cautions Students are alerted to common errors and misconceptions,
both mathematical and technological, by clearly marked Caution
boxes.

Notes Students are reminded of review topics, or their attention is
directed toward specific content.

Exercises Exercise sets proceed from routine calculations and drill to
exercises requiring more complex thought, including graph interpre-
tation and word problems. Problems labeled Critical Thinking present
a question in a form different from what students may have seen
before; a few of the Critical Thinking problems are quite challenging.
Answers for selected problems are given in the back of the book.

Chapter Reviews Each chapter concludes with a list of important
concepts (referenced by section and page number), a summary of
important facts and formulas, and a set of review exercises.

Technology Appendix The technology appendix presents an overview
of the use of the graphing calculator. It is recommended that students
who are unfamiliar with the use of a graphing calculator complete all
examples, explorations, investigations, and exercises in this appendix.
All students may use the appendix for reference.

Algebra Review This Appendix reviews basic algebra. It can be omit-
ted by well-prepared students or treated as an introductory chapter.
Exercises are included.

Geometry Review Frequently used facts from plane geometry are
summarized, with examples, in this appendix.

Mathematical Induction and the Binomial Theorem Material relevant
to these two topics is presented in an appendix with examples and
exercises. 

Minimal Technology Requirements It is assumed that each student
has either a computer with appropriate software or a calculator at the
level of a TI-82 or higher. Among current calculator models that meet
or exceed this minimal requirement are TI-82 through TI-92, Sharp
9900, HP-39, and Casio 9850 and 9970. All students unfamiliar with
graphing technology should complete the Technology Appendix
before beginning the material. 

Because either a graphing calculator or a computer with graphing
software is required, several features are provided in the text to assist
the student in the use of these tools.

Technology Tips Although the discussion of technology in the text is
as generic as possible, some Technology Tips provide information and
assistance in carrying out various procedures on specific calculators.
Other Tips offer general information or helpful advice about perform-
ing a particular task on a calculator.

Appendices

Technology
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To avoid clutter, only a limited number of calculators are specifically
mentioned in the Technology Tips. However, unless noted otherwise,
observe the following guidelines.

• Technology Tips for TI apply to TI-84 Plus, TI-83 Plus, TI-83,
and—except for some matrix operations—TI-82

• Technology Tips for TI-86 also apply to TI-85
• Technology Tips for Casio apply to Casio 9850GB-Plus, Casio

9850, and Casio 9970

Calculator Explorations Students are directed to use a calculator or
computer with suitable software to complete a particular discussion
or to explore certain examples.

Graphing Explorations Students may not be aware of the full 
capabilities—or limitations—of a calculator. The Graphing
Explorations will help students to become familiar with the 
calculator and to maximize mathematical power. Even if the 
instructor does not assign these investigations, students may 
want to read through them for enrichment purposes.

Each chapter has a Can Do Calculus feature that connects a calculus
topic to material included in that chapter. This feature gives the stu-
dent the opportunity to briefly step into the world of calculus. Many
of these features include topics that are typically solved by using cal-
culus but can be solved by using precalculus skills that the student
has recently acquired. Other Can Do Calculus features conceptually
develop calculus topics by using tables and graphs. 

The chart on the next page shows the interdependence of chapters. A
similar chart appears at the beginning of each chapter, showing the
interdependence of sections within the chapter. 

Can Do Calculus
Features

Interdependence of
Chapters and Sections
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On a Clear Day

Hot-air balloons rise linearly as they ascend to the designated height. The distance they
have traveled, as measured along the ground, is a function of time and can be found by
using a linear function. See Exercise 58 in Chapter 1 Review.

Number Patterns
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1.1 Real Numbers, Relations, and Functions

1.2 Mathematical Patterns

1.3 Arithmetic Sequences

1.4 Lines

1.5 Linear Models

1.6 Geometric Sequences

Chapter Review

can do calculus Infinite Geometric Series

Chapter Outline
Interdependence of Sections
1.1 1.2 1.3 1.4 1.5

1.6

Mathematics is the study of quantity, order, and relationships. This

chapter defines the real numbers and the coordinate plane, and it

uses the vocabulary of relations and functions to begin the study of math-

ematical relationships. The number patterns in recursive, arithmetic, and

geometric sequences are examined numerically, graphically, and algebraic-

ally. Lines and linear models are reviewed.

1.1 Real Numbers, Relations, and Functions

Real number relationships, the points of a line, and the points of a plane
are powerful tools in mathematics.

Real Numbers

You have been using real numbers most of your life. Some subsets of the
real numbers are the natural numbers, and the whole num-
bers, which include 0 together with the set of natural numbers. The
integers are the whole numbers and their opposites.

The natural numbers are also referred to as the counting numbers and
as the set of positive integers, and the whole numbers are also referred
to as the set of nonnegative integers.

p , �5, �4, �3, �2, �1, 0, 1, 2, 3, 4, 5, p

1, 2, 3, 4, p ,

Objectives

• Define key terms:
sets of numbers
the coordinate plane
relation
input and output
domain and range
function

• Use functional notation

> > > >
>



A real number is said to be a rational number if it can be expressed as a  

ratio, with r and s integers and The following are rational numbers.

and

Rational numbers may also be described as numbers that can be expressed 

as terminating decimals, such as or as nonterminating repeat-

ing decimals in which a single digit or block of digits repeats, such as

or

A real number that cannot be expressed as a ratio with integer numera-
tor and denominator is called an irrational number. Alternatively, an
irrational number is one that can be expressed as a nonterminating, non-
repeating decimal in which no single digit or block of digits repeats. For
example, the number which is used to calculate the area of a circle, is
irrational.

Although Figure 1.1-1 does not represent the size of each set of numbers,
it shows the relationship between subsets of real numbers.

• All natural numbers are whole numbers.
• All whole numbers are integers.
• All integers are rational numbers.
• All rational numbers are real numbers.
• All irrational numbers are real numbers.

p,

53
333 � 0.159159 p5

3 � 1.6666 p

0.25 �
1
4 ,

8 3
5 �

43
547 �

47
1 ,�0.983 � �

938
1000,1

2,

s � 0.r
s ,
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Figure 1.1-1
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2
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The Real Number Line

The real numbers are represented graphically as points on a number line,
as shown in Figure 1.1-2. There is a one-to-one correspondence between
the real numbers and the points of the line, which means that each real
number corresponds to exactly one point on the line, and vice versa.



The Coordinate Plane

Just as real numbers correspond to points on a number line, ordered pairs
of real numbers correspond to points in a plane. To sketch a coordinate
plane, draw two number lines in the plane, one vertical and one hori-
zontal, as shown in Figure 1.1-3.

The number lines, or axes, are often named the x-axis and the y-axis, but
other letters may be used. The point where the axes intersect is the origin,
and the axes divide the plane into four regions, called quadrants,
indicated by Roman numerals in Figure 1.1-3. The plane is now said to
have a rectangular, or Cartesian, coordinate system.

In Figure 1.1-3, point P is represented by an ordered pair that has
coordinates (c, d), where c is the x-coordinate of P, and d is the 
y-coordinate of P.

Scatter Plots

In many application problems, data is plotted as points on the coordinate
plane. This type of representation of data is called a scatter plot.

Example 1 Scatter Plot

Create a scatter plot of this data from the Federal Election Commission
that shows the total amount of money, in millions of dollars, contributed
to all congressional candidates in the years shown.

Section 1.1 Real Numbers, Relations, and Functions 5

Figure 1.1-3

II I

III IV

P

c x

y

d

Year 1988 1990 1992 1994 1996

Amount 276 284 392 418 500

Solution

Let x be the number of years since 1988, so that denotes 1988, 
denotes 1990, and so on. Plot the points (0, 276), (2, 284), (4, 392), (6, 418),
and (8, 500) to obtain a scatter plot. See Figure 1.1-4.

x � 2x � 0

Figure 1.1-4
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A Relation and Its Domain and Range

Scientists and social scientists spend much time and money looking for
how two quantities are related. These quantities might be a person’s
height and his shoe size or how much a person earns and how many years
of college she has completed. In these examples, a relation exists between
two variables. The first quantity, often called the x-variable, is said to be
related to the second quantity, often called the y-variable. Mathematicians
are interested in the types of relations that exist between two quantities,
or how x and y are paired. Of interest is a relation’s domain, or possible
values that x can have, as well as a relation’s range, possible values that
y can have. Relations may be represented numerically by a set of ordered
pairs, graphically by a scatter plot, or algebraically by an equation.

Example 2 Domain and Range of a Relation

The table below shows the heights and shoe sizes of twelve high school
seniors.

6 Chapter 1 Number Patterns

Height
67 72 69 76 67 72

(inches)

Shoe size 8.5 10 12 12 10 11

Height
67 62.5 64.5 64 62 62

(inches)

Shoe Size 7.5 5.5 8 8.5 6.5 6

For convenience, the data table lists the height first, so the pairing (height,
shoe size) is said to be ordered. Hence, the data is a relation. Find the
relation’s domain and range.

Solution

There are twelve ordered pairs.

Figure 1.1-5 shows the scatter plot of the relation.

The relation’s domain is the set of x values: {62, 62.5, 64, 64.5, 67, 69, 72,
76}, and its range is the set of y values: {5.5, 6, 6.5, 7.5, 8, 8.5, 10, 11, 12}.

■

167, 7.52, 162.5, 5.52, 164.5, 82, 164, 8.52, 162, 6.52, 162, 62
167, 8.52, 172, 102, 169, 122, 176, 122, 167, 102, 172, 112,

Figure 1.1-5
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Sometimes a rule, which is a statement or an equation, expresses one
quantity in a relation in terms of the other quantity.

Example 3 A Rule of a Relation

Given the relation

state its domain and range. Create a scatter plot of the relation and find
a rule that relates the value of the first coordinate to the value of the sec-
ond coordinate.

Solution

The domain is {0, 1, 4, 9}, and the range is The
scatter plot is shown in Figure 1.1-6. One rule that relates the first coor-
dinate to the second coordinate in each pair is where x is an integer.

■

Functions

Much of mathematics focuses on special relations called functions. A
function is a set of ordered pairs in which the first coordinate denotes the
input, the second coordinate denotes the output that is obtained from the
rule of the function, and

each input corresponds to one and only one output.

Think of a function as a calculator with only one key that provides the
solution for the rule of the function. A number is input into the calculator,
the rule key (which represents a set of operations) is pushed, and a sin-
gle answer is output to the display. On the special “function calculator,”
shown in Figure 1.1-7, if you press 9 then the display screen will
show 163—twice the square of 9 plus 1. The number 9 is the input, the
rule is given by and the output is 163.

Example 4 Identifying a Function Represented Numerically

In each set of ordered pairs, the first coordinate represents input and the
second coordinate represents its corresponding output. Explain why each
set is, or is not, a function.

a.

b.

c.

Solution

The phrase “one and only one” in the definition of a function is the crit-
ical qualifier. To determine if a relation is a function, make sure that each
input corresponds to exactly one output.

5 10, 02, 11, 12, 1�1, 12, 14, 22, 1�4, �22, 19, 32, 1�9, �32 6
5 10, 02, 11, 12, 1�1, 12, 14, 22, 1�4, 22, 19, 32, 1�9, 32 6
5 10, 02, 11, 12, 11, �12, 14, 22, 14, �22, 19, 32, 19, �32 6

2x2 � 1,

2x2 � 1,

x � y2,

5�3, �2, �1, 0, 1, 2, 36.

5 10, 02, 11, 12, 11, �12, 14, 22, 14, �22, 19, 32, 19, �32 6,
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Figure 1.1-6

x

y

4

−2

−4

2

104 862

Figure 1.1-7



a. is not a function
because the input 1 has two outputs, 1 and Two other inputs, 4
and 9, also have more than one output.

b. is a function.
Although 1 appears as an output twice, each input has one and only
one output.

c. is a function
because each input corresponds to one and only one output.

■

5 10, 02, 11, 12, 1�1, 12, 14, 22, 1�4, �22, 19, 32, 1�9, �32 6

5 10, 02, 11, 12, 1�1, 12, 14, 22, 1�4, 22, 19, 32, 1�9, 32 6
�1.

5 10, 02, 11, 12, 11, �12, 14, 22, 14, �22, 19, 32, 19, �32 6
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Example 5 Finding Function Values from a Graph

The graph in Figure 1.1-8 defines a function whose rule is:

For input x, the output is the unique number y such that 
(x, y) is on the graph.

Figure 1.1-8

2

2 4

4

−2−4

−2

x

y

Calculator Exploration

Make a scatter plot of each set of ordered pairs in Example 4. Exam-
ine each scatter plot to determine if there is a graphical test that can
be used to determine if each input produces one and only one out-
put, that is, if the set represents a function.

a. Find the output for the input 4.
b. Find the inputs whose output is 0.
c. Find the y-value that corresponds to 
d. State the domain and range of the function.

Solution

a. From the graph, if then Therefore, 3 is the output
corresponding to the input 4.

y � 3.x � 4,

x � �2.



b. When or Therefore, and 2 are
the inputs corresponding to the output 0.

c. The y-value that corresponds to is 
d. The domain is all real numbers between and 5, inclusive. The

range is all real numbers between and 3, inclusive.
■

Function Notation
Because functions are used throughout mathematics, function notation
is a convenient shorthand developed to make their use and analysis eas-
ier. Function notation is easily adapted to mathematical settings, in which
the particulars of a relationship are not mentioned. Suppose a function is
given. Let f denote a given function and let a denote a number in the
domain of f. Then

denotes the output of the function f produced by input a.

For example, f(6) denotes the output of the function f that corresponds to
the input 6.

y is the output produced by input x according to 
the rule of the function f

is abbreviated

which is read “y equals f of x.’’

In actual practice, functions are seldom presented in the style of domain-
rule-range, as they have been here. Usually, a phrase, such as “the
function ” will be given. It should be understood as a set
of directions, as shown in the following diagram.

f 1x2 � 2x2 � 1,

y � f 1x2,

f(a)

�2
�4

y � 3.x � �2

�3, 0,x � 0 or x � 2.y � 0, x � �3

Section 1.1 Real Numbers, Relations, and Functions 9

CAUTION

The parentheses in d(t)
do not denote multi-
plication. The entire
symbol d(t) is part of
the shorthand language
that is convenient for
representing a function,
its input and its output;
it is not the same as
algebraic notation.

The choice of
letters that represent the
function and input may
vary.

NOTE

Name of function Input number

Output number Directions that tell you what to do with input

x in order to produce the corresponding output

namely, “square it, add 1, and take the

square root of the result.”

f(x),

f 1x2 � 2x2 � 1
> >

>

⎧ ⎨ ⎩ ⎧ ⎪ ⎨ ⎪ ⎩>

For example, to find f(3), the output of the function f for input 3, simply
replace x by 3 in the rule’s directions.

Similarly, replacing x by and 0 produces the respective outputs.

f 1�52 � 21�522 � 1 � 226  and  f 102 � 202 � 1 � 1

�5

 f132 � 21322 � 1 � 29 � 1 � 210
 f 1x2 � 2x2 � 1



Example 6 Function Notation

For find each of the following:

a. b. c.

Solution

To find and replace x by and respectively, in the
rule of h.

a.

b.

The values of the function h at any quantity, such as can be found by
using the same procedure: replace x in the formula for h(x) by the quantity

and simplify.

c.
■

h1�a2 � 1�a22 � 1�a2 � 2 � a2 � a � 2

�a

�a,

h1�22 � 1�222 � 1�22 � 2 � 4 � 2 � 2 � 0
h A23 B � A23 B 2 � 23 � 2 � 3 � 23 � 2 � 1 � 23

�2,23h 1�22,h A23 B

h1�a2h1�22h A23 B
h1x2 � x2 � x � 2,
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Exercises 1.1

1. Find the coordinates of points A–I. In Exercises 6–8, sketch a scatter plot of the given data.
In each case, let the x-axis run from 0 to 10.

6. The maximum yearly contribution to an
individual retirement account in 2003 is $3000.
The table shows the maximum contribution in
fixed 2003 dollars. Let correspond to 2000.x � 0

I

C

D

E

BA

G

H
1

2

3

321

F

y

x

In Exercises 2–5, find the coordinates of the point P.

2. P lies 4 units to the left of the y-axis and 5 units
below the x-axis.

3. P lies 3 units above the x-axis and on the same
vertical line as 

4. P lies 2 units below the x-axis and its x-coordinate
is three times its y-coordinate.

5. P lies 4 units to the right of the y-axis and its 
y-coordinate is half its x-coordinate.

1�6, 72.

Year 2003 2004 2005 2006 2007 2008

Amount 3000 2910 3764 3651 3541 4294

7. The table shows projected sales, in thousands, of
personal digital video recorders. Let 
correspond to 2000. (Source: eBrain Market
Research)

x � 0

8. The tuition and fees at public four-year colleges in
the fall of each year are shown in the table. Let

correspond to 1995. (Source: The College
Board)
x � 0

Year 2000 2001 2002 2003 2004 2005

Sales 257 129 143 214 315 485

Technology 
Tip

One way to evaluate a
function is to enter 

its rule into the equation
memory as and
use TABLE or EVAL. See
the Technology Appendix
for more detailed 
information.

y � f 1x2
f 1x2

Functions will be
discussed in detail in
Chapter 3.

NOTE



9. The graph, which is based on data from the U.S.
Department of Energy, shows approximate average
gasoline prices (in cents per gallon) between 1985
and 1996, with corresponding to 1985.x � 0

Section 1.1 Real Numbers, Relations, and Functions 11

a. In what years during this period were personal
savings largest and smallest (as a percent of
disposable income)?

b. In what years were personal savings at least
7% of disposable income?

11. a. If the first coordinate of a point is greater than
3 and its second coordinate is negative, in what
quadrant does it lie?

b. What is the answer to part a if the first
coordinate is less than 3?

12. In which possible quadrants does a point lie if the
product of its coordinates is 
a. positive? b. negative?

13. a. Plot the points (3, 2), and

b. Change the sign of the y-coordinate in each of
the points in part a, and plot these new points.

c. Explain how the points (a, b) and are
related graphically.
Hint: What are their relative positions with
respect to the x-axis?

14. a. Plot the points (5, 3), and

b. Change the sign of the x-coordinate in each of
the points in part a, and plot these new points.

c. Explain how the points (a, b) and are
related graphically. 
Hint: What are their relative positions with
respect to the y-axis?

In Exercises 15 –18, determine whether or not the given
table could possibly be a table of values of a function.
Give reasons for each answer.

15.

1�a, b2

1�3, �52.
1�1, 42,14, �22,

1a, �b2

1�5, �42.
1�2, 32,14, �12,

40

6 7 8 9 10 111 2 3 4 5

20

60

100

80

120

x

y

5
4

30 355 10 15 20 25

3
2
1

6

10
9
8
7

x

y

Input �2 0 3 1 �5

Output 2 3 �2.5 2 14

Input �5 3 0 �3 5

Output 7 3 0 5 �3

Input �5 1 3 �5 7

Output 0 2 4 6 8

Input 1 �1 2 �2 3

Output 1 �2 ±5 �6 8

16.

17.

18.

a. Estimate the average price in 1987 and in 1995.
b. What was the approximate percentage increase

in the average price from 1987 to 1995?
c. In what year(s) was the average price at least

$1.10 per gallon?

10. The graph, which is based on data from the U.S.
Department of Commerce, shows the approximate
amount of personal savings as a percent of
disposable income between 1960 and 1995, with

corresponding to 1960.x � 0

Tuition
Year & fees

1995 $2860

1996 $2966

1997 $3111

Tuition
Year & fees

1998 $3247

1999 $3356

2000 $3510



19. Find the output (tax amount) that is produced by
each of the following inputs (incomes):
$500 $1509 $3754
$6783 $12,500 $55,342

20. Find four different numbers in the domain of this
function that produce the same output (number in
the range).

21. Explain why your answer in Exercise 20 does not
contradict the definition of a function.

22. Is it possible to do Exercise 20 if all four numbers
in the domain are required to be greater than
2000? Why or why not?

23. The amount of postage required to mail a first-
class letter is determined by its weight. In this
situation, is weight a function of postage? Or vice
versa? Or both?

24. Could the following statement ever be the rule of
a function?

For input x, the output is the 
number whose square is x.

Why or why not? If there is a function with this
rule, what is its domain and range?

Use the figure at the top of page 13 for Exercises 
25–31. Each of the graphs in the figure defines a func-
tion.

25. State the domain and range of the function
defined by graph a.

26. State the output (number in the range) that the
function of Exercise 25 produces from the
following inputs (numbers in the domain):
�2, �1, 0, 1.

12 Chapter 1 Number Patterns

27. Do Exercise 26 for these numbers in the 

domain: 

28. State the domain and range of the function
defined by graph b.

29. State the output (number in the range) that the
function of Exercise 28 produces from the
following inputs (numbers in the domain):

30. State the domain and range of the function
defined by graph c.

31. State the output (number in the range) that the
function of Exercise 30 produces from the
following inputs (numbers in the domain): 

32. Find the indicated values of the function by hand
and by using the table feature of a calculator.

a. b. g(0) c. g(4)
d. g(5) e. g(12)

33. The rule of the function f is given by the graph.
Find
a. the domain of f
b. the range of f
c.
d.
e.
f.

34. The rule of the function g is given by the graph.
Find
a. the domain of g
b. the range of g
c.
d.
e.
f. g 142

g 112
g 1�12
g 1�32

f 122
f 112
f 1�12
f 1�32

g 1�22
g 1x2 � 2x � 4 � 2

�2, �1, 0, 12, 1.

�2, 0, 1, 2.5, �1.5.

1
2, 52, �5

2.

1

−2

−3

−2−3−4

2

3

3 421

−4

x

y

−1

1

−2

−3

−2−3−4

2

3

3 421

−4

x

y

−1

Exercises 19–22 refer to the following state income tax
table.

Annual income Amount of tax

Less than $2000 0

$2000–$6000 2% of income over $2000

More than $6000 $80 plus 5% of income
over $6000
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1

−1

−2

−3

−4

−2−3

2

3

4

32

a.

1

x

y

1

−1

−2

−3

−4

−2−3

2

3

4

3 42

b.

1

x

y

1

−1

−2

−3

−4

−2−1 −1 −1−3

2

3

4

32

c.

1

x

y

An infinite sequence is a sequence with an infinite number of terms.
Examples of infinite sequences are shown below.

The three dots, or points of ellipsis, at the end of a sequence indicate that
the same pattern continues for an infinite number of terms.

A special notation is used to represent a sequence.

2, 1, 23, 24, 25, 26, 27, p

1, �3, 5, �7, 9, �11, 13, p
2, 4, 6, 8, 10, 12, p

A sequence is an ordered list of numbers.
Each number in the list is called a term of the sequence.

Definition of a
Sequence

1.2 Mathematical Patterns

Visual patterns exist all around us, and many inventions and discoveries
began as ideas sparked by noticing patterns.

Consider the following lists of numbers.

Analyzing the lists above, many people would say that the next number
in the list on the left is 11 because the pattern appears to be “add 3 to the
previous term.’’ In the list on the right, the next number is uncertain
because there is no obvious pattern. Sequences may help in the visuali-
zation and understanding of patterns.

�1, 10, �3, 73,     ?�4, �1, 2, 5, 8,     ?

Objectives

• Define key terms:
sequence
sequence notation
recursive functions

• Create a graph of a
sequence

• Apply sequences to real-
world situations



Example 1 Terms of a Sequence

Make observations about the pattern suggested by the diagrams below.
Continue the pattern by drawing the next two diagrams, and write a
sequence that represents the number of circles in each diagram.

Diagram 1 Diagram 2 Diagram 3
1 circle 3 circles 5 circles

Solution

Adding two additional circles to the previous diagram forms each new
diagram. If the pattern continues, then the number of circles in Diagram
4 will be two more than the number of circles in Diagram 3, and the
number of circles in Diagram 5 will be two more than the number in
Diagram 4.

Diagram 4 Diagram 5
7 circles 9 circles

The number of circles in the diagrams is represented by the sequence

which can be expressed using sequence notation.

u5 � 9 p  un � un�1 � 2u4 � 7u3 � 5u2 � 3u1 � 1

51, 3, 5, 7, 9, p 6,
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The following notation denotes specific terms of a sequence:

• The first term of a sequence is denoted 

• The second term 

• The term in the nth position, called the nth term, is
denoted by 

• The term before is un�1.un

un.

u2.
u1.

Sequence
Notation

Any letter can be
used to represent the terms
of a sequence.

NOTE

Technology 
Tip

If needed, review how
to create a scatter plot 

in the Technology 
Appendix.

■

Graphs of Sequences

A sequence is a function, because each input corresponds to exactly one
output.

• The domain of a sequence is a subset of the integers.
• The range is the set of terms of the sequence.



Because the domain of a sequence is discrete, the graph of a sequence
consists of points and is a scatter plot.

Example 2 Graph of a Sequence

Graph the first five terms of the sequence .

Solution

The sequence can be written as a set of ordered pairs where the first coor-
dinate is the position of the term in the sequence and the second
coordinate is the term.

(1, 1) (2, 3) (3, 5) (4, 7) (5, 9)

The graph of the sequence is shown in Figure 1.2-1.
■

Recursive Form of a Sequence

In addition to being represented by a listing or a graph, a sequence can
be denoted in recursive form.

51, 3, 5, 7, 9, p 6
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Figure 1.2-1
0

10

0 10

Figure 1.2-2
�10

10

0 10

Example 3 Recursively Defined Sequence

Define the sequence recursively and graph it.

Solution

The sequence can be expressed as

The first term is given. The second term is obtained by adding 3 to the
first term, and the third term is obtained by adding 3 to the second term.
Therefore, the recursive form of the sequence is 

and for 

The ordered pairs that denote the sequence are

The graph is shown in Figure 1.2-2.
■

11, �72  12, �42  13, �12  14, 22  15, 52

n � 2.un � un�1 � 3u1 � �7

u1 � �7  u2 � �4  u3 � �1  u4 � 2  u5 � 5

5�7, �4, �1, 2, 5, p 6

A sequence is defined recursively if the first term is given
and there is a method of determining the nth term by using
the terms that precede it.

Recursively
Defined Sequence



Alternate Sequence Notation
Sometimes it is more convenient to begin numbering the terms of a
sequence with a number other than 1, such as 0 or 4.

or

Example 4 Using Alternate Sequence Notation

A ball is dropped from a height of 9 feet. It hits the ground and bounces
to a height of 6 feet. It continues to bounce, and on each rebound it rises 

to the height of the previous bounce.

a. Write a recursive formula for the sequence that represents the height
of the ball on each bounce.

b. Create a table and a graph showing the height of the ball on each
bounce.

c. Find the height of the ball on the fourth bounce.

Solution

a. The initial height, is 9 feet. On the first bounce, the rebound 

height, is 6 feet, which is the initial height of 9 feet. The 

recursive form of the sequence is given by

b. Set the mode of the calculator to Seq instead of Func and enter the
function as shown on the next page in Figure 1.2-4a. Figure 1.2-4b
displays the table of values of the function, and Figure 1.2-4c
displays the graph of the function.

u0 � 9 and un �
2
3 un�1 for n � 1

2
3u1,

u0,

2
3

b4, b5, b6, pu0, u1, u2, p
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Figure 1.2-3

Technology 
Tip

The sequence graphing
mode can be found in 

the TI MODE menu or the
RECUR submenu of the
Casio main menu. On such
calculators, recursively
defined function may be
entered into the sequence
memory, or Check
your instruction manual
for the correct syntax 
and use.

Y � list.

Calculator Exploration

An alternative way to think about the sequence in Example 3 is

Each 

• Type into your calculator and press ENTER. This
establishes the first answer.

• To calculate the second answer, press to automatically place
ANS at the beginning of the next line of the display.

• Now press 3 and ENTER to display the second answer.
• Pressing ENTER repeatedly will display subsequent answers.

See Figure 1.2-3.

�
�

�7

answer � Preceding answer � 3.



c. As shown in Figures 1.2-4b and 1.2-4c, the height on the fourth
bounce is approximately 1.7778 feet.

■

Applications using Sequences

Example 5 Salary Raise Sequence

If the starting salary for a job is $20,000 and a raise of $2000 is earned at
the end of each year of work, what will the salary be at the end of the
sixth year? Find a recursive function to represent this problem and use a
table and a graph to find the solution.

Solution

The initial term, is 20,000. The amount of money earned at the end of
the first year, , will be 2000 more than The recursive function

will generate the sequence that represents the salaries for each year. As
shown in Figures 1.2-5a and 1.2-5b, the salary at the end of the sixth year
will be $32,000.

u0 � 20,000 and un � un�1 � 2000 for n � 1

u0.u1

u0,
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Figure 1.2-4a Figure 1.2-4b Figure 1.2-4c

10

0

0 10

Figure 1.2-5a Figure 1.2-5b

50,000

0

0 10

■

In the previous examples, the recursive formulas were obtained by either
adding a constant value to the previous term or by multiplying the pre-
vious term by a constant value. Recursive functions can also be obtained
by adding different values that form a pattern.



Example 6 Sequence Formed by Adding a Pattern of Values

A chord is a line segment joining two points of a circle. The following dia-
gram illustrates the maximum number of regions that can be formed by
1, 2, 3, and 4 chords, where the regions are not required to have equal
areas.
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1 Chord

2 Regions 4 Regions 7 Regions 11 Regions

2 Chords 3 Chords 4 Chords

a. Find a recursive function to represent the maximum number of
regions formed with n chords.

b. Use a table to find the maximum number of regions formed with 20
chords.

Solution

Let the initial number of regions occur with 1 chord, so . The max-
imum number of regions formed for each number or chords is shown in
the following table.

Number of chords Maximum number of regions
1
2
3
4

The recursive function is shown as the last entry in the listing above, and
the table and graph, as shown in Figures 1.2-6a and 1.2-6b, identify the
20th term of the sequence as 211. Therefore, the maximum number of
regions that can be formed with 20 chords is 211.

■

Example 7 Adding Chlorine to a Pool

Dr. Miller starts with 3.4 gallons of chlorine in his pool. Each day he adds
0.25 gallons of chlorine and 15% evaporates. How much chlorine will be
in his pool at the end of the sixth day?

Solution

The initial amount of chlorine is 3.4 gallons, so and each day 0.25
gallons of chlorine are added. Because 15% evaporates, 85% of the mix-
ture remains.

u0 � 3.4

un � un�1 � nn
pp

u4 � 11 � u3 � 4
u3 � 7 � u2 � 3
u2 � 4 � u1 � 2
u1 � 2

u1 � 2

Figure 1.2-6b

Figure 1.2-6a

300

0

0 21



The amount of chlorine in the pool at the end of the first day is obtained
by adding 0.25 to 3.4 and then multiplying the result by 0.85.

The procedure is repeated to yield the amount of chlorine in the pool at
the end of the second day.

Continuing with the same pattern, the recursive form for the sequence is

and for 

As shown in Figures 1.2-7a and 1.2-7b, approximately 2.165 gallons of
chlorine will be in the pool at the end of the sixth day.

■

n � 1.un � 0.851un�1 � 0.252u0 � 3.4

0.8513.1025 � 0.252 � 2.85

0.8513.4 � 0.252 � 3.1025
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Figure 1.2-7b

Figure 1.2-7a

4

0

0 10

Exercises 1.2

In Exercises 1–4, graph the first four terms of the
sequence.

1.

2.

3.

4.

In Exercises 5–8, define the sequence recursively and
graph the sequence.

5.

6.

7.

8.

In Exercises 9–12, find the first five terms of the given
sequence.

9. and for 

10. and for n � 2un �
1
3 un�1 � 4u1 � 5

n � 2un � 2un�1 � 3u1 � 4

e8, 4, 2, 1, 12, 14, p f
56, 11, 16, 21, 26, p 6
5�4, �8, �16, �32, �64, p 6
5�6, �4, �2, 0, 2, p 6

54, 12, 36, 108, p 6
54, 5, 8, 13, p .6
53, 6, 12, 24, p .6
52, 5, 8, 11, p .6

11. and
for 

12. and for 

13. A really big rubber ball will rebound 80% of its
height from which it is dropped. If the ball is
dropped from 400 centimeters, how high will it
bounce after the sixth bounce?

14. A tree in the Amazon rain forest grows an average
of 2.3 cm per week. Write a sequence that
represents the weekly height of the tree over the
course of 1 year if it is 7 meters tall today. Write a
recursive formula for the sequence and graph the
sequence.

15. If two rays have a common endpoint, one angle is
formed. If a third ray is added, three angles are
formed. See the figure below.

n � 2un � nun�1u0 � 1, u1 � 1

n � 4un � un�1 � un�2 � un�3

u1 � 1, u2 � �2, u3 � 3,

1
2 3

Write a recursive formula for the number of
angles formed with n rays if the same pattern
continues. Graph the sequence. Use the formula to
find the number of angles formed by 25 rays.



16. Swimming pool manufacturers recommend that
the concentration of chlorine be kept between 1
and 2 parts per million (ppm). They also warn
that if the concentration exceeds 3 ppm,
swimmers experience burning eyes. If the
concentration drops below 1 ppm, the water will
become cloudy. If it drops below 0.5 ppm, algae
will begin to grow. During a period of one day
15% of the chlorine present in the pool dissipates,
mainly due to evaporation.
a. If the chlorine content is currently 2.5 ppm and

no additional chlorine is added, how long will
it be before the water becomes cloudy?

b. If the chlorine content is currently 2.5 ppm and
0.5 ppm of chlorine is added daily, what will
the concentration eventually become?

c. If the chlorine content is currently 2.5 ppm and
0.1 ppm of chlorine is added daily, what will
the concentration eventually become?

d. How much chlorine must be added daily for
the chlorine level to stabilize at 1.8 ppm?

17. An auditorium has 12 seats in the front row. Each
successive row, moving towards the back of the
auditorium, has 2 additional seats. The last row
has 80 seats.

Write a recursive formula for the number of seats
in the nth row and use the formula to find the
number of seats in the 30th row.

18. In 1991, the annual dividends per share of a stock
were approximately $17.50. The dividends were
increasing by $5.50 each year. What were the
approximate dividends per share in 1993, 1995,
and 1998? Write a recursive formula to represent
this sequence.

19. A computer company offers you a job with a
starting salary of $30,000 and promises a 6% raise
each year. Find a recursive formula to represent
the sequence, and find your salary ten years from
now. Graph the sequence.

20. Book sales in the United States (in billions of
dollars) were approximated at 15.2 in the year
1990. The book sales increased by 0.6 billion each
year. Find a sequence to represent the book sales
for the next four years, and write a recursive
formula to represent the sequence. Graph the
sequence and predict the number of book sales in
2003.

21. The enrollment at Tennessee State University is
currently 35,000. Each year, the school will
graduate 25% of its students and will enroll 6,500
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new students. What will be the enrollment 8 years
from now?

22. Suppose you want to buy a new car and finance it
by borrowing $7,000. The 12-month loan has an
annual interest rate of 13.25%.
a. Write a recursive formula that provides the

declining balances of the loan for a monthly
payment of $200.

b. Write out the first five terms of this sequence.
c. What is the unpaid balance after 12 months?
d. Make the necessary adjustments to the monthly

payment so that the loan can be paid off in 12
equal payments. What monthly payment is
needed?

23. Suppose a flower nursery manages 50,000 flowers
and each year sells 10% of the flowers and plants
4,000 new ones. Determine the number of flowers
after 20 years and 35 years.

24. Find the first ten terms of a sequence whose first
two terms are and and whose nth
term is the sum of the two preceding
terms.

Exercises 25–29 deal with prime numbers. A positive
integer greater than 1 is prime if its only positive inte-
ger factors are itself and 1. For example, 7 is prime
because its only factors are 7 and 1, but 15 is not prime
because it has factors other than 15 and 1, namely, 3
and 5.

25. Critical Thinking a. Let be the sequence of
prime integers in their usual ordering. Verify
that the first ten terms are 2, 3, 5, 7, 11, 13, 17,
19, 23, 29.
b. Find 

In Exercises 26–29, find the first five terms of the
sequence.

26. Critical Thinking is the nth prime integer larger
than 10.

27. Critical Thinking is the square of the nth prime
integer.

28. Critical Thinking is the number of prime
integers less than n.

29. Critical Thinking is the largest prime integer less
than 5n.

Exercises 30–34 deal with the Fibonacci sequence { }
which is defined as follows:

un

un

un

un

un

u17, u18, u19, u20.

5un6

1for n � 32
u2 � 1u1 � 1



and for is the sum of the two
preceding terms, That is,

30. Critical Thinking Leonardo Fibonacci discovered
the sequence in the thirteenth century in
connection with the following problem: A rabbit
colony begins with one pair of adult rabbits, one
male and one female. Each adult pair produces
one pair of babies, one male and one female,
every month. Each pair of baby rabbits becomes
adult and produces its first offspring at age two
months. Assuming that no rabbits die, how many

u1 � 1
u2 � 1

u3 � u1 � uz � 1 � 1 � 2   

u4 � u2 � u3 � 1 � 2 � 3   

u5 � u3 � u4 � 2 � 3 � 5   

and so on.

un � un�1 � un�2.
n �� 3, unu1 � 1, u2 � 1,
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adult pairs of rabbits are in the colony at the end
of n months, Hint: It may be
helpful to make up a chart listing for each month
the number of adult pairs, the number of one-
month-old pairs, and the number of baby pairs.

31. Critical Thinking List the first ten terms of the
Fibonacci sequence.

32. Critical Thinking Verify that every positive integer
less than or equal to 15 can be written as a
Fibonacci number or as a sum of Fibonacci
numbers, with none used more than once.

33. Critical Thinking Verify that is a
perfect square for 

34. Critical Thinking Verify that 
for n � 2, 3, p , 10.1�12n�1

un�1 un�1 �1un22 �

n � 1, 2, p , 10.
51un22 � 41�12n

n � 1, 2, 3, p ?

1.3 Arithmetic Sequences 

An arithmetic sequence, which is sometimes called an arithmetic progres-
sion, is a sequence in which the difference between each term and the
preceding term is always constant.

Example 1 Arithmetic Sequence

Are the following sequences arithmetic? If so, what is the difference
between each term and the term preceding it?

a.

b.

Solution

a. The difference between each term and the preceding term is . So
this is an arithmetic sequence with a difference of .

b. The difference between the 1st and 2nd terms is 2 and the difference
between the 2nd and 3rd terms is 3. The differences are not constant,
therefore this is not an arithmetic sequence.

■

If is an arithmetic sequence, then for each the term preceding
is and the difference is some constant—usually called

d. Therefore, un � un�1 � d.
un � un�1un�1un

n � 2,5un6

�4
�4

53, 5, 8, 12, 17, p 6
514, 10, 6, 2,�2, �6, �10, p 6

Objectives

• Identify and graph an
arithmetic sequence

• Find a common difference

• Write an arithmetic
sequence recursively and
explicitly

• Use summation notation

• Find the nth term and the
nth partial sum of an
arithmetic sequence



The number d is called the common difference of the arithmetic sequence.

Example 2 Graph of an Arithmetic Sequence

If is an arithmetic sequence with and as its first
two terms,

a. find the common difference.
b. write the sequence as a recursive function.
c. give the first seven terms of the sequence.
d. graph the sequence.

Solution

a. The sequence is arithmetic and has a common difference of

b. The recursive function that describes the sequence is

and for 

c. The first seven terms are 3, 4.5, 6, 7.5, 9, 10.5, and 12, as shown in
Figure 1.3-1a.

d. The graph of the sequence is shown in Figure 1.3-1b.
■

Explicit Form of an Arithmetic Sequence

Example 2 illustrated an arithmetic sequence expressed in recursive form
in which a term is found by using preceding terms. Arithmetic sequences
can also be expressed in a form in which a term of the sequence can be
found based on its position in the sequence.

Example 3 Explicit Form of an Arithmetic Sequence

Confirm that the sequence with can also be
expressed as 

Solution

Use the recursive function to find the first few terms of the sequence.

 u2 � �7 � 4 � �3
 u1 � �7

un � �7 � 1n � 12 � 4.
u1 � �7un � un�1 � 4

n � 2un � un�1 � 1.5u1 � 3

u2 � u1 � 4.5 � 3 � 1.5

u2 � 4.5u1 � 35un6
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In an arithmetic sequence { }

for some constant d and all n �� 2.

un � un�1 � d

un

Recursive Form
of an Arithmetic

Sequence

Figure 1.3-1b

15

0

0 10

Figure 1.3-1a



Notice that is which is the first term of the sequence with
the common difference of 4 added twice. Also, is which is
the first term of the sequence with the common difference of 4 added
three times. Because this pattern continues, The
table in Figure 1.3-2b confirms the equality of the two functions.

un � un�1 � 4 with u1 � �7    and    un � �7 � 1n � 12 � 4

un � �7 � 1n � 12 � 4.

�7 � 3 � 4,u4

�7 � 2 � 4,u3

 u5 � 1�7 � 3 � 42 � 4 � �7 � 4 � 4 � �7 � 16 � 9
 u4 � 1�7 � 2 � 42 � 4 � �7 � 3 � 4 � �7 � 12 � 5
 u3 � 1�7 � 42 � 4 � �7 � 2 � 4 � �7 � 8 � 1
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Figure 1.3-3

30

�10

0 10

Figure 1.3-2b

Figure 1.3-2a

If the initial term of a sequence is denoted as the explicit form of an
arithmetic sequence with common difference d is

Example 4 Explicit Form of an Arithmetic Sequence

Find the nth term of an arithmetic sequence with first term and com-
mon difference of 3. Sketch a graph of the sequence.

Solution

Because and the formula in the box states that

The graph of the sequence is shown in Figure 1.3-3.
■

un � u1 � 1n � 12d � �5 � 1n � 123 � 3n � 8

d � 3,u1 � �5

�5

un � u0 � nd  for every n �� 0.

u0,

In an arithmetic sequence { } with common difference d,

un � u1 � 1n � 12d  for every n �� 1.

un

Explicit Form of
an Arithmetic

Sequence

■

As shown in Example 3, if is an arithmetic sequence with common
difference d, then for each can be written as a func-
tion in terms of n, the position of the term.

Applying the procedure shown in Example 3 to the general case shows
that

Notice that 4d is added to to obtain . In general, adding to
yields So is the sum of n numbers: and the common differ-

ence, d, added times.1n � 12 u1unun.u1

1n � 12du5u1

 u5 � u4 � d � 1u1 � 3d2 � d � u1 � 4d
 u4 � u3 � d � 1u1 � 2d2 � d � u1 � 3d
 u3 � u2 � d � 1u1 � d2 � d � u1 � 2d
 u2 � u1 � d

n � 2, un � un�1 � d
5un6



Example 5 Finding a Term of an Arithmetic Sequence

What is the 45th term of the arithmetic sequence whose first three terms
are 5, 9, and 13?

Solution

The first three terms show that and that the common difference,
d, is 4. Apply the formula with .

■

Example 6 Finding Explicit and Recursive Formulas

If is an arithmetic sequence with and find , a recur-
sive formula, and an explicit formula for 

Solution

The sequence can be written as

The common difference, d, can be found by the difference between 93 and
57 divided by the number of times d must be added to 57 to produce 93
(i.e., the number of terms from 6 to 10).

Note that is the difference of the output values (terms of the
sequence) divided by the difference of the input values (position of the
terms of the sequence), which represents the change in output per unit
change in input.

The value of can be found by using and in the
equation

Because and the recursive form of the arithmetic sequence
is given by

and for 

The explicit form of the arithmetic sequence is given by

■
 � 9n � 3, for n � 1.

 un � 12 � 1n � 129

n � 2un � un�1 � 9,u1 � 12

d � 9,u1 � 12

 u1 � 57 � 5 � 9 � 57 � 45 � 12
 57 � u1 � 16 � 129
 u6 � u1 � 1n � 12d

d � 9n � 6, u6 � 57u1

d � 9

d �
93 � 57
10 � 6 �

36
4 � 9

u6  u7  u8  u9  u10

p , 57, —, —, —, 93, p

un.
u1u10 � 93,u6 � 575un6

u45 � u1 � 145 � 12d � 5 � 1442 142 � 181

n � 45
u1 � 5
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Summation Notation

It is sometimes necessary to find the sum of various terms in a sequence.
For instance, we might want to find the sum of the first nine terms of the
sequence Mathematicians often use the capital Greek letter sigma

to abbreviate such a sum as follows.

Similarly, for any positive integer m and numbers ,c1, c2, p , cm

a
9

i�1
ui � u1 � u2 � u3 � u4 � u5 � u6 � u7 � u8 � u9

1�2 5un6.
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Example 7 Sum of a Sequence

Compute each sum.

a. b.

Solution

a. Substitute 1, 2, 3, 4, and 5 for n in the expression and add
the terms.

b. Substitute 1, 2, 3, and 4 for n in the expression and
add the terms.

■
 � 12

 � �3 � 1 � 5 � 9

 � �3 � 1�3 � 42 � 1�3 � 82 � 1�3 � 122
 � 3�3 � 0 � 4 4 � 3�3 � 1 � 4 4 � 3�3 � 2 � 4 4 � 3�3 � 3 � 4 4

 � 3�3 � 13 � 124 4 � 3�3 � 14 � 124 4
 � 3�3 � 11 � 124 4 � 3�3 � 12 � 124 4
a

4

n�1
3�3 � 1n � 124 4

�3 � 1n � 124,

 � 10

 � �4 � 1 � 2 � 5 � 8

 � 1�7 � 32 � 1�7 � 62 � 1�7 � 92 � 1�7 � 122 � 1�7 � 152
 � 1�7 � 3 � 42 � 1�7 � 3 � 52

 � 1�7 � 3 � 12 � 1�7 � 3 � 22 � 1�7 � 3 � 32
a

5

n�1
1�7 � 3n2

�7 � 3n

a
4

n�1
3�3 � 1n � 124 4a

5

n�1
1�7 � 3n2

a
m

k�1
ck means c1 � c2 � c3 � p � cm

Summation
Notation

If 
is an arithmetic sequence,
then an expression of 
the form 
(sometimes written as 

) is called an

arithmetic series.

a
q

n�1
un

u1 � u2 � u3 � p

u1, u2, u3, pNOTE



Using Calculators to Compute Sequences and Sums

Calculators can aid in computing sequences and sums of sequences. The
SEQ (or MAKELIST) feature on most calculators has the following syntax.

The last parameter, increment, is usually optional. When omitted, incre-
ment defaults to 1. Refer to the Technology Tip about which menus contain
SEQ and SUM for different calculators.

The syntax for the SUM (or ) feature is

When start and
end are omitted, the sum of the entire list is given.

Combining the two features of SUM and SEQ can produce sums of
sequences.

Example 8 Calculator Computation of a Sum

Use a calculator to display the first 8 terms of the sequence 

and to compute the sum 

Solution

Using the Technology Tip, enter which produces Fig-
ure 1.3-4. Additional terms can be viewed by using the right arrow key
to scroll the display, as shown at right below.

SEQ17 � 3n, n, 1, 82,

a
50

n�1
7 � 3n.

un � 7 � 3n

SUM(SEQ(expression, variable, begin, end))

SUM(list[, start, end]), where start and end are optional.

�LIST

SEQ(expression, variable, begin, end, increment)
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Figure 1.3-5

Figure 1.3-4

The first 8 terms of the sequence are and 
To compute the sum of the first 50 terms of the sequence, enter

Figure 1.3-5 shows the resulting display. There-

fore, 

■

Partial Sums

Suppose is a sequence and k is a positive integer. The sum of the first
k terms of the sequence is called the kth partial sum of the sequence.

5un6

a
50

n�1
7 � 3n � �3475.

SUM1SEQ17 � 3n, n, 1, 502 2.
�17.4, 1, �2, �5, �8, �11, �14,

Technology 
Tip

SEQ is in the OPS
submenu of the TI 

LIST menu and in the
LIST submenu of the 
Casio OPTN menu.

SUM is in the MATH
submenu of the TI LIST
menu. SUM is in the LIST
submenu of the Casio
OPTN menu.
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Proof Let represent the kth partial sum Write the
terms of the arithmetic sequence in two ways. In the first representation
of repeatedly add d to the first term.

In the second representation of , repeatedly subtract d from the kth term.

If the two representations of are added, the multiples of d add to zero
and the following representation of is obtained.

Divide by 2.

The second formula is obtained by letting in the last
equation.

■

 � ku1 �
k 1k � 12

2 d

 Sk �
k
2 1u1 � uk2 �

k
2 3u1 � u1 � 1k � 12d 4 �

k
2 32u1 � 1k � 12d 4

uk � u1 � 1k � 12d
 Sk �

k
2 1u1 � uk2

 2Sk � 1u1 � uk2 � 1u1 � uk2 � p � 1u1 � uk2 � k1u1 � uk2

 Sk � uk � 3uk � d 4 � 3uk � 2d 4 � p � 3uk � 1k � 12d 4
 Sk � u1 � 3u1 � d 4 � 3u1 � 2d 4 � p � 3u1 � 1k � 12d 4

2Sk

Sk

 � uk � 3uk � d 4 � 3uk � 2d 4 � p � 3uk � 1k � 12d 4
 Sk � uk � uk�1 � uk�2 � p � u3 � u2 � u1

Sk

 � u1 � 3u1 � d 4 � 3u1 � 2d 4 � p � 3u1 � 1k � 12d 4
 Sk � u1 � u2 � u3 � p � uk�2 � uk�1 � uk

Sk ,

u1 � u2 � p � uk.Sk

If { } is an arithmetic sequence with common difference d,
then for each positive integer k, the kth partial sum can be
found by using either of the following formulas.

1.

2. a
k

n�1
un � ku1 �

k(k � 1)
2  d

a
k

n�1
un �

k
2  (u1 � uk)

un

Partial Sums of
an Arithmetic

Sequence

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩ k terms

Calculator Exploration

Write the sum of the first 100 counting numbers. Then find a pat-
tern to help find the sum by developing a formula using the terms
in the sequence.



Example 9 Partial Sum of a Sequence

Find the 12th partial sum of the arithmetic sequence below.

Solution

First note that d, the common difference, is 5 and .

Using formula 1 from the box on page 27 yields the 12th partial sum.

■

Example 10 Partial Sum of a Sequence

Find the sum of all multiples of 3 from 3 to 333.

Solution

Note that the desired sum is the partial sum of the arithmetic sequence
The sequence can be written in the form

where is the 111th term. The 111th partial sum of the
sequence can be found by using formula 1 from the box on page 27 with

and 

■

Example 11 Application of Partial Sums

If the starting salary for a job is $20,000 and you get a $2000 raise at the
beginning of each subsequent year, how much will you earn during the
first ten years?

Solution

The yearly salary rates form an arithmetic sequence.

The tenth-year salary is found using and 

 � 20,000 � 9 120002 � $38,000
 u10 � u1 � 110 � 12  d

d � 2000.u1 � 20,000

20,000 22,000 24,000 26,000 p

a
111

n�1
un �

111
2  13 � 3332 �

111
2  13362 � 18,648

u111 � 333.u1 � 3,k � 111,

333 � 3 � 111

3 � 1, 3 � 2, 3 � 3, 3 � 4, p ,

3, 6, 9, 12, p .

 a
12

n�1
un �

12
2  1�8 � 472 � 234

 � �8 � 11152 � 47
 u12 � u1 � 112 � 12  d

u1 � �8

�8, �3, 2, 7, p
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The ten-year total earnings are the tenth partial sum of the sequence.

■
 � $290,000
 � 5˛158,0002

 a
10

n�1
un �

10
2 ˛ 1u1 � u102 �

10
2 ˛ 120,000 � 38,0002
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Exercises 1.3

In Exercises 1–6, the first term, and the common
difference, d, of an arithmetic sequence are given. Find
the fifth term, the explicit form for the nth term, and
sketch the graph of each sequence.

1. 2.

3. 4.

5. 6.

In Exercises 7–12, find the sum.

7. 8.

9. 10.

11. 12.

In Exercises 13–18, find the kth partial sum of the arith-
metic sequence { } with common difference d.

13.

14.

15.

16.

17.

18. k � 10, u1 � 0, u10 � 30

k � 6, u1 � �4, u6 � 14

k � 9, u1 � 6, u9 � �24

k � 7, u1 �
3
4, d � �

1
2

k � 8, u1 �
2
3, d � �

4
3

k � 6, u1 � 2, d � 5

un

a
31

n�1
1300 � 1n � 12 ˛22a

36

n�15
12n � 82

a
75

n�1
13n � 12a

16

n�1
12n � 32

a
4

i�1

1
2ia

5

i�1
3i

u1 � p, d �
1
5u1 � 10, d � �

1
2

u1 � �6, d �
2
3u1 � 4, d �

1
4

u1 � �4, d � 5u1 � 5, d � 2

u1, In Exercises 19–24, show that the sequence is arith-
metic and find its common difference.

19. 20.

21. 22.

23.

24.

In Exercises 25–30, use the given information about
the arithmetic sequence with common difference d to
find and a formula for 

25. 26.

27. 28.

29. 30.

In Exercises 31–34, find the sum.

31. 32.

33. 34.

35. Find the sum of all the even integers from 2 to
100.

36. Find the sum of all the integer multiples of 7 from
7 to 700.

37. Find the sum of the first 200 positive integers.

38. Find the sum of the positive integers from 101 to
200 (inclusive). Hint: Recall the sum from 1 to 100.
Use it and Exercise 37.

a
30

n�1

4 � 6n
3a

40

n�1

n � 3
6

a
25

n�1
an

4 � 5ba
20

n�1
13n � 42

u5 � �3, u9 � �18u5 � 0, u9 � 6

u7 � 6, u12 � �4u2 � 4, u6 � 32

u7 � �8, d � 3u4 � 12, d � 2

un.u5

52b � 3nc6 1b, c constants2
5c � 2n6 1c constant2

ep � n
2 fe5 � 3n

2 f

e4 �
n
3f53 � 2n6



39. A business makes a $10,000 profit during its first
year. If the yearly profit increases by $7500 in each
subsequent year, what will the profit be in the
tenth year? What will be the total profit for the
first ten years?

40. If a man’s starting annual salary is $15,000 and he
receives a $1000 increase to his annual salary
every six months, what will he earn during the
last six months of the sixth year? How much will
he earn during the first six years?

41. A lecture hall has 6 seats in the first row, 8 in the
second, 10 in the third, and so on, through row 12.
Rows 12 through 20 (the last row) all have the
same number of seats. Find the number of seats in
the lecture hall.
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42. A monument is constructed by laying a row of 60
bricks at ground level. A second row, with two
fewer bricks, is centered on that; a third row, with
two fewer bricks, is centered on the second; and
so on. The top row contains ten bricks. How
many bricks are there in the monument?

43. A ladder with nine rungs is to be built, with the
bottom rung 24 inches wide and the top rung 18
inches wide. If the lengths of the rungs decrease
uniformly from bottom to top, how long should
each of the seven intermediate rungs be?

44. Find the first eight numbers in an arithmetic
sequence in which the sum of the first and
seventh terms is 40 and the product of the first
and fourth terms is 160.

1.4 Lines

A graph is a set of points in a plane. Some graphs are based on data points,
such as those shown in Section 1.3 where arithmetic sequences were
graphed as scatter plots. Other graphs arise from equations.

A solution of an equation in two variables, say x and y, is a pair of num-
bers such that the substitution of the first number for x and the second
for y produces a true statement. The graph of an equation in two vari-
ables is the set of points in a plane whose coordinates are solutions of the
equation. Thus, the graph is a geometric picture of the solutions.

Recall that an arithmetic sequence is a sequence in which the difference
between each term and the preceding term is constant.

For example, is an arithmetic sequence.

The graph of the sequence above has an infinite number of discrete points
because the value of the sequence depends upon the term of the sequence,
which must be a counting number. See Figure 1.4-1a. The graph of

is a continuous line that contains the discrete points of
the arithmetic sequence, as shown in Figures 1.4-1a and 1.4-1b on page 31.
y � 3 � 1x � 12 � 5

Term 1un2   3   8   13   18   23   p    3 � 1n � 12 � 5
Position 1n2   1   2   3   4   5   p    n

53, 8, 13, 18, p 6

Objectives

• Find the slopes of lines,
including parallel and
perpendicular lines

• Describe the connection
between arithmetic
sequences and lines

• Graph lines

• Write the equations of lines,
including horizontal and
vertical lines
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As the positions within a sequence increase by one, the value of the terms
increases by 5. Notice on the graph that as the x-values move to the right
a distance of one, the y-values move up by a distance of 5. This common
difference represents one of the most identifiable characteristics of a line,
its slope.

Slope

When you move from a point P to a point Q on a line, two numbers are
involved, as illustrated in Figure 1.4-2.

• The vertical distance you move is called the change in y, which is
sometimes denoted and read “delta y.”

• The horizontal distance you move is called the change in x, which
is sometimes denoted and read “delta x.”¢x

¢y

Figure 1.4-1a

25

0

0 6

Figure 1.4-1b

25

0

0 6

If needed, review
graphing functions on a
graphing calculator in the
Technology Appendix.

NOTE

Change in x = 6

Change in x
Change in y 4

6= =

Change
in y = 4

P

Q

2
3

Change in x = 1

Change in x
Change in y 4

1=

Change
in y = 4

P

Q

Change in x = 4

Change in x
Change in y 4

4= = 1 = 4

Change
in y = 4

P

Q

Figure 1.4-2

The fraction measures the steepness of the line. Sup-

pose P has coordinates and Q has coordinates as shown in
Figure 1.4-3.

• The change in y is the difference of the y-coordinates of P and Q.

• The change in x is the difference of the x-coordinates of P and Q.

¢x � x2 � x1

¢y � y2 � y1

(x2, y2),(x1, y1)

change in y
change in x

�
¢y
¢x

Figure 1.4-3

y

P

Q

(x1, y1)

(x2, y2)

y2 − y1

x2 − x1

y2

y1

x1 x2

x

c.b.a.
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If and are points with , then the slope of
the line through these points is the ratio

change in y
change in x

�
¢y
¢x

�
y2 � y1
x2 � x1

x1 � x2(x2, y2)(x1 , y1)
Slope of a Line

Example 1 Finding Slope Given Two Points

Find the slope of the line that passes through and See Fig-
ure 1.4-4.

Solution

Apply the formula in the previous box with and

■

The order of the points makes no difference; if you use (4, 1) for 
and for in Example 1, the result is the same.

Example 2 Finding Slope From a Graph

Find the slope of each line shown in Figure 1.4-5. The lines shown are
determined by the following points:

Solution

The slopes are as follows.

■

 L5: 
�2 � 0
2 � 1 �

�2
1 � �2

 L4: 
�1 � 5

3 � 1�32 �
�6
6 � �1

 L3: 
2 � 2

3 � 1�62 �
0
9 � 0

 L2: 
4 � 2
2 � 0 �

2
2 � 1

 L1: 
2 � 1�12
0 � 1�12 �

3
1 � 3

L4: 1�3, 52 and 13, �12  L5: 11, 02 and 12, �22
L1: 10, 22 and 1�1, �12  L2: 10, 22 and 12, 42  L3: 1�6, 22 and 13, 22

(x2, y2)(0, �1)
1x1, y12

Slope �
y2 � y1
x2 � x1

�
1 � (�1)

4 � 0 �
2
4 �

1
2

x2 � 4, y2 � 1.
x1 � 0, y1 � �1

(4, 1).10, �12

Figure 1.4-4

y

1

−1

1

2 3 4

x

CAUTION

When finding slopes,
you must subtract the
y-coordinates and the
x-coordinates in the
same order. With the
points (3, 4) and (1, 8),
for instance, if you use

in the numerator,
you must write 1 – 3 in
the denominator, not
3 �1.

8 � 4

y

−1
−1

−2

−2−3−4−5−6

1

2

3

4

5

1

L5

L4

L3

L2

L1

2 3

x

Figure 1.4-5

Consequently, slope is defined as follows.



Example 2, page 32, illustrates how the slope measures the steepness of
the line, summarized as follows. The lines referenced refer to Figure 1.4-5.
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Figure 1.4-6

y

(x, y)

y − b

x − 0
(0, b)

x

Slope-Intercept Form

A nonvertical line intersects the y-axis at a point with coordinates (0, b),
because every point on the y-axis has first coordinate 0. The number b is
called the y-intercept of the line. For example, the line in Figure 1.4-4 has
y-intercept because it crosses the y-axis at 

Let L be a nonvertical line with slope m and y-intercept b. Therefore, 
(0, b) is a point on L. Let (x, y) be any other point on L, as shown in Fig-
ure 1.4-6. Use the points (0, b) and (x, y) to compute the slope of L.

Multiply both sides of the equation by x, and solve for y.

Thus, the coordinates of any point on L satisfy the equation 
which leads to the following.

y � mx � b,

 y � mx � b
 mx � y � b

m �
y � b
x � 0 �

y � b
x

(0, �1).�1

The slope of a nonvertical line is a number m that measures
how steeply the line rises or falls.

• If the line rises from left to right; the larger m is,
the more steeply the line rises. [Lines and ]

• If , the line is horizontal. [Line ]

• If the line falls from left to right; the larger is,
the more steeply the line falls. [Lines and ]L5L4

0 m 0m 66 0,

L3m � 0

L2L1

m 77 0,

Properties 
of Slope

The line with slope m and y-intercept b is the graph of the
equation

y � mx � b.

Slope-Intercept
Form

Did you notice, as you recall your work with arithmetic sequences, that
the explicit form of the sequence looks very similar to ?

Example 3 Graphs of Arithmetic Sequences and Lines

The first three terms of an arithmetic sequence are and 8. Use the
explicit form of the sequence to express the nth term, and compare it to

�2, 3,

y � mx � b



the slope-intercept form of the equation of a line that passes through the
points on the graph of the sequence. Graph both the sequence and the
corresponding line on the same set of axes.

Solution

The common difference for the sequence is 5 and Therefore, the
explicit form is

The last equation, has the form where

Figure 1.4-7 shows graphs of the sequence and the line.
■

Below is an important summary connecting the explicit form of an
arithmetic sequence to the slope-intercept form of a line.

m � d � 5  b � u0 � u1 � d � �7  and  x corresponds to n.

y � mx � b,un � 5n � 7,

 � 5n � 7
 � �2 � 5n � 5
 � �2 � 1n � 12 ˛5

 un � u1 � 1n � 12 ˛d

u1 � �2.
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Figure 1.4-7

25

�10

�3 5

A linear equation expressed in slope-intercept form defines a relation for
all the ordered pairs (x, y) on the line. The equation represents the rule
and each x represents an input. For every input x there is one and only
one output y, so y is a function of x. The graph of a linear function f is
the graph of 

Most graphing calculators are called function graphers because they graph
a relation only if it can be expressed as a function Thus, slope-
intercept form is useful for graphing a line both on paper and with a
graphing calculator.

Example 4 Graphing a Line

Sketch the graph of and confirm your sketch with a graph-
ing calculator.

2y � 5x � 2,

y � f ˛1x2.
y � f˛ 1x2 � mx � b.

The connection between the explicit form of an arithmetic
sequence, , and the slope-intercept form of
a line, , is as follows.

• The slope of the line corresponds to the common
difference of the sequence, 

• The y-intercept represents the value of the first term of
the sequence minus the difference, b � u1 � d.

m � d.

y � mx � b
un � u1 � (n � 1)˛d

Connection
between

Arithmetic
Sequences 
and Lines



Solution

Begin by solving the equation for y.

Therefore, the graph is a line with slope , the coefficient of x, and 

y-intercept 1, the constant term. Because the y-intercept is 1, the point 

(0, 1) is on the line. When then so (2, 6) is 

also on the line. Plotting and connecting the points (0, 1) and (2, 6) pro-
duces the line in Figure 1.4-8a. Figure 1.4-8b displays the same graph
produced by a graphing calculator.

■

Example 5 Linear Depreciation

An office buys a new computer system for $7000. Five years later its value
is $800. Assume that the system depreciates linearly.

a. Write the equation that represents value as a function of years.
b. Find its value two years after it was purchased, that is, the y-value

when 
c. Graph the equation.
d. Find how many years before the system is worthless, that is, the 

x-value that corresponds to a y-value of 0.

Solution

a. Linear depreciation means that the equation that gives the value y of
the computer system in year x has the form for some
constants m and b. Because the system is worth $7000 new (when

) the y-intercept is 7000 and the equation can be written as

Because the system is worth $800 after 5 years (i.e., when

The depreciation equation is where y represents
the value of the system after x years.

y � �1240x � 7000,

 m �
�6200

5 � �1240

 �6200 � 5m
 800 � m � 5 � 7000

 y � mx � 7000

x � 52, y � 800

 y � mx � 7000
 y � mx � b

x � 0

y � mx � b

x � 2.

f 122 �
5
2 122 � 1 � 6,x � 2,

5
2

 y � f 1x2 �
5
2 x � 1

 2y � 5x � 2
 2y � 5x � 2
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Figure 1.4-8b

8

�1

�3 5

Figure 1.4-8a

y

2

x

6



b. The value of the system after two years is

c. The graph of is shown in Figure 1.4-9. Notice
that the slope of the line, represents the depreciation of the
system per year. That is, the value of the system decreases $1240
each year.

d. The trace feature or the zero feature of a graphing calculator shows
that the x-value corresponding to is as shown in
Figure 1.4-9. That is, the system will be worthless in 5 years and

months.
■

The Point-Slope Form

Suppose the line L passes through the point and has slope m. Let
(x, y) be any other point on L. Use the fixed point and the variable
point to compute the slope m of L, and it will generate another useful
form of a line called the point-slope form. For 

Thus, the coordinates of every point on L satisfy the equation

y � y1 � m1x � x12.

 y � y1 � m 1x � x12
 
y � y1
x � x1

� m  slope of L

x � x1,
1x, y2 1x1, y12

1x1, y12

0.6 � 12 � 7.2

x � 5.6,y � 0

�1240,
y � �1240x � 7000

 � $4520.
 y � �1240122 � 7000

1x � 22
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Figure 1.4-9

10,000

0

0 10

The line with slope m through the point is the graph
of the equation

y � y1 � m (x � x1).

(x1 , y1)
Point-Slope

Form

There are two interesting observations about point-slope form.

1. Although slope-intercept form and point-slope form can be used to
write the equation of a line, the point-slope form is easier to use, unless
you know the y-intercept.

2. The point-slope form can also be used to graph a line because any
point of the line can be used as the initial point and the remaining
points can be found by using the equation’s slope. The slope deter-
mines how to find a second point from the initial point by moving
vertically an amount equal to the numerator of the slope, which rep-
resents and then moving horizontally an amount equal to the
denominator of the slope, which represents ¢x.

¢y,



Example 6 Point-Slope Form of a Line

Sketch the graph and find the equation of the line that passes through the
point with slope 2. Write the equation in slope-intercept form.

Solution

To graph the line, start at the point and identify another point on
the line by moving 2 units vertically and 1 unit horizontally. The point

is also on the line. Because a unique line is determined by two
points, connecting the points and produces the line, as
shown in Figure 1.4-10.

To find the equation of the line, substitute 2 for m and for 
in the point-slope equation.

Point-slope form

Slope-intercept form
■

Vertical and Horizontal Lines

When a line has 0 slope, it is called a horizontal line, and it can be writ-
ten as 

Example 7 Equation of a Horizontal Line

Describe and sketch the graph of the equation 

Solution

Because can be written as its graph is a line with slope
0 and y-intercept 3. This is sufficient information to obtain the graph
shown in Figure 1.4-11.

■

Vertical Lines
The preceding discussion does not apply to vertical lines, whose equa-
tions have a different form than those examined earlier because a vertical
line is not a function.

Example 8 Equation of a Vertical Line

Find the equation of the vertical line shown in Figure 1.4-12.

Solution

Every point on the vertical line in Figure 1.4-12 has first coordinate 2.
Thus, every point on the line satisfies and the line is the graphx � 0y � 2,

y � 0x � 3,y � 3

y � 3.

y � 0x � b � b.

 y � 2x � 8
 y � 6 � 2x � 2    

 y � 1�62 � 21x � 12
 y � y1 � m˛1x � x12    

1x1, y1211, �62

12, �4211, �6212, �42
11, �62

11, �62
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Figure 1.4-10

x

y

−1 1

1

1

0

−2
−3

765432

2

−4
−5

−7
−6

Figure 1.4-11

y

1

−3 −1 2

x

Figure 1.4-12

x

3

y

1

−2

2

0 431−1



of the equation If you try to compute the slope of the line, say using

(2, 1) and (2, 4), you obtain which is not defined.

■

Parallel and Perpendicular Lines

The slope of a line measures how steeply it rises or falls. Because paral-
lel lines rise or fall equally steeply, their slopes are the same.

Two lines that meet in a right angle, that is, a angle, are said to be
perpendicular. There is a close relationship between the slopes of two
perpendicular lines.

90°

4 � 1
2 � 2 �

3
0,

x � 2.

38 Chapter 1 Number Patterns

Two nonvertical lines are parallel when they have exactly the
same slope.

Two nonvertical lines are perpendicular when the product of
their slopes is �1.

Parallel and
Perpendicular

Lines

Example 9 Parallel and Perpendicular Lines

Given the line M whose equation is find the equation
of the lines through the point 

a. parallel to M.

b. perpendicular to M.

Solution

First find the slope of M by rewriting its equation in slope-intercept form.

Therefore, M has slope 

a. The line parallel to M must have the same slope, and because
is on the parallel line, use the point-slope form to find its

equation.

 y �
3
2 x � 4

 y � 1 �
3
2 x � 3

 y � 1�12 �
3
2 1x � 22

 y � y1 � m1x � x12
12, �12

3
2.

 y �
3
2 x � 3

 �2y � �3x � 6
 3x � 2y � 6 � 0

12, �12 3x � 2y � 6 � 0,



b. The line perpendicular to M must have slope Use point-

slope form again to find the equation of the line perpendicular to M
through 

■

 y � �
2
3 x �

1
3

 y � 1 � �
2
3 x �

4
3

 y � 1�12 � �
2
3 1x � 22

12, �12.

�
1
3
2

� �
2
3.

Section 1.4 Lines 39

The standard
form of a line is sometimes
called the general form of a
line and may also be written
as Ax � By � C � 0.

NOTE

The forms of the equation of a line are

standard form

slope-intercept form Graphing

point-slope form Write equations

A horizontal line has slope 0 and an equation of the form

A vertical line has undefined slope and an equation of the
form x � c.

y � b.

y � y1 � m(x � x1)

y � mx � b

Ax � By � C

Forms of Linear
Equations 

Any line, including vertical lines, can be written in this form. The last

equation shown in Example 9, for the perpendicular line, 

can be written in standard form by multiplying both sides by 3, the least
common denominator of all the terms, and then adding 2x to both sides.
The resulting equation is 

The following box summarizes the different forms of the equation of a
line and when each form is best used.

2x � 3y � 1.

y � �
2
3 x �

1
3,

The standard form of a line is

,

where A, B, and C are integers, , and A and B are not
both 0.

A �� 0

Ax � By � C

Standard Form
of a Line
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Exercises 1.4

1. For which of the line segments in the figure is the
slope
a. largest?
b. smallest?
c. largest in absolute value?
d. closest to zero?

In Exercises 7–10, find the slope of the line through
the given points.

7. 8.

9. 10.

In Exercises 11–14, find a number t such that the line
passing through the two given points has slope 

11. 12.

13. 14.

15. Let L be a nonvertical straight line through the
origin. L intersects the vertical line through (1, 0)
at a point P. Show that the second coordinate of P
is the slope of L.

16. On one graph, sketch five line segments, not all
meeting at a single point, whose slopes are five
different positive numbers.

In Exercises 17–20, find the equation of the line with
slope m that passes through the given point.

17. 18.

19. 20.

In Exercises 21–24, find the equation of the line
through the given points.

21. and 22. and 

23. and 24. (6, 7) and (6, 15)

In Exercises 25–28, determine whether the line through
P and Q is parallel or perpendicular to the line through
R and S, or neither.

25. and 

26. and 

27. and 

28. and
R � 12, �22, S � 14, �52
P � 13, 32, Q � 1�3, �12
S � a4, �2

3b
R � 12, 02,P � a�3, 13b , Q � 11, �12

R � 12, 72, S � 13, 92P � a0, 32b , Q � 11, 12
 R � 14, 22, S � 16, 12P � 12, 52, Q � 1�1, �12

a1
3, 3ba4

3, 23b
 12, �1214, 321�3, �2210, �52

m � 0; 1�4, �52m � �1; 16, 22
m � 2; 1�2, 12m � 1; 13, 52

1t, t2; 15, 921t � 1, 52; 16, �3t � 72
11, t2; 1�3, 5210, t2; 19, 42

�2.

A22, �1 B ; 12, �92a1
4, 0b; a3

4, 2b
1�1, �22; 12, �1211, 22; 13, 72

2. The doorsill of a campus building is 5 ft above
ground level. To allow wheelchair access, the
steps in front of the door are to be replaced by a 

straight ramp with constant slope as shown in 

the figure. How long must the ramp be? [The
answer is not 60 ft.]

1
12,

In Exercises 3–6, find the slope and y-intercept of the
line whose equation is given.

3. 4.

5.

6. 21y � 32 � 1x � 62 � 41x � 12 � 2

31x � 22 � y � 7 � 61y � 42
3x � 4y � 72x � y � 5 � 0

y

A

B
C

D

E x

Ramp
5



In Exercises 29–31, determine whether the lines whose
equations are given are parallel, perpendicular, or 
neither.

29. and 

30. and 

31. and 

32. Use slopes to show that the points
and all lie on the same

straight line.

33. Use slopes to determine if (9, 6), and
are the vertices of a right triangle.

34. Use slopes to show that the points
and are the vertices

of a parallelogram.

In Exercises 35–42, find an equation for the line satis-
fying the given conditions.

35. through with slope 3

36. y-intercept and slope 1

37. through and parallel to 

38. through and perpendicular to 

39. x-intercept 5 and y-intercept 

40. through and parallel to the line through 
(1, 2) and (4, 3)

41. through and perpendicular to the line
through (0, 1) and (2, 3)

42. y-intercept 3 and perpendicular to 

43. Find a real number k such that is on the
line 

44. Find a real number k such that the line
has y-intercept 

45. Write the equation for the given arithmetic
sequence in slope-intercept form.

�3.3x � ky � 2 � 0

kx � 2y � 7 � 0.
13, �22

2x � y � 6 � 0

1�1, 32

1�5, 22
�5

y � 2x � 311, �22
3x � 2y � 512, 32

�7

1�2, 12

15, 321�5, �22 1�3, 12, 13, 02,

11, �32
1�1, 22,

1�7, 021�4, 62, 1�1, 122,

0.5x � y � �3y � 2x � 4

6x � 2y � 17 � 03x � y � 3 � 0

4x � 2y � 18 � 02x � y � 2 � 0
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46. Write the equation for the given arithmetic
sequence in slope-intercept form.

47. The first three terms of an arithmetic sequence are
7, 1, and Write the sequence’s equation in
slope-intercept form.

48. For a given arithmetic sequence, the common
difference is and Find the slope and 
y-intercept of the graph of this sequence.

49. For a given arithmetic sequence, the common
difference is 8 and Find the slope and 
y-intercept of the graph of this sequence.

50. Let L be a line that is neither vertical nor
horizontal and which does not pass through the

origin. Show that L is the graph of 

where a is the x-intercept and b is the y-intercept
of L.

51. Let A, B, C, and D be nonzero real numbers. 
Show that the lines and

are parallel.

52. Sales of a software company increased linearly
from $120,000 in 1996 to $180,000 in 1999
a. Find an equation that expresses the sales y in

year x (where corresponds to 1996).
b. Estimate the sales in 2001.

53. The poverty level income for a family of four was
$9287 in 1981. Due to inflation and other factors,
the poverty level income rose to approximately
$18,267 in 2001. (Source: U.S. Census Bureau)
a. Find a linear equation that approximates the

poverty level income y in year x (with 
corresponding to 1981).

b. Use the equation of part a to estimate the
poverty level income in 1990 and 2005.

54. At sea level, water boils at At a height of
1100 ft, water boils at The relationship
between boiling point and height is linear.
a. Find an equation that gives the boiling point 

y of water at a height of x feet.

Find the boiling point of water in each of the
following cities (whose altitudes are given).

b. Cincinnati, OH (550 ft)
c. Springfield, MO (1300 ft)
d. Billings, MT (3120 ft)
e. Flagstaff, AZ (6900 ft)

210° F.
212° F.

x � 0

x � 0

Ax � By � D � 0
Ax � By � C � 0

x
a �

y
b

� 1,

u1 � �2.

u1 � 6.�3

�5.

1 2 3 4 5

�2 2 6 10 14

1 2 3 4 5

10 7 4 1 �2



55. A small plane costs $600,000 new. Ten years later,
it is valued at $150,000. Assuming linear
depreciation, find the value of the plane when it is
5 years old and when it is 12 years old.

56. In 1950, the age-adjusted death rate from heart
disease was about 307.2 per 100,000 people. In
1998, the rate had decreased to 126.6 per 100,000.
a. Assuming the rate decreased linearly, find an

equation that gives the number y of deaths per
100,000 from heart disease in year x, with 
corresponding to 1950. Round the slope of the
line to one decimal place.

b. Use the equation in part a to estimate the death
rate in 1995 and in 2005.

57. According to the Center of Science in the Public
Interest, the maximum healthy weight for a
person who is 5 ft 5 in. tall is 150 pounds and for
someone 6 ft 3 in. tall is 200 pounds. The
relationship between weight and height here is
linear.
a. Find a linear equation that gives the maximum

healthy weight y for a person whose height is x
inches over 5 ft 5 in. ( corresponds to 5 ft
5 in., to 5 ft 7 in., etc.).

b. Use the equation of part a to estimate the
maximum healthy weight for a person whose
height is 5 ft and for a person whose height is
6 ft.

58. The profit p (in thousands of dollars) on x
thousand units of a specialty item is

The cost c of manufacturing x
items is given by 
a. Find an equation that gives the revenue r from

selling x items.
b. How many items must be sold for the

company to break even (i.e., for revenue to
equal cost)?

59. A publisher has fixed costs of $110,000 for a
mathematics text. The variable costs are $50 per
book. The book sells for $72. Find equations that
give the required information.
a. the cost c of making x books
b. the revenue r from selling x books
c. the profit p from selling x books
d. the publisher’s break-even point (see Exercise

58b)

60. If the fixed costs of a manufacturer are $1000 and
it costs $2000 to produce 40 items, find a linear
equation that gives the total cost of making x
items.

c � 0.8x � 14.5.
p � 0.6x � 14.5.

x � 2
x � 0

x � 0
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61. A hat company has fixed costs of $50,000 and
variable costs of $8.50 per hat.
a. Find an equation that gives the total cost y of

producing x hats.
b. What is the average cost per hat when 20,000

are made? 50,000? 100,000?

Use the graph and the following information for Exer-
cises 62–64. Rocky is an “independent” ticket dealer
who markets choice tickets for Los Angeles Lakers
home games (California currently has no laws against
scalping). Each graph shows how many tickets will be
demanded by buyers at a particular price. For instance,
when the Lakers play the Chicago Bulls, the graph
shows that at a price of $160, no tickets are demanded.
As the price (y-coordinate) gets lower, the number of
tickets demanded (x-coordinate) increases.

20
0

40
60
80

100
120
140
160

20

Bulls

Suns

Mavericks

Quantity

30 4010

P
ri

ce

62. Write a linear equation expressing the quantity x
of tickets demanded at price y when the Lakers
play the indicated team.
a. Dallas Mavericks
b. Phoenix Suns
c. Chicago Bulls
Hint: In each case, use the points where the graph
crosses the two axes to determine its slope.

63. Use the equations from Exercise 62 to find the
number of tickets Rocky would sell at a price of
$40 for a game against the indicated team.
a. Mavericks b. Bulls

64. Suppose Rocky has 20 tickets to sell. At what
price could he sell them all when the Lakers play
the indicated team.
a. Mavericks b. Suns
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1.5 Linear Models

People working in business, medicine, agriculture, and other fields fre-
quently want to know the relationship between two quantities. For
instance,

How does money spent on advertising affect sales?
What effect does a fertilizer have on crop yield?
How much do large doses of certain vitamins lengthen life
expectancy?

In many such situations there is sufficient data available to construct a
mathematical model, such as an equation or graph, which demonstrates
the desired relationship or predicts the likely outcome in cases not
included in the data. In this section applications are considered in which
the data can be modeled by a linear equation. More complicated models
will be considered in later sections.

When you are given a set of data points, you should first determine
whether a straight line would be a good model for the data. This can be
done graphically by making a scatter plot of the data, as shown in Fig-
ures 1.5-1a and 1.5-1b. Visual inspection suggests that the data points in
Figure 1.5-1a are approximately linear but that those in Figure 1.5-1b are
not. So a line would be a good model for the data points in Figure 1.5-1a,
but for those in Figure 1.5-1b a line is not a good model.

Objectives

• Algebraically fit a linear
model

• Calculate finite differences
and use residuals to
determine the model of
best fit

• Use a calculator to
determine a linear model

• Find and interpret the
correlation coefficient for a
model

• Create and interpret a
residual plot for a linear
model

Figure 1.5-1a

y

x

Figure 1.5-1b

y

x

You can also determine whether a line is a good model for a given set of
data points, without graphing, by using finite differences. To understand
the idea, consider the equation whose graph is known to be
a line. Consider the table of values shown on the next page and look at
the difference between each y-entry and the preceding one.

The differences are the same; all of them are equal to the slope of the line
This fact suggests that if the successive differences of the 

y-coordinates of the data points are approximately equal, then a line
should be a good model for the data.

y � 3x � 1.

y � 3x � 1,



x Difference
1 2
2 5
3 8
4 11
5 14

Example 1 Linear Data

Estimated cash flows from a company over the five-year period 1988–
1992 are shown in the table.

14 � 11 � 3
11 � 8 � 3
8 � 5 � 3
5 � 2 � 3

y � 3x � 1
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Determine whether a line would be a good model for this data. Use two
different methods.

a. Calculate the finite differences for the data points.
b. Draw a scatter plot of the data.

Solution

a. Subtract each cash flow from the preceding one and record the
difference, as shown in Figure 1.5-2a.

Because the differences are approximately equal, a line is a good
model for this data.

b. Let correspond to 1988. The scatter plot for the data points is
shown in Figure 1.5-2b, where the points appear to be linear.
Therefore, a line is a reasonable model.

■

Once it has been determined that a line would be a good model for a set
of data points, there are several ways to determine an appropriate model.
The simplest way is to choose two of the data points and find the equa-
tion of the line that includes the points. This may require some
experimenting to see which two points appear to produce a line that fits
the data well. The number of data points above the line should balance
with the number of data points below the line. Of course, there are many
choices of two points and many possible lines that model the data. So
there must be some way of determining which line fits the data best.

Modeling Terminology

Suppose (x, r) is a data point and that the corresponding point on the
model is (x, y). Then the difference is called a residual. Residualsr � y

x � 0

Year 1988 1989 1990 1991 1992

Cash flow
2.38 2.79 3.23 3.64 4.06

per share ($)

Year

1988

1989

1990

1991

1992

Cash Flow

2.38

2.79

3.23

3.64

4.06

Differences

0.41

0.44

0.41

0.42

Figure 1.5-2a

Figure 1.5-2b

5

0

50



are a measure of the error between the actual value of the data, r, and the
value y given by the model. Graphically, the residual is the vertical dis-
tance between the data point (x, r) and the model point (x, y), as shown
in Figure 1.5-3.

Section 1.5 Linear Models 45

y

x

(x, y) Model point

(x, r) Data point

Residual r − y

Figure 1.5-3

Find two models for the data, each determined by a pair of data points.
Then use residuals to see which model best fits the data.

The residual represents a directed distance that is positive when the data
point is above the model point and negative when the data point is below
the model point. When the sum of the residuals is 0, which indicates that
the positive and negative errors cancel out each other, the model is prob-
ably a reasonable one. However, this is not always enough to determine
which of several models is best because their residuals may all have the
same sum.

Consequently, to find which model among several fits the data best, use
the sum of the squares of the residuals because this sum has no negative
terms and no canceling. Using the sum of the squares as a measure of
accuracy has the effect of emphasizing large errors, those with absolute
value greater than 1, because the square is greater than the residual. It
minimizes small errors, those with absolute value less than 1, because the
square is less than the residual.

Example 2 Modeling Data

The data below shows the weekly amount spent on advertising and the
weekly sales revenue of a small store over a seven-week period.

Advertising Expenditure x
0 1 2 3 4 5 6

(in hundreds of dollars)

Sales revenue
1 2 2 3 3 5 5

(in thousands of dollars)



Solution

Let the two models be denoted as A and B. For Model A, use the points
(1, 2) and (3, 3). The slope of the line through these points is

The equation of the line through (1, 2) and (3, 3) is

Model A is shown in Figure 1.5-4 and its residuals are shown in the table
below. Notice that the sum of the squared residuals is 2.

 y � 0.5x � 1.5
 y � 2 � 0.5 1x � 12

m �
3 � 2
3 � 1 �

1
2 � 0.5
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For Model B, use the point (1, 2) and (6, 5). The slope of the line through 

these points is and its equation is

or

Figure 1.5-5 shows the graph of Model B and the table below shows its
residuals. The sum of the squared residuals is 1.56.

y � 0.6 x � 1.4 y � 2 � 0.6˛ 1x � 12
5 � 2
6 � 1 �

3
5 � 0.6

Data Model Squared
point point Residual residual

0.25
0 0.25

0.25
0 0.25

0.25
1 1.25
0.5 0.25

Sums 0 2.00

16, 4.5216, 52
15, 4215, 52

�0.514, 3.5214, 32
13, 3213, 32

�0.512, 2.5212, 22
11, 2211, 22

�0.510, 1.5210, 12
(r � y)2r � y(x, y)(x, r)

Data Model Squared
point point Residual residual

0.16
0 0.16

0.36
.04

0.64
0.6 0.36
0 0.16

Sums 1.56�1.4

16, 5216, 52
15, 4.4215, 52

�0.814, 3.8214, 32
�0.213, 3.2213, 32
�0.612, 2.6212, 22

11, 2211, 22
�0.410, 1.4210, 12

(r � y)2r � y(x, y)(x, r)

Sa
le

s

Advertising
2

2

4

6

4 6

y

x

Figure 1.5-4

Sa
le

s

Advertising
2

2

4

6

4 6

x

y

Figure 1.5-5

Because this sum is smaller that the sum for Model A, conclude that Model
B is the better of the two models.

■
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Least–Squares Regression Lines

It can be proved that for any set of data there is one and only one line for
which the sum of the squares of the residuals is as small as possible. Such
a line is called the least–squares regression line, and the computational
process for finding it is called linear regression. Most graphing calcula-
tors have the linear regression process built-in. For example, Figure 1.5-6
shows the approximate least–squares regression line for the data in Exam-
ple 2.

The sum of the squared residuals for this model is approximately 1.107,
slightly less than the corresponding sum for Model B in Example 2.

The number r in Figure 1.5-6, which is called the correlation coefficient,
is a statistical measure of how well the least–squares regression line fits
the data points. The value of r is always between and 1, the closer the
absolute value of r is to 1, the better the fit. When the fit is per-
fect: all the data points are on the regression line. Conversely, a correlation
coefficient near 0 indicates a poor fit.

is called the coefficient of determination. It is the proportion of vari-
ation in y that can be attributed to a linear relationship between x and y
in the data.

Example 3 Modeling Data

A circle can be circumscribed around any regular polygon. The lengths
of the radii of the circumscribed circles around regular polygons whose
sides have length of one unit are given as follows.

r2

0 r 0 � 1,
�1

y � 0.679x � 0.964

If needed, review
how to compute linear
regression equations in the
Technology Appendix.

NOTE

Figure 1.5-6

Number
3 4 5 6 7 8 9

of sides

Radius 0.577 0.707 0.851 1.00 1.152 1.306 1.462

a. Draw a scatterplot.
b. Calculate the finite differences for the data points.
c. Find the model that best fits the data using the regression feature on

a calculator.
d. What does the correlation coefficient indicate about the data?

Technology 
Tip

Many calculators have
a List command that 

can be entered into the
label cell of a list. This will
automatically calculate the
differences between the
items of the list specified.
For example, List(L2)
produces a list of differ-
ences between the items of
list L2.

¢

¢
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Figure 1.5-7c

Solution

a. A scatter plot of the data is shown in Figure 1.5-7a.
b. Subtract each radius from the preceding one and record the

differences in a list. Notice that the differences are approximately
equal, as shown in Figure 1.5-7b.

Figure 1.5-7a

1.5

0

0 10

Figure 1.5-7b

Figure 1.5-8

x

r

Figure 1.5-9

x

y

c. Use the linear regression feature to obtain Figure 1.5-7c, which
shows that the least–squares regression line is approximately

d. The correlation coefficient, is very close to 1,
which indicates that this linear model is a very good fit for the data.

■

Although only linear models are constructed in this section, you should
always allow for the possibility that a linear model may not be the best
choice for certain data. The least–squares regression line may give a rea-
sonable model, which is the line that fits the data best, but there may be
a nonlinear equation that is an even better model for the data. Polyno-
mial models, for example, are presented in Chapter 4.

In addition to finding finite differences and a scatter plot of the data,
another way to check that a linear model is appropriate is to construct a
scatter plot of the residuals. In other words, plot the points 
where is a data point and is the corresponding point on the
model. The general rule is two fold:

Use a linear model when the scatter plot of the residuals shows no
obvious pattern, as shown in Figure 1.5-8.

Use a nonlinear model when the scatter plot of the residuals has a
pattern, as shown in Figure 1.5-9. 

1x, y21x, r2 1x, r � y2,

r � 0.9996308197,
y � 0.15x � 0.12.



Example 4 Linear Regression and Residuals

A local resident owns an espresso cart and has asked you to provide an
analysis based on last summer’s data. To simplify things, only data for
Mondays is provided. The data includes the amount the workers were
paid each day, the number of cups sold, the cost of materials, and the total
revenue for the day. The owner also must spend $40 each operating day
on rent for her location and payment toward a business loan. Sales taxes
have been removed from the data, so you need not consider them, and
amounts have been rounded to the nearest dollar.
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a. Find a linear regression model for the daily revenue as a function of
the number of cups sold.

b. Use a scatter plot of the residuals to determine if the linear model is
a good fit for revenue.

c. Find a linear regression model for the daily cost as a function of the
number of cups sold. Be sure to include the pay for the workers, the
fixed daily cost, and the cost of the material.

d. Draw a scatter plot of the residuals to determine if the proposed
model is a good fit for cost.

e. Find the break-even point, that is, when revenue is equal to cost.

Date Salaries Cups Material Total
($) sold cost ($) revenue ($)

June 02 68 112 55 202

June 09 60 88 42 119

June 16 66 81 33 125

June 23 63 112 49 188

June 30 63 87 38 147

July 07 59 105 45 159

July 14 57 116 49 165

July 21 61 122 52 178

July 28 64 100 48 193

August 04 58 80 36 112

August 11 65 96 42 158

August 18 57 108 52 162

August 25 64 93 47 166

Technology 
Tip

The regression equation
is stored in a variable 

that is usually called
RegEQ each time the
regression coefficients are
calculated. The residuals
are stored in a variable
called RESID each time a
regression is performed.
See the Technology Appen-
dix for specific instructions
for graphing a regression
line and residuals.
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Solution

a. Enter two lists in your calculator, using the column labeled “Cups
Sold” and “Total Revenue” in the chart. That is, the data points are
(112, 202), (88, 119), and so on. Next, use the linear regression
function on these lists to approximate the least–squares regression
line.

Store its equation as in the equation memory, as shown in Figure
1.5-10a and 1.5-10b.

y1

y � 1.586x � 0.895

Figure 1.5-10a Figure 1.5-10b

Figure 1.5-11a Figure 1.5-11b

35

−35

75 125

c. First, create a new list that shows the total cost each day. For June 2,

Salaries � Material Cost � Rent/Loan Costs � Daily Cost
$68 � $55 � $40 � $163

Compute the total daily cost for each date, as shown in Figure 
1.5-12a, where the salaries list is called PAY, the materials cost list 
is called COST, and TOTCO is the total daily cost list.

To find a model for the total daily cost as a function of cups sold,
use the data points given by the lists CUPS and TOTCO with the
regression feature. Find the closest approximate least–squares
regression line.

y � 0.395x � 107.659

Figure 1.5-12a

Technology 
Tip

Placing RESID into
Ylist will use the last 

computed regression’s
residual values in a scatter
plot.

Technology 
Tip

A formula can be
placed in the upper cell 

of a list to perform the
operation on all the 
elements of the list.

b. To obtain a scatter plot of the residuals for the least squares
regression line for revenue, plot the points whose first coordinates
are given by the CUPS list and whose second coordinates are given
by the RESID, the variable that holds the residuals each time a
regression is performed.
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Store this equation as in the equation memory, as shown in Figure
1.5-12b.

y2

Figure 1.5-12b

e. The break-even point occurs when revenue is equal to cost. Plot the
revenue equation found in part a and the cost equation found in
part c on the same screen, and find the x-coordinate of their
intersection (shown in Figure 1.5-13). Since 89.6 cups cannot be sold,
90 cups a day must be sold to break even.

■

Example 5 Prediction from a Model

The total number of farm workers (in millions) in selected years is shown
in the following table.

Year Workers Year Workers Year Workers

1900 29.030 1950 59.230 1985 106.210
1920 42.206 1960 67.990 1990 117.490
1930 48.686 1970 79.802 1994 120.380
1940 51.742 1980 105.060

a. Use linear regression to find an equation that models the data. Use
the equation to estimate the number of farm workers in 1975 and in
2000.

d. Use the same procedure as in part b to obtain the scatter plot of the
residuals for cost shown in Figure 1.5-12c. It shows no obvious
pattern, which again indicates that a linear model is a good choice
for this data.

Figure 1.5-12c

30

�30

80 125

Figure 1.5-13

320

40

60 180



b. According to the model, when will the number of workers be 150
million?

c. Is a line the best model for the data?

Solution

Let correspond to 1900 and enter the data into two lists. Perform
linear regression on the data, and display the scatter plot of the data
together with the graph of the least–squares regression line.

As suggested by Figure 1.5-14, the regression line provides a reasonable
model for approximating the number of farm workers in a given year.

a. If then .
If then .
Therefore, there were approximately 94,202,000 farm workers in
1975 and 119,492,000 in 2000.

b. To determine when the number of workers will be 150 million, solve
the regression equation when 

There will be 150 million farm workers in approximately 2030.
c. As shown in Figure 1.5-15, there seems to be a pattern in the

residuals, so there is a better, nonlinear model for the data.
Nonlinear models are discussed in Section 4.3.A.

■

Correlation and Slope

The correlation coefficient, r, always has the same sign as the slope of
the least squares regression line. So when r is negative, the regression line
slants downward from left to right. In other words, as x increases, y
decreases. In such cases, we say that the data has a negative correlation.
When r is positive, the regression line slopes upward from left to right,
and the data is said to have a positive correlation. As x increases, y also
increases. When r is close to 0 (regardless of sign), there is no correlation
between the quantities.

 x �
131.6685
1.0116 � 130.159

 1.0116x � 131.6685
 1.0116x � 18.3315 � 150

y � 150.

y � 1.0116 11002 � 18.3315 � 119.492x � 100,
y � 1.0116 1752 � 18.3315 �  94.202x � 75,

y � 1.0116x � 18.3315

x � 0
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Figure 1.5-14

130

0

0 100

Figure 1.5-15

15

−15

−5 100
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Exercises 1.5

1. a. In Example 2, find the equation of the line
through the data points (1, 2) and (5, 5).

b. Compute the sum of the squares of the errors
for this line. Is it a better model than any of the
models in the example? Why?

2. The linear model in Example 5 is the least squares
regression line with coefficients rounded. Find the
correlation coefficient for this model.

3. a. In Example 5, find the slope of the line through
the data points for 1920 and 1994.

b. Find the equation of the line through these two
data points.

c. Which model predicts the higher number of
farm workers in 2010: the line in part b or the
regression line found in Example 5?

In Exercises 4–7, determine whether the given scatter
plot of the data indicates that there is a positive cor-
relation, negative correlation, or very little correlation.

4.

5.

6.

7. y

x

y

x

y

x

y

x

8. The U.S. gross domestic product (GDP) is the total
value of all goods and services produced in the
United States. The table shows the GDP in billions
of 1996 dollars. Let correspond to 1990.
(Source: U.S. Bureau of Economic Analysis) 
a. Use a scatter plot to determine if the data

appears to be linear.
b. If so, is there a positive or negative correlation?

x � 0

In Exercises 9–13, construct a scatter plot for the data
and answer these questions:
a. What are the finite differences for the data?
b. Do the finite differences confirm that the data is

linear? If so, is there a positive or negative correla-
tion?

9. The table shows the monthly premium (in dollars)
for a term life insurance policy for a female
nonsmoker. Let x represent age and y the amount
of the premium.

Year GDP

1990 $6707.9

1992 $6880.0

1994 $7347.7

1996 $7813.2

1998 $8495.7

2000 $9318.5

Age Premium

25 $11.57

30 $11.66

35 $11.83

40 $13.05

45 $16.18

50 $21.32

55 $29.58

10. The table shows the percent of persons in the
United States below the U.S. poverty level in
selected years. Let correspond to 1960.x � 0



14. The table gives the annual U.S. consumption of
beef and poultry, in million of pounds. (Source:
U.S. Dept. of Agriculture)
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12. The table shows the U.S. Census Bureau’s
population data for St. Louis, Missouri in selected
years. Let correspond to 1950.x � 0

11. The vapor pressure y of water depends on the
temperature x, as given in the table.

13. The table shows the U.S. disposable income
(personal income less personal taxes) in billions of
dollars. (Source: Bureau of Economic Analysis,
U.S. Dept. of Commerce). Let correspond to
1990.

x � 0

Percent below
Year poverty level

1960 22.2

1965 17.3

1970 12.6

1975 12.3

1980 13.0

1985 14.0

1990 13.5

1992 14.8

1994 14.5

1996 13.7

1997 13.3

1998 12.7

1999 11.8

Temperature Pressure (mm Hg)

0 4.6

10 9.2

20 17.5

30 31.8

40 55.3

50 92.5

60 149.4

70 233.7

80 355.1

90 525.8

100 760.0

(�C)

Year Population

1950 856,796

1970 622,236

1980 452,801

1990 396,685

2000 348,189

Disposable personal
Year income

1990 4166.8

1992 4613.7

1994 5018.9

1996 5534.7

1998 6320.0

1999 6618.0

2000 7031.0

Year Beef Poultry

1990 24,031 22,151

1991 24,113 23,270

1992 24,261 24,394

1993 24,006 25,099

1994 25,125 25,754

1995 25,533 25,940

1996 25,875 26,614
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a. Make scatter plots for both beef and poultry
consumption, using the actual years (1990,
1991, etc.) as x in each case.

b. Without graphing, use your knowledge of
slopes to determine which of the following
equations models beef consumption and which
one models poultry consumption. Confirm
your answer by graphing.

15. The table at the bottom of the page gives the
median weekly earnings of full-time workers 25
years and older by their amount of education.
(Source: U.S. Bureau of Labor Statistics)
a. Make four scatter plots, one for each

educational group, using to correspond
to 1990.

b. Four linear models are given below. Match
each model with the appropriate data set.

In Exercises 16–22, use the linear regression feature of
your calculator to find the required model.

16. The table shows the number of deaths per 100,000
people from heart disease.

 y3 � 34.86x � 543  y4 � 15.17x � 354

 y1 � 20.74x � 392  y2 � 12.31x � 238

x � 0

 y2 � 329.86x � 632,699
 y1 � 717.46x � 1,405,160

a. Find a linear model for this data, using 
to correspond to 1950.

b. In the unlikely event that the linear model in
part a remains valid far into the future, will
there be a time when death from heart disease
has been completely eliminated? If so, when
would this occur?

17. The table shows the share of total U.S. household
income earned by the poorest 20% of households
and the share received by the wealthiest 5% of
households. (Source: U.S. Census Bureau)

x � 0

a. Find a linear model for the income share of the
poorest 20% of households.

b. Find a linear model for the income share of the
wealthiest 5% of households.

c. What do the slopes of the two models suggest
of each?

d. Assuming that these models remain accurate,
will the income gap between the wealthy and
the poor grow, stay about the same, or decline
in the year 2000?

No High School High School College
Year Diploma Graduate Some College Graduate

1996 $317 $443 $518 $758

1997 $321 $461 $535 $779

1998 $337 $479 $558 $821

1999 $346 $490 $580 $860

2000 $360 $506 $598 $896

2001 $378 $520 $621 $924

Year 1950 1960 1970 1980 1990 1999

Deaths 510.8 521.8 496.0 436.4 368.3 265.9

Year Lowest 20% Top 5%

1985 4 17.0

1990 3.9 18.6

1995 3.7 21.0

1996 3.7 21.4

Median Weekly Earnings By Amount of Education
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18. The table shows what percent of federal aid is
given in the form of loans to students at a
particular college in selected years.

a. Find a linear model for this data, with 
corresponding to 1975.

b. Interpret the meaning of the slope and the 
y-intercept.

c. If the model remains accurate, what percentage
of federal student aid were loans in 2000?

19. The table shows the percent of federal aid given in
the form of grants or work-study programs to
students at the college of Exercise 18.

x � 0

b. Find a linear model for the data.
c. According to the model, what was the average

number of take-out meals purchased per
person in 1993? in 2000?

Year
(in which school Loans

year begins) (%)

1975 18

1978 30

1984 54

1987 66

1990 78

Year Grants and
(in which school work-study

year begins) (%)

1975 82

1978 70

1984 46

1987 34

1990 22

Average number of
annual take-out

Year meals per person

1984 43

1986 48

1988 53

1990 55

1992 57

1994 61

1996 65

a. Find a linear model for this data, with 
corresponding to 1975.

b. Graph the model from part a and the model
from Exercise 18 on the same axes. What
appears to be the trend in the federal share of
financial aid to college students?

c. In what year is the percent of federal aid the
same for loans as for grants and work-study?

20. The table gives the average number of takeout
meals per person purchased at restaurants in
selected years. (Source: NPD Group’s Crest Service)
a. Make a scatter plot of the data, with 

corresponding to 1980.
x � 0

x � 0

21. The table shows the median time, in months, for
the Food and Drug Administration to approve a
new drug after the application has been made.
(Source: U.S. Food and Drug Administration)

Median time
Year for approval

1990 24.3

1991 22.1

1992 22.6

1993 23.0

1994 17.5

1995 15.9

1996 14.3

1997 13.4

1998 12.0

1999 11.6

2000 15.6

a. Make a scatter plot of the data, with 
corresponding to 1990.

b. Find a linear model for the data.
c. What are the limitations of this model? Hint:

What does it say about approval time in the
year 2009?

x � 0
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22. The ordered pairs below give production (x) and
consumption (y) of primary energy in quadrillion
BTUs for a sample of countries in 1995.

Australia (7.29, 4.43) Mexico (8.15, 5.59)
Brazil (4.55, 6.76) Poland (3.74, 3.75)
Canada (16.81, 11.72) Russia (39.1, 26.75)
China (35.49, 35.67) Saudi Arabia (20.34, 3.72)
France (4.92, 9.43) South Africa (6.08, 5.51)
Germany (5.42, 13.71) United States (69.1, 88.28)
India (8.33, 10.50) United Kingdom (10.57, 
Indonesia (6.65, 3.06) 9.85)
Iran (9.35, 3.90) Venezuela (8.22, 2.53)
Japan (3.98, 21.42)

a. Make a scatter plot of the data.
b. Find a linear model for the data. Graph the

model with the scatter plot.
c. In 1995, what three countries were the world’s

leading producers and consumers of energy?
d. As a general trend, what does it mean if a

country’s coordinates lie above the linear model?
e. As a general trend, what does it mean if a

country’s coordinates lie below the linear model?
f. Identify any countries whose coordinates appear

to differ dramatically from most of the others.

23. The table shows the winning times, in minutes,
for men’s 1500-meter freestyle swimming at the
Olympics in selected years.

Year Time

1912 22.00

1924 20.11

1936 19.23

1948 19.31

1960 17.33

1972 15.88

1984 15.09

1996 14.94

e. Make a residual plot of the model. Is a linear
model appropriate for the data?

24. The following table shows, for selected states, the
percent of high school students in the class of 2001
who took the SAT and the average SAT math score.

a. Make a scatter plot of the percent of students
who took the SAT (x) versus the average SAT
math score (y).

b. Find a linear model for the data.
c. What is the slope of your linear model? What

does this mean in the context of the problem?
d. Below is the data on four additional states.

How well does the model match the actual
figures for these states?

Students
who took Average

State SAT (%) math score

Connecticut 82 510

Delaware 67 499

Georgia 63 489

Idaho 17 542

Indiana 60 501

Iowa 5 603

Montana 23 539

Nevada 33 515

New Jersey 81 513

New Mexico 13 542

North Dakota 4 599

Ohio 26 539

Pennsylvania 71 499

South Carolina 57 488

Washington 53 527

Students Average math
State taking SAT (%) score

Oklahoma 8 561

Arizona 34 525

Alaska 51 510

Hawaii 52 515

a. Find a linear model for this data, with 
corresponding to 1900.

b. Kieren Perkins of Australia set the Olympic
record of 14.72 minutes in 1992. How
accurately did your model estimate his time?

c. How long is this model likely to remain
accurate? Why?

d. Find the correlation coefficient for the model.

x � 0



58 Chapter 1 Number Patterns

1.6 Geometric Sequences

Recall that in an arithmetic sequence, each term is obtained from the pre-
ceding term by adding a constant, d. A geometric sequence, which is
sometimes called a geometric progression, is a sequence in which terms are
found by multiplying a preceding term by a nonzero constant. Like an
arithmetic sequence, where the difference between consecutive terms is
the constant d, the quotient of consecutive terms in a geometric sequence
is the constant r. The constant r is called the common ratio of the geo-
metric sequence.

Example 1 Recognizing a Geometric Sequence

Are the following sequences geometric? If so, what is the common ratio?
Write each sequence as a recursive function.

a. b.

Solution

a. The sequence is geometric with a common ratio of 3.

Because each term is obtained by multiplying the previous term by
3, the sequence may be denoted as a recursive function.

and for 

b. The sequence is geometric with a common ratio

of 

Each term is obtained by multiplying the previous term by which 

gives the following recursive function.

and for 

■

If is a geometric sequence with common ratio r, then for each 
the term preceding is and

or equivalently, un � run�1.
un

un�1
� r,

un�1un

n � 25un6

n � 2un �
1
2 ˛ un�1u1 �

5
2 ˛

1
2,

u2
u1

�

5
4
5
2

�
1
2     

u3
u2

�

5
8
5
4

�
1
2     

u4
u3

�

5
16
5
8

�
1
2

1
2.

e 5
2, 54, 58, 5

16, p f
n � 2un � 3un�1u1 � 3

u4
u3

�
81
27 � 3

u3
u2

�
27
9 � 3

u2
u1

�
9
3 � 3

53, 9, 27, 81, p 6

e 5
2, 54, 58, 5

16, p f53, 9, 27, 81, p 6

Objectives

• Recognize a geometric
sequence

• Find a common ratio

• Graph a geometric
sequence

• Write a geometric
sequence recursively and
explicitly

• Find partial sums of a
geometric sequence
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In a geometric sequence { },

for some and some nonzero constant r and all n �� 2.u1

un � run�1

un

Recursive Form
of a Geometric

Sequence

Example 2 Graph of a Geometric Sequence

Find the common ratio of the geometric sequence with and 
List the first five terms of the sequence, write the sequence as a recursive
function, and graph the function.

Solution

Because the sequence is geometric, the common ratio is 

Therefore, the sequence begins with and the recur-
sive function is given below.

with 

The graph of the function is shown in Figure 1.6-1.
■

Notice that the graph of the geometric sequence in Example 2 does not
appear to be linear. If the points were connected, the graph would be an
exponential function, which is discussed in Chapter 5.

Explicit Form of a Geometric Sequence

Geometric sequences can also be expressed in a form where the value of
the sequence can be determined by the position of the term.

Example 3 Writing a Geometric Sequence in Explicit Form

Confirm that the sequence defined by with can also be
expressed as by listing the first seven terms produced by each
form.

Solution

Using the recursive function, the sequence is

 u7 � u6 � 2 � 17 � 252 � 2 � 71226 � 448
 u6 � u5 � 2 � 17 � 242 � 2 � 71225 � 224
 u5 � u4 � 2 � 17 � 232 � 2 � 71224 � 112
 u4 � u3 � 2 � 17 � 222 � 2 � 71223 � 56
 u3 � u2 � 2 � 17 � 22 � 2 � 71222 � 28
 u2 � u1 � 2 � 7 � 2 � 14
 u1 � 7

un � 7122n�1
u1 � 7un � 2un�1

u1 � 2un � 4un�1,

52, 8, 32, 128, 512, p 6
u2
u1

�
8
2 � 4.

u2 � 8.u1 � 2y

x

2

200

300

100

400

500

600

4 6

Figure 1.6-1



Notice that is which is the first term of the sequence multiplied
by the common ratio twice, and that is which is the first term 
of the sequence multiplied by the common ratio three times. is the
product of and the common ratio, r, raised to the power. In
general,

The table in Figure 1.6-2b confirms the apparent equality of the two func-
tions.

■

The recursive formula for implies that

 u5 � u4r � 1u1r
32r � u1r

4

 u4 � u3r � 1u1r
2 2r � u1r

3

 u3 � u2r � 1u1r2r � u1r2

 u2 � u1r

n � 2, 3, 4, p

un � 7 � 2n�1.

1n � 12u1

un

7 � 23,u4

7 � 22,u3
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Figure 1.6-2a

Figure 1.6-2b

Example 4 Explicit Form of a Geometric Sequence

Write the explicit form of a geometric sequence where the first two terms 

are 2 and and find the first five terms of the sequence.

Solution

The common ratio is 

Using the explicit form, the geometric sequence can be written as

The sequence begins 

■

Example 5 Explicit Form of a Geometric Sequence

The fourth and ninth terms of a geometric sequence are 20 and Find
the explicit form of the sequence.

�640.

2, �
2
5

, 2
52

, �
2
53

, 2
54 , p

un � ˛u1r
n�1 � 122a�1

5b
n�1

r �
�

2
5

2 �
�2
5 �

1
2 � �

1
5

.

�
2
5,

If { } is a geometric sequence with common ratio r, then for
all 

un � u1r
n�1

n �� 1,
un

Explicit Form of
a Geometric

Sequence



Solution

The fourth term can be written as or 

The ninth term can be written as or 

The ratio of the ninth term to the fourth term can be used to find r.

Substitute for r into the equation defining the fourth term.

Thus, 

■

Partial Sums

If the common ratio r of a geometric sequence is the number 1, then

Therefore, the sequence is just the constant sequence For any
positive integer k, the kth partial sum of this constant sequence is

k terms

In other words, the kth partial sum of a constant sequence is just k times
the constant. If a geometric sequence is not constant (that is, then
its partial sums are given by the following formula.

r � 12,

u1 � u1 � p � u1 � ku1

u1, u2, u3, p .

un � 1n�1u1  for every n � 1.

un � u1 � rn�1 � �
5
2 ˛ 1�22n�1.

 u1 �
20
�8 � �

5
2

 u11�223 � 20

�2

 r � �2
 r5 � �32

 
u1r

8

u1r
3 �

�640
20

�640 � u1r
8.u9 � u1r

n�1,

20 � u1r
3.u4 � u1r

n�1,
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Proof
If S denotes the kth partial sum, then using the formula for the nth term
of a geometric sequence derives the expression for S.

Use this equation to compute as shown on the next page.S � rS,

S � u1 � u2 � p � uk � u1 � u1r � u1r
2 � p � u1r

k�1

⎫⎪⎪⎪⎬⎪⎪⎪⎭

The kth partial sum of the geometric sequence { } with com-
mon ratio is

a
k

n�1
un � u1a1 � rk

1 � r b
r � 1

un

Partial Sums of
a Geometric

Sequence



Because both sides of the last equation can be divided by to
complete the proof.

■

Example 6 Partial Sum

Find the sum

Solution

This is the ninth partial sum of the geometric sequence 

where the common ratio is The formula in the box shows that

■

Example 7 calculates the distance traveled by the ball discussed in Sec-
tion 1.2 Example 4 when it hits the ground for the seventh time by using
a partial sum of a geometric sequence.

Example 7 Application of Partial Sum

A ball is dropped from a height of 9 feet. It hits the ground and bounces
to a height of 6 feet. It continues to bounce up and down. On each bounce 

it rises to of the height of the previous bounce. How far has the ball 

traveled (both up and down) when it hits the ground for the seventh time?

2
3

� a�3
 2b ˛a23b ˛a1 �

1
29b� �1 �

1
29 � �1 �

1
512 � �

513
512

 a
9

n�1

�3
 2 a�1

 2b
n�1

� u1˛a1 � r9

1 � r b� a�3
 2b ˛

D1 � a�1
 2b

9

1 � a�1
 2b

T� a�3
 2b §1 � a1

2b
9

3
2

¥
r � �

1
2.

e�3
2 a�1

 2b
n�1 f ,

�
3
2 �

3
4 �

3
8 �

3
16 �

3
32 �

3
64 �

3
128 �

3
256 �

3
512

.

S �
u111 � rk2

1 � r � u1a1 � rk

1 � r b

1 � rr � 1,

 11 � r2S � u111 � rk2
 S � rS � u1                           � u1r

k

 rS �   u1r � u1r
2 � p � u1r

k�1 � u1r
k

 S � u1 � u1r � u1r
2 � p � u1r

k�1
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Solution

First consider how far the ball travels on each bounce. On the first bounce,
it rises 6 feet and falls 6 feets for a total of 12 feet. On the second bounce 

it rises and falls of the previous height, i.e., it travels of 12 feet. The 

distance traveled is a geometric sequence with and If 

denotes the distance traveled on the nth bounce, then

So is a geometric sequence with common ratio When the

ball hits the ground for the seventh time, it has completed six bounces.
Therefore, the total distance it has traveled is the distance it was 
originally dropped, 9 feet, plus the distance traveled in six bounces.

■

 � 9 � 12§1 � a2
3b

6

1 �
2
3

¥ � 41.84 feet

 � 9 � u1˛a1 � r6

1 � r b
 9 � u1 � u2 � u3 � u4 � u5 � u6 � 9 � a

6

n�1
un

r � a2
3b.5un6

 un � 12a2
3b

n�1

˛

unr �
2
3 .u1 � 12

2
3

2
3
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Exercises 1.6

In Exercises 1–8, determine whether the sequence is
arithmetic, geometric, or neither.

1. 2.

3. 4.

5.

6.

7.

8. �6, �3.7, �1.4, 9, 3.2, p

3, �3
2, 34, �3

8, 3
16, p

2, �3, 92, �27
4 , �81

8 , p

50, 48, 46, 44, p

�1, �1
2, 0, 12, p13, 13

2 , 13
4 , 13

8 , p

2, 6, 18, 54, 162, p2, 7, 12, 17, 22, p

In Exercises 9–14, the first term, and the common
ratio, r, of a geometric sequence are given. Find the
sixth term and the recursive and explicit formulas for
the nth term.

9. 10.

11. 12.

13. 14.

In Exercises 15–18, find the kth partial sum of the geo-
metric sequence with common ratio r.

15. 16. k � 8, u1 � 9, r �
1
3k � 6, u1 � 5, r �

1
2

5un6

u1 � p, r �
1
5u1 � 10, r � �

1
2

u1 � �6, r �
2
3u1 � 4, r �

1
4

u1 � 1, r � �2u1 � 5, r � 2

u1,
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17. 18.

In Exercises 19–22, show that the given sequence is
geometric and find the common ratio.

19. 20.

21. 22.

In Exercises 23–28, use the given information about
the geometric sequence to find and recursive
and explicit formulas for .

23. 24.

25. 26.

27. 28.

In Exercises 29–34, find the sum.

29. 30.

31. 32.

33. 34.

35. For 1987–1998, the annual revenue per share in
year n of a company’s stock are approximated by

where represents 1987.
a. Show that the sequence is a geometric

sequence.
b. Approximate the total revenues per share for

the period 1987–1998.

36. The annual dividends per share of a company’s
stock from 1989 through 1998 are approximated
by the sequence , where corresponds to
1989 and 
a. Show that the sequence is a geometric

sequence.
b. Approximate the total dividends per share for

the period 1989–1998.

5bn6
bn � 0.022811.19992n.

n � 95bn6

5un6
n � 7un � 1.7111.1912n,

a
8

t�1
6˛10.92t�1

a
6

j�1
4˛a3

2b
j�1

a
5

n�1
5 � 3n�1

a
9

n�1
a�1

3b
n

a
6

k�1
3˛a1

2b
k

a
7

n�1
2n

u2 � 6, u7 � 192u4 � �
4
5, r �

2
5

u3 � 4, u6 � �32u2 � 4, u5 �
1

16

u1 �
1
6, u2 � �

1
18u1 � 256, u2 � �64

un

u55un6

53n
2 655n�26
523n6ea�1

2b
nf

k � 9, u2 � 6, r �
1
4k � 7, u2 � 6, r � 2 37. A ball is dropped from a height of 8 feet. On each

bounce it rises to half its previous height. When
the ball hits the ground for the seventh time, how
far has it traveled?

38. A ball is dropped from a height of 10 feet. On
each bounce it rises to 45% of its previous height.
When it hits the ground for the tenth time, how
far has it traveled?

39. If you are paid a salary of on the first day of
March, on the second day, and your salary
continues to double each day, how much will you
earn in the month of March?

40. Starting with your parents, how many ancestors
do you have for the preceding ten generations?

41. A car that sold for $8000 depreciates in value 25%
each year. What is it worth after five years?

42. A vacuum pump removes 60% of the air in a
container at each stroke. What percentage of the
original amount of air remains after six strokes?

43. Critical Thinking Suppose is a geometric
sequence with common ratio and each

Show that the sequence is an
arithmetic sequence with common difference log r.

44. Critical Thinking Suppose is an arithmetic
sequence with common difference d. Let C be any
positive number. Show that the sequence is a
geometric sequence with common ratio 

45. Critical Thinking In the geometric sequence
show that each term is 1 plus the

sum of all preceding terms.

46. Critical Thinking In the geometric sequence
show that each term is twice the

sum of 1 and all preceding terms.

47. Critical Thinking The minimum monthly payment
for a certain bank credit card is the larger of $5 or 

of the outstanding balance. If the balance is 

less than $5, then the entire balance is due. If you
make only the minimum payment each month,
how long will it take to pay off a balance of $200
(excluding any interest that might accrue)?

1
25

2, 6, 18, 54, p

1, 2, 4, 8, 16, p

Cd.
5Cun6

5un6

5log un6un 7 0.
r 7 0

5un6

2¢
1¢
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Important Facts 
and Formulas
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A sequence is an ordered list of numbers.

A sequence is defined recursively if the first term is given and there 
is a method of determining the nth term by using the terms that
precede it.

A sequence is defined explicitly if terms are determined by their
position.

An arithmetic sequence is a sequence in which the difference
between each term and the preceding term is a constant d.

Facts about an arithmetic sequence with common difference d:

• the recursive form of the sequence is 
for 

• the explicit form of the sequence is 

• the kth partial sum is 

The slope of a line that passes through and is given by

The slope-intercept form of the equation of a line is 
where m is the slope and b is the y-intercept.

The point-slope form of the equation of a line is 
where m is the slope and is a given point on the line.

The standard form of the equation of a line is where
A, B, and C are integers.

The equation of a vertical line has the form 

The equation of a horizontal line has the form 

Parallel lines have equal slopes.

The product of the slopes of perpendicular lines is 

The difference between an actual data value and a predicted data
value is called a residual.

The correlation coefficient always has the same sign as the slope
of the least squares regression line.

A geometric sequence is a sequence in which terms are found by
multiplying a preceding term by a nonzero constant r.

Facts about the geometric sequence with common ratio 

• the recursive form is for 

• the explicit form is or 

• if the kth partial sum is a
k

n�1
un � u1 a1 � rk

1 � r br � 1,

un � u1r
n�1un � rn�1u1

n � 2.un � run�1

r � 0:5un6

�1.

y � k.

x � h.

Ax � By � C,

1x1, y12
y � y1 � m1x � x12,

y � mx � b,

m �
¢y
¢x

�
y2 � y1
x2 � x1

.

1x2, y221x1, y12
a

k

n�1
un �

k
2 1u1 � uk2

un � u1 � 1n � 12d.

n � 2.un � un�1 � d

5un6
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In Exercises 1–10, identify the smallest subset of the real numbers—natural
numbers, whole numbers, integers, rational numbers, or irrational numbers—
that contains the given number.

1. 2. 0.255 3. e 4. 11 5. 0

6. 7. 8. 9. 5 10.

11. List two real numbers that are not rational numbers.

In Exercises 12–15, which sets of points represent a function? Why?

12.

13.

14.

15.

16. Let f be the function given by the rule Complete the
following table.

f 1x2 � 7 � 2x.

5 1�2, 32, 13, 42, 1�4, 52, 15, 62, 1�6, 72 6
5 12, 32, 13, 32, 14, 32, 15, 32, 16, 32 6
5 12, �32, 12, 42, 12, �52, 12, 62, 12, �72 6
5 12, 32, 13, 42, 14, 52, 15, 62, 16, 72 6

0.2554
92121�3

23

x 0 1 2 t

f 1x2
�4

17. What is the domain of the function g given by 

18. If 

19. What is the domain of the function given by 

20. What is the domain of the function 

21. The radius of an oil spill (in meters) is 50 times the square root of the time
t (in hours).
a. Write the rule of a function f that gives the radius of the spill at time t.
b. Write the rule of a function g that gives the area of the spill at time t.
c. What are the radius and area of the spill after 9 hours?
d. When will the spill have an area of 100,000 square meters?

22. The function whose graph is shown below gives the amount of money (in
millions of dollars) spent on tickets for major concerts in selected years.
(Source: Pollstar)

f 1x2 � 2�x � 2 ?

g1r2 � 2r � 4 � 2r � 2?

f 1x2 � 0 3 � x 02x � 3 � 7, then f 172 � f 142 �     .

g1t2 �
2t � 2
 t � 3 ?

1500

1200

900

600

M
ill

io
ns

1990 1991 1992 1993 1994 1995 19960
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a. What is the domain of the function?
b. What is the approximate range of the function?
c. Over what one-year interval is the rate of change the largest?

Use the graph of the function f in the figure below to answer Exercises 23–26.

23. What is the domain of f ?

24. What is the range of f ?

25. Find all numbers x such that .

26. Find a number x such that . (Many correct answers are
possible.)

Use the graph of the function f in the figure to answer Exercises 27–33.

f 1x � 12 6 f 1x2
f 1x2 � 1

1

1

y

f

x

1

1

y

f
x

2 3

2

−2

−3

3

4 5 6−5 −3−4 −2 −1−1

27. What is the domain of f ?

28. 29. 30.

31. True or false: 

32. True or false: 

33. True or false: for exactly one number x.

34. The population of Gallatin is growing at the rate of 2.75% per year. The
present population is 20,000. Find a recursive sequence that represents

f 1x2 � 3

3f 122 � �f 142.
2f 122 � f 142.

f 1�12 � f 112 �     f 12 � 22 �     f 1�32 �     



Gallatin’s population each year. Represent the nth term of the sequence
both explicitly and recursively. Find the first seven terms of the sequence.

35. Roberta had $1525 in a savings account 2 years ago. What will be the value
of her account 1 year from now, assuming that no deposits or withdrawals
are made and the account earns 6.9% interest compounded annually? Find
the solution using both a recursive and an explicit formula.

36. Suppose that $3,000 is invested at 6.5% annual interest, compounded
monthly.
a. What is the balance after 6 years?
b. Suppose $150 is added to the account every month. What is the balance

after 6 years?

37. The “biological” specimen Geomeuricus sequencius is 5 centimeters long
when born. On the second day it grows 3 centimeters. The third day it
grows 1.8 centimeters, and on each following day it grows 60% of the
previous day’s growth. What is its length after two weeks? What is the
maximum length that it could grow?

In Exercises 38–39, let

38. a. Show that and 
b. Show that the first ten terms of are Fibonacci numbers. (See

Exercises 30–32 Section 1.2)

39. a. For the ninth term, compute the ratio

b. As n gets large, what number does the ratio approach? This number is
also referred to as the “golden ratio.” This ratio is believed to have been
used in the construction of the Great Pyramid in Egypt, where the ratio
equals the sum of the areas of the four face triangles divided by the
total surface area.

40. For the sequence with , write the first four terms.

41. For the sequence with write the first five terms.

42. For the sequence with write the first four terms.

In Exercises 43–46, find a formula for ; assume that the sequence is arith-
metic.

43. and the common difference is –6.

44. and the common difference is 3.

45. and 46. and u7 � �1.u3 � 2u3 � 7.u1 � �5

u2 � 4

u1 � 3

un

u1 �
1
9

,un � 3un�1

u1 � �4,un � 3un�1 � 2

u1 � 1.5un � 3un�1 � 1

un
un�1

5un6
u2 � 1.u1 � 1

un �
A1 � 25 Bn � A1 � 25 Bn

2n25
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47. Find the 12th partial sum of the arithmetic sequence with and

48. Find numbers b, c, and d such that 8, b, c, d, 23 are the first five terms of an
arithmetic sequence.

49. The national unemployment rates for 1990–1996 were as follows. (Source:
U.S. Department of Labor, Bureau of Labor Statistics)

u12 � 16.
u1 � �3

Sketch a scatter plot and a line graph for the data, letting correspond
to 1990.

50. The table shows the average speed (mph) of the winning car in the
Indianapolis 500 race in selected years.

x � 0

Year 1980 1982 1984 1986 1988 1990 1992 1994 1996

Speed (mph) 143 162 164 171 145 186 134 161 148

Year 1990 1991 1992 1993 1994 1995 1996

Rate (%) 5.6 6.8 7.5 6.9 6.1 5.6 5.4

Sketch a scatter plot and a line graph for these data, letting 
correspond to 1980.

51. a. What is the y-intercept of the graph of the line defined by 

?

b. What is the slope of the line?

52. Find the equation of the line passing through (1, 3) and (2, 5).

53. Find the equation of the line passing through with slope 3.

54. Find the equation of the line that crosses the y-axis at and is
perpendicular to the line 

55. a. Find the y-intercept of the line defined by 
b. Find the equation of the line through (1, 3) that has the same y-intercept

as the line in part a.

56. Sketch the graph of the line defined by 

57. Find the equation of the line through ( ) that is parallel to the line
through (1, 3) and ( ).

58. As a balloon is launched from the ground, the wind blows it due east. The
conditions are such that the balloon is ascending along a straight line with 

slope . After 1 hour the balloon is 5000 ft directly above the ground. How 

far east has the balloon blown?

59. The point (u, v) lies on the line . What is the slope of the line
passing through (u, v) and the point 10, �102?

y � 5x � 10

1
5

�4, 2
�4, 5

3x � y � 1 � 0.

2x � 3y � 4 � 0.

2y � x � 5.
y � 1

12, �12

y � x �
x � 2

5 �
3
5

x � 0

Section 1.4
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y

x

1

1

−1
−1

In Exercises 60–66, determine whether the statement is true or false.

60. The graph of has y-intercept 6.

61. The graph of has y-intercept 4.

62. The lines and 
are perpendicular.

63. Slope is not defined for horizontal lines.

64. The line in the figure at right has positive 
slope.

65. The line in the figure does not pass through 
Quadrant III.

66. The y-intercept of the line in the figure is negative.

67. Which of the following lines rises most steeply from left to right?
a. b.
c. d.
e.

68. Which of the following lines is not perpendicular to the line 
a. b.
c. d.

e.

69. Which of the following lines does not pass through Quadrant III?
a. b.
c. d.
e.

70. Let a and b be fixed real numbers. Where do the lines and 
intersect?
a. Only at (b, a). b. Only at (a, b).
c. These lines are parallel, so they don’t intersect.
d. If then these are the same line, so they have infinitely many

points of intersection.
e. Since these equations are not of the form the graphs are not

lines.

71. What is the y-intercept of the line 

72. For what values of k will the graphs of and
be perpendicular lines?

73. The average life expectancy increased linearly from 62.9 years for a person
born in 1940 to 75.4 years for a person born in 1990.
a. Find an equation that gives the average life expectancy y of a person

born in year x, with corresponding to 1940.
b. Use the equation in part a to estimate the average life expectancy of a

person born in 1980.

74. The population of San Diego grew in an approximately linear fashion from
334,413 in 1950 to 1,151,977 in 1994.

x � 0

3y � kx � 2 � 0
2y � x � 3 � 0

2x � 3y � 5 � 0?

y � mx � b,

a � b,

y � bx � a

y � �2x � 5
y � 4x � 7y � �2x � 5
y � 4x � 7y � x

y � x �
1
5

x � 1 � y4 � 2x � 2y � 0
y � x � �5y � 4 � x

y � x � 5?

4x � 1 � y
4x � y � 120x � 2y � 20 � 0
y � 3x � 4y � �4x � 10

4x � 3y � 123x � 4y � 12

2y � 8 � 3x

x � 5y � 6
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a. Find an equation that gives the population y of San Diego in year x,
with corresponding to 1950.

b. Use the equation in part a to estimate the population of San Diego in
1975 and 2000.

In Exercises 75–78, match the given information with the graph, and determine
the slope of each line.

x � 0

75. A salesman is paid $300 per week plus $75 for each unit sold.

76. A person is paying $25 per week to repay a $300 loan.

77. A gold coin that was purchased for $300 appreciates $20 per year.

78. A CD player that was purchased for $300 depreciates $80 per year.

79. The table shows the monthly premium (in dollars) for a term life insurance
policy for women who smoke.

y

100

200

300

3 6
a.

9 12

x

y

100

200

300

1 2
b.

3 4

x

y

1000

800

600

400

200

c.
12108642

x

y

200

400

600

2 4
d.

6 8

x

Age (years) 25 30 35 40 45 50 55 60

Premium 19.58 20.10 20.79 25.23 34.89 48.55 69.17 98.92

a. Make a scatter plot of the data, using x for age and y for amount of
premium.

b. Does the data appear to be linear?
c. Calculate the finite differences. Do they confirm that the data is linear?



80. For which of the following scatter plots would a linear model be
reasonable? Which sets of data show positive correlation, and which show
negative correlation?
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y

x

a.

y

x

d.

y

x

b.

y

x

e.

y

x

c.

Year Managerial jobs Female managers Male managers
(since 1990) (%) (%) (%)

12.32 6.28 16.81

12.31 6.85 16.67

12.00 7.21 16.09

0 11.83 7.45 15.64

1 11.79 7.53 15.52

3 11.43 7.65 14.79

5 11.09 7.73 14.10

�2

�5

�8

Exercises 81–82 refer to the following table, which shows the percentage of jobs
that are classified as managerial and the percentage of male and female employ-
ees who are managers.

81. a. Make scatter plots of each data set (managerial jobs, female managers,
male managers).

b. Match the following linear models with the correct data set. Explain
your choices.

82. a. According to the models in Exercise 81, is the percentage of female or
male managers increasing at the greater rate?

y1 � 0.11x � 7.34 y2 � �0.09x � 11.74 y3 � �0.21x � 15.48
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b. Use the models to predict the percentage of female managers and the
percentage of male managers in the year 2000.

c. What year do the models indicate that the percentage of female
managers will surpass the percentage of male managers?

83. The table shows the average hourly earnings of production workers in
manufacturing. (Source: U.S. Bureau of Labor Statistics)

a. Find a linear model for this data, with corresponding to 1990.
b. Use your model to estimate the approximate total giving in 2002 and

2005.
c. Find the correlation coefficient for the model.
d. Make a residual plot of the model. Is a linear model appropriate for the

data?

x � 0

a. Find a linear model for this data, with corresponding to 1990.
b. Use the model to estimate the average hourly wage in 1993 and in 2000.

The actual average in 1993 was $11.74 and in 2000 it was $14.38. How
far off is the model?

c. Estimate the average hourly earnings in 2004.

84. The table shows the total amount of charitable giving (in billions of dollars)
in the United States during recent years. (Source: Statistical Abstract of the
U.S.: 2001)

x � 0

Year 1991 1993 1995 1997 1999 2001

Hourly 
11.18 11.74 12.37 13.17 13.90 14.84

earnings ($)

Year Total charitable giving

1990 101.4

1991 107.2

1992 110.4

1993 116.5

1994 119.2

1995 124.0

1996 138.6

1997 153.8

1998 172.1

1999 190.8

2000 203.5
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Section 1.6 In Exercises 85–88, find a formula for Assume that the sequence is geomet-
ric.

85. and the common ratio is 3.

86. and the common ratio is 

87. and 

88. and 

89. Find the 11th partial sum of the arithmetic sequence with and
common difference 

90. Find the fifth partial sum of the geometric sequence with and

common ratio 3.

91. Find the sixth partial sum of the geometric sequence with and

common ratio 

92. Find numbers c and d such that 8, c, d, 27 are the first four terms of a
geometric sequence.

93. Is it better to be paid $5 per day for 100 days or to be paid the first day,
10 the second day, 20 the third day, and have your salary increase in this
fashion every day for 100 days?

94. Tuition at a university is now $3000 per year and will increase $150 per
year in subsequent years. If a student starts school now, spends four years
as an undergraduate, three years in law school, and five years earning a
Ph.D., how much tuition will she have paid?

¢¢
5¢

1
2.

u1 � 5

u1 �
1
4

�2.
u1 � 5

u6 � �243
16 .u3 �

9
2

u7 � 6.u2 � 192

�
1
2.u1 � 5

u1 � 2

un.
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Calculus is a branch of mathematics that deals with changing quantities.
It is based on the concept of quantities that can be approached more and
more closely. There are two related branches of calculus: differential cal-
culus and integral calculus. Differential calculus is used to calculate the
change in one variable produced by change in a related variable, and inte-
gral calculus is used to calculate quantities like the total change of a
quantity given its rate of change, area, and volume.

The Can Do Calculus features found here and at the end of each chapter
are short adventures into the world of calculus. This first Can Do Calcu-
lus explores infinite series, which is closely related to infinite sequences.
It is an example of the limit process, the fundamental building block of
both differential and integral calculus.

Infinite Geometric Series

Consider the sequence and let denote its kth partial sum.

The partial sums themselves form a sequence. This
sequence is a function whose domain is the set of natural numbers. The
sequence can be described by the following function:

By using the trace feature to find large values of n, the graph in Fig-
ure 1C-1 suggests that the terms of the sequence of partial sums are getting
closer and closer to 3. Consequently,

where 3 is said to be sum, or limit, of the infinite series.

In the general case, an infinite series, or simply series, is defined to be
an expression of the form

in which each is a real number. This series is also denoted by the sym-

bol a
q

n�1
an.

an

a1 � a2 � a3 � a4 � a5 � p � an � p

210.62 � 210.622 � 210.623 � 210.624� p  � 3,

un � e210.62         n � 1
210.62n � un�1 n 7 1

S1, S2, S3, S4, . . .

 S4 � 210.62 � 210.622 � 210.623 � 210.624 � 2.6112
 S3 � 210.62 � 210.622 � 210.623 � 2.352
 S2 � 210.62 � 210.622 � 1.92
 S1 � 210.62 � 1.2

Sk210.62n

If 
is a geometric sequence,
then an expression of 
the form 
(sometimes written as 

) is called a geometric

series.

a
q

n�1
an

a1 � a2 � a3 � p

a1, a2, a3, pNOTE

Although TI,
Sharp, and HP calculators
use the letter “u” to denote
terms of a sequence, the
letter “a” is traditionally
used.

NOTE

Figure 1.C-1

Infinite Geometric Series
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The partial sums of the series are

and in general, for any ,

If it happens that the terms of the sequence of partial sums
get closer and closer to a particular real number S in such a way that the
partial sum is arbitrarily close to S when k is large enough, then the
series converges and has a limit. Additionally, S is called the sum of the
convergent series. The series con-
verges, and its sum is 3. This series is an infinite geometric series because
it has a common ratio of 0.6.

210.62 � 210.622 � 210.623 � 210.624 � p

Sk

S1, S2, S3, S4, . . .

Sk � a1 � a2 � a3 � a4 � p � ak.

k � 1

 S4 � a1 � a2 � a3 � a4

 S3 � a1 � a2 � a3

 S2 � a1 � a2

 S1 � a1

a1 � a2 � a3 � a4 � p

By using the formula for the nth term of a geometric sequence, the cor-
responding geometric series can be expressed in the form

Under certain circumstances, an infinite geometric series is convergent
and has a sum.

a1 � ra1 � r 

2a1 � r 

3a1 � p

Example 1 Sum of an Infinite Geometric Series

Determine whether the infinite geometric series converges.

a. b. a
q

n�1

8
5 

na
q

n�1
6122n�1

Definition of
Infinite

Geometric
Series

If {an} is a geometric sequence with common ratio r, then the
corresponding infinite series

is called an infinite geometric series.

a1 � a2 � a3 � a4 � � � �

Sum of an
Infinite

Geometric
Series

If then the infinite geometric series

converges, and its sum is

a1

1 � r
.

a1 � ra1 � r 

2a1 � r 

3a1 � � � �

00 r 00 66 1,

A series that is
not convergent is said to be
divergent. If the
series is divergent.
Therefore, a geometric
series is only convergent
when 0  r 0 6 1.

0  r 0 � 1,

NOTE
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Solution

a. The first term is 6 and the common ratio is 2. The sum of the first k
terms is

The graph of as shown in Figure 1.C-2, does not approach
a single value. In fact, the sums get larger for each subsequent term. So
this series with a common ratio of 2 does not converge. It diverges.

b. is an infinite geometric series with The kth 

partial sum of this series is the same as the kth partial sum of the

sequence .

The graph of is shown in Figure 1.C-3. If you use the trace feature and
move beyond approximately the calculator will probably tell you
that every partial sum is 2. Actually, the partial sums are slightly smaller
than 2 but are rounded to 2 by the calculator. The graph gets very close
to 2 as x gets larger, but it never reaches 2. According to the formula, the
sum of the infinite series is

■

Example 1b is typical of the general case, as can be seen algebraically.
Consider the geometric series with common ratio r such
that The kth partial sum is the same as the kth partial sum of
geometric sequence and hence

As k gets very large, the number gets very close to 0 because 
Consequently, when k is very large, is very close to so that

is very close to

Infinite geometric series provide another way of writing an infinite repeat-
ing decimal as a rational number.

Example 2 Repeating Decimal as a Rational Number

Express as a rational number.6.8573573573 p

a1 a1 � 0
1 � r b �

a1

1 � r .Sk � a1 a1 � r 

k

1 � r b
1 � 01 � r 

k
0  r 0 6 1.r 

k

Sk � a1 a1 � r 

k

1 � r b .

5an6,
Sk0  r 0 6 1.

a1 � a2 � a3 � p

S �
a1

1 � r �

8
5

1 �
1
5

�

8
5
4
5

�
8
4 � 2.

n � 10,
Sk

2 a1 �
1
5 

k b � 2 �
2
5 

k

 Sk � a1 a1 � r 

k

1 � r b �
8
5 D1 � a1

5b
k

1 �
1
5

T �
8
5 ±

1 �
1
5 

k

4
5

≤ �
8
5 �

5
4 a1 �

1
5 

kb �

e 8
5 

nf

a1 �
8
5 and r �

1
5.a

q

n�1

8
5 

n

Sk � 612 

k � 12,
Sk � a1 a1 � rk

1 � r b � 6 a1 � 2 

k

1 � 2 b � �6 11 � 2 

k2 � 6 12 

k � 12

0

1000

0 10

Figure 1.C-2

–1

3

0 30

Figure 1.C-3
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Solution

First write the number as Then consider
as an infinite series:

which is the same as

This is a convergent geometric series with and Its
sum is

Therefore,

■

 � 68505
9990 �

4567
666

 � 68
10 �

573
9990

 � 6.8 �
573
9990

 6.8573573573 p � 6.8 � 30.0573 � 0.0000573 � p 4

a1

1 � r �
0.0573

1 � 0.001 �
0.0573
0.999 �

573
9990.

r � 0.001.a1 � 0.0573

0.0573 � 10.0012 10.05732 � 10.00122 10.05732 � 10.00123 10.05732 � p

0.0573 � 0.0000573 � 0.0000000573 � 0.0000000000573 � p ,

0.0573573573 p
6.8 � 0.0573573573 p .

Exercises

In Exercises 1–9, find the sum, or limit, of the infinite
series, if it converges.

1. 2. 3.

4.

5.

6.

7.

8.

9. a
q

n�1
a 1

2n �
1
3 

nb

4 � 216 � 6 � 316 � 9 �
916

2
� p

2 � 12 � 1 �
1
12

�
1
2 � p

9 � 313 � 3 � 13 � 1 �
1
13

� p

500 � 200 � 80 � 32 � p

1 � 0.5 � 0.25 � 0.125 � 0.0625 � p

a
q

n�1
a�3

4b
n

a
q

n�1

2n

3a
q

n�1

1
2n

In Exercises 10–15, express the repeating decimal as a
rational number.

10. 11.

12. 13.

14. 15.

16. If is an arithmetic sequence with common
difference and each explain why the
infinite series is not
convergent.

17. Use the graphical approach illustrated in Example 

1 to find the sum of the series in Does 

the graph get very close to the horizontal line 

through Describe the behavior of the series.�
1
3 ?

a
q

n�1
a�1

2 b
n

.

a1 � a2 � a3 � a4 � p
ai 7 0d 7 0

5an6
3.7165165165 p2.1425425425 p

85.131313 p5.4272727 p

0.37373737 p0.22222 p
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And the rockets’ red glare . . .

Many Fourth of July firework displays are timed to coincide with patriotic music. To
accomplish correct timing, each rocket must be detonated at precisely the correct height
at the right moment. The time needed for a rocket to reach a specific height is the
solution of an equation representing the height of the rocket as a function of time. See
Exercise 24 of Section 2.3.

Equations and
Inequalities

C H A P T E R

2
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2.1 Solving Equations Graphically

2.2 Solving Quadratic Equations Algebraically

2.3 Applications of Equations

2.4 Other Types of Equations

2.5 Inequalities

2.5.A Excursion: Absolute-Value Inequalities

Chapter Review

can do calculus Maximum Area

Chapter Outline
Interdependence of Sections

Graphing technology is useful for solving equations, but don’t be mis-

led into thinking that technology is always the best tool. For

example, graphing technology is useless if you do not know enough alge-

bra to understand the information displayed on the screen. When exact

answers are required, algebraic techniques are usually needed. This chap-

ter and the next two chapters develop both algebraic and graphical

techniques for solving equations in one variable.

2.1 Solving Equations Graphically

A solution of an equation is a number that, when substituted for the vari-
able, produces a true statement. For example, 5 is a solution of 
because is a true statement. To solve an equation means to
find all of its solutions.

Two equations are said to be equivalent if they have the same solutions.
For example, and are equivalent because 5 is the
only solution of each equation.

Algebraic techniques provide exact solutions to linear and quadratic equa-
tions; however, there are no formulas that provide solutions to many other
types of equations. For such equations, graphical approximation methods
are practical alternatives.

x � 2 � 33x � 2 � 17

3152 � 2 � 17
3x � 2 � 17

Objectives

• Solve equations using the
intersect method

• Solve equations using the
x-intercept method

2.2 2.3

2.4

2.5 2.5.A

>

>

>

>

2.1

If necessary, review the material on graphing in the
Technology Appendix. Knowledge of a graphing calculator is assumed
throughout the remainder of this book.

NOTE



Complete Graphs

A viewing window is said to display a complete graph if it shows all the
important features of the graph—including all peaks, valleys, and points
where it touches an axis—and suggests the general shape of portions of
the graph that are not in the window. Many different windows may show
a complete graph, but it usually is best to use a window small enough to
show as much detail as possible.

Later chapters develop algebraic facts that will enable you to know when
graphs are complete. Until then try several different windows to see
which, if any, appear to display a complete graph.

The Intersection Method

The following example illustrates a graphical method of approximating
solutions of equations where both sides of an equation are algebraic
expressions. Each side of the equation can be viewed as the output of a
function, and the solutions of the equation represent inputs that produce
equal outputs.

Example 1 Solving an Equation Using the Intersect Method

Solve 

Solution

Set and Graph both equations on the
same screen and find the x-coordinate of the point where the two graphs
intersect. This coordinate can be approximated by zooming in and using
the trace feature or by using a graphical intersection finder. As shown in
Figure 2.1-1, is an approximate solution.

Letting 

left side right side

6.957151 6.956963743

The difference between the value of the left side and the value of the right
side is small. Therefore, the solution to the original equation is 

■
x � 2.207.

10.74996374 � 2.207 � 604.870849 � 8.828 � 3 0
12.20723 � 2.207 � 60 12.20722 � 412.2072 � 3 0

x � 2.207,

0x2 � 4x � 3 0 � x3 � x � 6

x � 2.207

y2 � x3 � x � 6.y1 � 0x2 � 4x � 3 0

0x2 � 4x � 3 0 � x3 � x � 6.
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Figure 2.1-1

�10

�10

10

10

To solve an equation of the form by using the
intersection method, follow two steps.

1. Graph and on the same screen.

2. Find the x-coordinate of each point of intersection.

y2 � g(x)y1 � f(x)

f(x) � g(x)
The Intersection

Method

Technology 
Tip

Absolute value (ABS) is
in the NUM submenu 

of the MATH menu of TI
and in the NUM submenu
of the OPTN menu of RUN
mode of CASIO.

The graphical intersection
finder is labeled INTER-
SECT, in the CALC menu
of TI and ISCT in the 
G-SOLVE menu of Casio.



The x-Intercept Method

A zero of a function f is an input that produces an output of 0. For exam-
ple, 2 is a zero of the function because 
Note that 2 is also a solution of the equation In other words,
the zeros of the function f are the solutions, or roots, of the equation

The zeros of a function also have a graphical interpretation.f 1x2 � 0.

x3 � 8 � 0.
f 122 � 23 � 8 � 0.f 1x2 � x3 � 8
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A point where the graph of intersects the x-axis is of the form 
(a, 0) because every point on the x-axis has y-coordinate 0. The number 
a is called an x-intercept of the graph of f. In the preceding Exploration,
the x-intercepts of were found to be and

The x-intercepts of the graph are the zeros of the function f.x � 2.
x � �1f 1x2 � x4 � 2x2 � 3x � 2

y � f 1x2

CAUTION

Check several viewing windows to ensure that a complete graph is
shown for each side of the equation. If the graphs do not intersect,
then they have no common output value. Therefore, there are no
real solutions to the equation.

Because the x-intercepts of the graph of are the zeros of f, and the
zeros of f are solutions of the related equation the x-intercepts
can be used to solve f 1x2 � 0.

f 1x2 � 0,
y � f 1x2

Let f be a function. If r is a real number that satisfies any of
the following statements, then r satisfies all the statements.

• r is a zero of the function f

• r is an x-intercept of the graph of f

• is a solution, or root, of the equation f(x) � 0x � r

Zeros, 
x-Intercepts,

and Solutions

Technology 
Tip

A decimal window
produces one-decimal- 

place values of the x-coor-
dinates when using the
trace feature.

For a decimal window
select ZDECIMAL or
ZOOMDEC in the TI
ZOOM menu and INIT
in the Casio V-WINDOW
menu. If needed, review
the material on decimal
windows in the Technology
Appendix.

Graphing Exploration

1. Graph using a decimal window. (See
Technology Tip.) Find the points where the graph crosses the 
x-axis.

2. Verify that the x-coordinates found in Step 1 are zeros of the
function f. That is, the x-coordinates are solutions of

x4 � 2x2 � 3x � 2 � 0.

y � x4 � 2x2 � 3x � 2



An advantage of using the x-intercept method is that solutions appear on
the x-axis, and prior information about the range of the function is not
needed.

Example 2 Solving an Equation by Using the x-Intercept
Method

Solve the equation 

Solution

Rewrite the equation so that one side is zero.

Graph in the standard viewing window.

Use the trace feature to find that the zero is between 1.3 and 1.5, then use
zoom-in and trace features repeatedly, or use the graphical zero finder,
to get a better approximation of 1.4242577. (See the Technology Tip for
the location of the graphical zero finder.) Verify that 1.42 is an approxi-
mate solution by substituting into the original equation.

■

Technological Quirks

A graphical zero finder may fail to find some solutions of an equation,
particularly when the graph of the equation touches, but does not cross,
the x-axis. If the calculator does not show any x-intercepts on a graph or
if its zero finder gives an error message, an alternative approach may be
necessary, as illustrated in the next two examples.

Example 3 Solving by Solving 

Solve 

Solution

Graph The trace feature may display no y-value
for some points and the graphical zero finder may display an error mes-
sage. See Figure 2.1-3 on the next page.

y � 2x4 � x2 � 2x � 1.

2x4 � x2 � 2x � 1 � 0.

f (x) � 02f(x) � 0

x � 1.42

y � x5 � x3 � x2 � 5

x5 � x3 � x2 � 5 � 0

x5 � x2 � x3 � 5.
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Follow three steps to solve an equation by the x-intercept
method.

1. Write the equation in the equivalent form 

2. Graph .

3. Find the x-intercepts of the graph. The x-intercepts of the
graph are the real solutions of the equation.

y � f(x)

f(x) � 0.

The x-Intercept
Method

�10

�10

10

10

Figure 2.1-2

Technology 
Tip

A standard viewing
window displays 

and
The ZOOM

menu on most calculators
contains a standard view-
ing window option.

�10 � y � 10.
�10 � x � 10

Technology 
Tip

The graphical zero
finder is labeled ZERO
in the TI CALC menu
and ISCT in the Casio
G-SOLVE menu.



This difficulty can be eliminated by using the fact that the only number
whose square root is zero is zero itself.

That is, the solutions of are the same as the solu-
tions of .

As the graphs below display, the solutions of are

and

which are also approximate solutions of 2x4 � x2 � 2x � 1 � 0.

x � 1.1841347,x � �0.4046978

x4 � x2 � 2x � 1 � 0

x4 � x2 � 2x � 1 � 0
2x4 � x2 � 2x � 1 � 0
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�3

�2

3

2

Figure 2.1-3

�5

�5

5

5

Figure 2.1-5

�5

�5

5

5

Figure 2.1-6

�3

�3

3

3

Figure 2.1-4a

�3

�3

3

3

Figure 2.1-4b

The solutions can be verified by substitution.
■

Example 4 Solving 

Solve 

Solution

The graph of in Figure 2.1-5 is impossible to read. 

Using the zoom feature will display a better graph, but it may be easier
to use the fact that a fraction is zero only when its numerator is zero and
its denominator is nonzero.

The values that make the numerator zero can easily be found by finding
the zeros of Discard any value that makes the denomi-
nator of the original equation zero because 

an input that gives an undefined output is not in the domain.

Figure 2.1-6 shows that one x-intercept of is and
the other is (not identified on the graph). Neither value makes
the denominator zero, so they are the solutions to the given equation,
which can be verified by substitution.

■

x � �1
x � 0.5y � 2x2 � x � 1

y � 2x2 � x � 1.

y �
2x2 � x � 1
9x2 � 9x � 2

2x2 � x � 1
9x2 � 9x � 2

� 0.

f (x)
g(x)

� 0

Solving radical
and rational equations is
presented in Section 2.4,
and radical and rational
functions are presented in
Chapter 4.

NOTE



Applications

Graphical solution methods can be helpful in dealing with applied prob-
lems because approximate solutions are adequate in most real-world
contexts.

Example 5 Equal Populations

According to data from the U.S. Bureau of the Census, the approximate
population y (in millions) of Chicago and Los Angeles between 1950 and
2000 are given by

Chicago
Los Angeles

where 0 corresponds to 1950. In what year did the two cities have the
same population?

Solution

Graph both functions on the same screen, and find the x-value of their
point(s) of intersection.

As shown in Figure 2.1-7, the populations were the same when 
which represents September of 1978.

■

x � 28.75,

 y � 0.0000113x3 � 0.000922x2 � 0.0538x � 1.97
 y � 0.0000304x3 � 0.0023x2 � 0.02024x � 3.62
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0

−2

50

4

Figure 2.1-7

To solve use one of the following.

• The Intersection Method
1. Graph and 

2. Find the x-coordinate of each point of intersection.

• The x-Intercept Method
1. Rewrite the equation as where

2. Graph 

3. Find the x-intercepts of the graph of The 
x-intercepts of the graph of are the solutions 
of the equation.

The x-Intercept Method has the advantage of needing no
information about the range of the functions.

y � f(x)
f(x).

y � f(x).

f(x) � h(x) � g (x).

f(x) � 0,

y2 � g(x).y1 � h(x)

h(x) � g(x)
Summary of

Solving
Equations

Graphically
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Exercises 2.1

In Exercises 1–6, determine graphically the number of
solutions of the equation, but don’t solve the equation.
You may need a viewing window other than the stan-
dard one to find all of the x-intercepts.

1. 2.

3.

4.

5.

6.

In Exercises 7–34, use a graphical method to find all
real solutions of the equation, approximating when
necessary.

7.

8. 9.

10. 11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24. x3 � 3x2 � x � 1 � 0

x5 � 6x � 6 � 0

6x3 � 5x2 � 3x � 2 � 0

2x3 � 4x2 � x � 3 � 0

4
x � 2 �

3
x � 1 � 0 3Use parentheses correctly. 4

x3 � 4x � 1
x2 � x � 6

� 0

3x5 � 15x � 5
x7 � 8x5 � 2x2 � 5

� 0

2x5 � 10x � 5
x3 � x2 � 12x

� 0

2x2 � 1 � 2x � 9 � 0

x2 � 2x � 5

2x4 � x2 � 3x � 1 � 0

A
2
5 x5 � x2 � 2x � 0

28x4 � 14x3 � 9x2 � 11x � 1 � 0

2x4 � x3 � x � 3 � 0x5 � 5 � 3x4 � x

x4 � x � 3 � 0x3 � 9 � 3x2 � 6x

x3 � 4x2 � 10x � 15 � 0

6x5 � 80x3 � 45x2 � 30 � 45x4 � 86x

x4 � 500x2 � 8000x � 16x3 � 32,000

x5 � 36x � 25 � 13x3

x7 � 10x5 � 15x � 10 � 0

x3 � 5 � 3x2 � 24xx5 � 5 � 3x4 � x  

25.

26. 27.

28.

29. 30.

31.

32.

33.

34.

In Exercises 35–40, find an exact solution of the equa-
tion in the interval shown to the right of each equation.
For example, if the graphical approximation of a solu-

tion begins .3333, check to see if is the exact solu-

tion. Similarly, if your approximation begins 1.414,
check to see if is a solution because .

35.

36.

37.

38.

39.

40.

41. According to data from the U.S. Department of
Education, the average cost y of tuition and fees 
at public four-year institutions in year x is
approximated by the equation

where corresponds to 1990. If this model
continues to be accurate, during what year will
tuition and fees reach $4000?

42. Use the equation in Example 5 to determine the
year in which the population of Los Angeles
reached 2.6 million.

x � 0

y � 0.024x4 � 0.87x3 � 9.6x2 � 97.2x � 2196

x3 � x2 � 2x � 2 � 0  1 6 x 6 2

4x4 � 13x2 � 3 � 0  1 6 x 6 2

8x5 � 7x4 � x3 � 16x � 2 � 0  0 6 x 6 1

12x4 � x3 � 12x2 � 25x � 2 � 0  0 6 x 6 1

4x3 � 3x2 � 3x � 7 � 0  1 6 x 6 2

3x3 � 2x2 � 3x � 2 � 0  0 6 x 6 1

12 �� 1.41412

1
3

2x3 � 2 � 2x � 5 � 4

2x2 � 3 � 2x � 2 � 5

0x3 � 2 0 � 5 � x � x2

0x2 � 4 0 � 3x2 � 2x � 1

2x
x � 5 � 15x

x2 � 1
� 2x � 3 � 0

1
4 x4 �

1
3 x2 � 3x � 1 � 0

2x �
1
2x2 �

1
12x4 � 01

4x4 � x � 4 � 0

10x5 � 3x2 � x � 6 � 0



43. According to data from the U.S. Department of
Health and Human Services, the cumulative
number y of AIDS cases (in thousands) as of year
x is approximated by

where corresponds to 1990. During what
year did the cumulative number of cases reach
750,000?

x � 0

10 � x � 112
y � 0.062x4 � 1.54x3 � 9.21x2 � 57.54x � 199.36
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44. a. How many real solutions does the equation 

have when 
b. How many real solutions does it have when

c. Is there a value of k for which the equation has
just one real solution?

d. Is there a value of k for which the equation has
no real solution?

k � 1?

k � 0 ?

0.2x5 � 2x3 � 1.8x � k � 0

2.2 Solving Quadratic Equations Algebraically

The basic strategy for solving equations is to use the basic properties of
equality.

• Add or subtract the same quantity from both sides of the
equation.

• Multiply or divide both sides of the equation by the same nonzero
quantity.

The properties of equality apply to all equations. They, together with other
techniques that are presented in this chapter, can be used to transform a
given equation into one whose solutions are easily found. This section
considers quadratic equations and techniques used to find their solutions.

Objectives

• Solve equations by:
factoring
square root of both sides
completing the square
quadratic formula

• Solve equations in
quadratic form

A quadratic, or second degree, equation is one that can be
written in the form

for real constants a, b, and c, with a � 0.

ax2 � bx � c � 0

Definition of 
a Quadratic

Equation

This chapter
considers only real
solutions, that is, solutions
that are real numbers.

NOTE
Techniques Used to Solve Quadratic Equations

There are four techniques normally used to algebraically find exact solu-
tions of quadratic equations. Techniques that can be used to solve some
quadratic equations include

• factoring
• taking the square root of both sides of an equation

Techniques that can be used to solve all quadratic equations include

• completing the square
• using the quadratic formula



Solving Quadratic Equations by Factoring

The factoring method of solving quadratic equations is based on the Zero
Product Property of real numbers.
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Example 1 Solving a Quadratic Equation by Factoring

Solve by factoring.

Solution

Rearrange the terms so that one side is 0, and then factor.

Subtract 10 from each side

Factor the left side

Using the Zero Product Property, or must be 0.

or

Therefore, the solutions are and 2. See Figure 2.2-1.

■

Solving 

The equation has no real solutions because the square of a num-
ber is never negative. The equation has only one solution, 
The equation has two solutions, and because these are
the only numbers whose square is 7. Similar facts are true for equations
of the form where k is a real number.x2 � k,

�27,27x2 � 7
x � 0.x2 � 0

x2 � �5

x 2 � k

�
5
3

x � �
5
3

x � 23x � �5
x � 2 � 03x � 5 � 0

x � 23x � 5

13x � 52 1x � 22 � 0
3x2 � x � 10 � 0

3x2 � x � 10

If a product of real numbers is zero, then at least one of the
factors is zero. In other words,

If then or (or both).b � 0a � 0ab � 0,

The Zero
Product

Property

If needed, review
factoring in the Algebra
Appendix.

NOTE

y

x

84
0

4

8

(− , 0)

−4

5
3

−4

−8

−8

(2, 0)

Figure 2.2-1

CAUTION

To guard against mis-
takes, always check
solutions by substitut-
ing each solution into
the original equation to
make sure it really is a
solution.

For a real number k,

Number of Solutions Solutions
0
1 0
2 2k  and �2kk 77 0

k � 0
k 66 0

Solutions of
x2 � k
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When k is positive, the two solutions of are often written as
which is read “x equals plus or minus the square root of k.’’

Taking the Square Root of Both Sides of an Equation

Example 2 Solving 

Solve 

Solution

Divide by 3

Take the square root

Substitute both solutions into the original equation to check.
■

The method of taking the square root of both sides of an equation can be
used to solve equations of the form 

Example 3 Solving 

Solve .

Solution

The equation is in the form where u represents Therefore,
the procedure outlined above can be applied.

Divide by 2

Take square roots

Subtract 4

or Exact solutions

Approximate solutions
■

Completing the Square

A variation of the method of taking the square root of both sides can be
used to solve any quadratic equation. It is based on the fact that an expres-
sion of the form can be changed into a perfect square by adding
a suitable constant. For example, adding 9 to the expression 
changes it into a perfect square.

The number added is 9, which is and 3 is one-half of 6, the coefficient
of x in the original expression, This technique, which is called
completing the square, works in every case.

x2 � 6x.
32,

x2 � 6x � 9 � 1x � 322
x2 � 6x

x2 � bx

 x � �5.73 x � �2.27
 x � �4 � 23     x � �4 � 23

 x � �4 ±23    
 x � 4 � ±23    

 1x � 422 � 3
 21x � 422 � 6    

x � 4.au2 � k,

21x � 422 � 6

a(x � h)2 � k

a1x � h22 � k.

 x � ±23 � ±1.732
 x2 � 3

 3x2 � 9

3x2 � 9.

ax 2 � b

x � ±2k,
x2 � k

−2.27−5.73

y

x

8

8

4
0

4

−4

−8

−4−8

y = 2(x + 4)2

y = 6

Figure 2.2-2

CAUTION

When taking the
square root of both
sides of an equation,
remember to write
on one side of the
equation.

±
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To complete the square of the expression add the 

square of one-half the coefficient of x, namely The 

addition produces a perfect square trinomial.

x2 � bx � ab
2b

2
� ax �

b
2b

2

ab
2b

2
.

x2 � bx,
Completing 
the Square

Solving a Quadratic Equation by Completing the Square

To solve a quadratic equation by completing the square, follow the pro-
cedure below.

1. Write the equation in the form .

2. Add to both sides so that the left side is a perfect square and the 

right side is a constant.

3. Take the square root of both sides.

4. Simplify.

Example 4 Solving a Quadratic Equation by Completing 
the Square

Solve by completing the square.

Solution

Subtract 1

Divide by 2

Add 

Rewrite as perfect square and simplify

Take square root

Add 

or

There are two real solutions. See Figure 2.2-3.
■

The technique of completing the square can be used to solve any quad-
ratic equation.

x �
3
2 �

A
7
4 � 0.177x �

3
2 �

A
7
4 � 2.823

3
2 x �

3
2 ±

A
7
4

 x �
3
2 � ±

A
7
4

 ax �
3
2b

2
�

7
4

a3
2b

2

�
9
4 x2 � 3x �

9
4 �

9
4 �

1
2

 x2 � 3x � �
1
2

 2x2 � 6x � �1
 2x2 � 6x � 1 � 0   

2x2 � 6x � 1 � 0

ab
2b

2

x2 � bx � c

The procedure 
of completing the square 
is used in other areas 
of mathematics, and
knowledge of this
procedure is important in
later chapters.

NOTE

CAUTION

Completing the square
only works when the
coefficient of is 1. In
an equation such as 

first divide both sides
by 2 and then complete
the square.

2x2 � 6x � 1 � 0

x2

y

x

84
0

4

8

−4
−4

−8

−8

Figure 2.2-3
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Solve by completing the square as follows:

1. Subtract c from both sides.

2. Divide both sides by a, the leading coefficient.

3. Add the square of half of that is, to both sides.

4. Write the left side of the equation as a perfect square.

5. Take the square root of both sides.

6. Subtract from both sides.

 x � �
b

2a ±±
B
a b

2ab
2

�
c
a

b
2a

 x �
b

2a � ±±
B
a b

2ab
2

�
c
a

 ax �
b

2ab
2

� a b
2ab

2
�

c
a

 x2 �
b
a

 x � a b
2ab

2
� a b

2ab
2

�
c
a

a b
2ab

2
,b

a  ,

 x2 �
b
a  x � �

c
a

 ax2 � bx � �c

ax2 � bx � c � 0
Solving

by Completing
the Square

ax2 � bx � c � 0

The solutions of the quadratic equation are

x �
�b ±± 2b2 � 4ac

2a

ax2 � bx � c � 0
The Quadratic

Formula

The equation in step 6 can be simplified.

The final expression is known as the quadratic formula.

 � �b ± 2b2 � 4ac
2a

 � �b
2a ± 2b2 � 4ac

2a

b2

4a2 �
c
a

�
b2

4a2 �
4ac
4a2 � �b

2a ±
A

b2 � 4ac
4a2

a b
2ab

2

�
b2

4a2 x � �
b
2a ±

A
b2

4a2 �
c
a

Because the quadratic formula can be used to solve any quadratic equa-
tion, it should be memorized.
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Example 5 Solving a Quadratic Equation by Using the
Quadratic Formula

Solve by using the quadratic formula.

Solution

Rewrite the equation as and apply the quadratic formula
with and 

Therefore, or .

The equation has two distinct real solutions, as confirmed in Figure 
2.2-4.

■

The Discriminant

The expression in the quadratic formula, called the discriminant,
can be used to determine the number of real solutions of the equation
ax2 � bx � c � 0.

b2 � 4ac

x �
�8 � 252

2 � �7.6 x �
�8 � 252

2 � �0.4

 x �
�8 ± 282 � 4112 132

2112 �
�8 ± 264 � 12

2 �
�8 ± 252

2

c � 3.a � 1, b � 8,
x2 � 8x � 3 � 0,

x2 � 3 � �8x
y

x

4
0

4

−4

−8

−4

−12

−8−12

Figure 2.2-4

Number of 
Discriminant Real Solutions of
Value

2 distinct real solutions

1 distinct real solution

0 real solutionsb2 � 4ac 66 0

b2 � 4ac � 0

b2 � 4ac 77 0

ax2 � bx � c � 0

Real Solutions
of a Quadratic

Equation

The discriminant can be used to determine if an equation has no real solu-
tions without completing all computations.

Example 6 Determining the Number of Solutions by Using 
the Discriminant

Solve 

Solution

First, write the equation in general form.

b2 � 4ac � 1 � 4122 132 � �23 6 0
2x2 � x � 3 � 0

2x2 � �x � 3.



The discriminant of is negative. Therefore, 
has no real solutions.

You can confirm this fact because the graph of does not
touch the x-axis, as shown in Figure 2.2-5. Since the graph has no x-inter-
cepts, the equation has no real solutions.

■

y � 2x2 � x � 3

3 � 02x2 � x �2x2 � x � 3 � 0
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A quadratic equation with no x-intercepts has no real solution.NOTE

Polynomials are
discussed in Chapter 4.

NOTE

A polynomial equation of degree n is an equation that can be
written in the form

,

where are real numbers.an, p , a0

anxn � an�1x
n�1 � p � a1x � a0 � 0

Definition of
Polynomial

Equation

Polynomial Equations

For instance, is a polynomial
equation of degree 6. Similarly, is a polynomial expres-
sion of degree 3. Notice that polynomials have the following traits.

• no variables in denominators • no variables under radical signs

As a general rule, polynomial equations of degree 3 and above are best
solved by the graphical methods presented in Section 2.1. However, some
equations are quadratic in form and can be solved algebraically.

Polynomial Equations in Quadratic Form

Example 7 Solving an Equation in Quadratic Form

Solve 

Solution

To write in quadratic form, substitute u for 

Then solve the resulting quadratic equation.

Factor

or

 u �
1
4 u � 3

Zero-Product Property 4u � 1 � 0 u � 3 � 0

1u � 32 14u � 12 � 0

Substitute u for x2 4u2 � 13u � 3 � 0
Write x4 as 1x222 41x222 � 13x2 � 3 � 0

 4x4 � 13x2 � 3 � 0

x2.4x4 � 13x2 � 3 � 0

4x4 � 13x2 � 3 � 0.

4x3 � 3x2 � 4x � 5
4x6 � 3x5 � x4 � 7x3 � 8x2 � 4x � 9 � 0



Because 

or

Therefore, the original equation has four solutions, and 

as shown in Figure 2.2-6.

■

x � ± 1
2 ,

x � ±23

 x � ± 1
2 x � ±23

 x2 �
1
4 x2 � 3

u � x2,
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Exercises 2.2

In Exercises 1–12, solve each equation by factoring.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

In Exercises 13–24, solve the equation by taking the
square root of both sides. Give exact solutions and
approximate solutions, if appropriate.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

In Exercises 25–28, solve the equation by completing
the square.

25. 26.

27. 28. t2 � 3t � 2 � 0w2 � w � 1 � 0

x2 � 4x � 30 � 0x2 � 2x � 12

�2t2 � 11 � 5�3w2 � 8 � �20

4x2 � 28 � 025x2 � 4 � 0

�3x2 � 11�5s2 � �30

1
2 v2 � 103x2 � 12

�x2 � �10x2 � 40

x2 � 12x2 � 9

18x2 � 23x � 612x2 � 13x � 4

5x2 � 26x � �53u2 � u � 4

9t2 � 2 � 11t4t2 � 9t � 2 � 0

3t2 � t � 2 � 02y2 � 5y � 3 � 0

x2 � x � 20x2 � 5x � 14

x2 � 5x � 6 � 0x2 � 8x � 15 � 0

In Exercises 29–40, use the quadratic formula to solve
the equation.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

In Exercises 41–46, find the number of real solutions
of the equation by computing the discriminant.

41. 42.

43. 44.

45. 46.

In Exercises 47–56, solve the equation by any method.

47. 48.

49. 50.

51. 52.

53. 54.

55. 56. 25x �
4
x � 207x2

3 �
2x
3 � 1

5x2 � 2x � �2t2 � 4t � 13 � 0

2x2 � 6x � 32x2 � 7x � 15

25y2 � 20y � 14x1x � 12 � 1

3t2 � 11t � 20 � 0x2 � 9x � 18 � 0

49t2 � 5 � 42t25t2 � 49 � 70t

9t2 � 15 � 30t9x2 � 12x � 1

4x2 � 4x � 3 � 0x2 � 4x � 1 � 0

4x2 � 3x � 55u2 � 8u � �2

2t2 � 4t � 1 � 04x2 � 8x � 1 � 0

4x2 � 4x � 114x2 � 4x � 7

x2 � 11 � 6xx2 � 6 � 2x

x2 � 4x � 3 � 0x2 � 6x � 7 � 0

x2 � 2x � 1 � 0x2 � 4x � 1 � 0
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In Exercises 57–60, use a calculator to find approximate
solutions of the equation.

57.

58.

59.

60.

In Exercises 61–68, find all exact real solutions of the
equation.

61.

62.

63.

64.

65.

66.

67.

68. 6x4 � 7x2 � 3

10x4 � 3x2 � 1

6z4 � 7z2 � 2 � 0

2y4 � 9y2 � 4 � 0

x4 � 2x2 � 24 � 0

x4 � 2x2 � 35 � 0

x4 � 2x2 � 1 � 0

y4 � 7y2 � 6 � 0

7.63x2 � 2.79x � 5.32

3x2 � 82.74x � 570.4923 � 0

8.06x2 � 25.8726x � 25.047256 � 0

4.42x2 � 10.14x � 3.79 � 0

In Exercises 69–72, find a number k such that the given
equation has exactly one real solution.

69.

70.

71.

72.

73. Find a number k such that 4 and 1 are the
solutions of 

74. Suppose a, b, and c are fixed real numbers such
that Let r and s be the solutions of

a. Use the quadratic formula to show that 

b. Use part a to verify that

c. Use part b to factor and
5x2 � 8x � 2.

x2 � 2x � 1
ax2 � bx � c � a1x � r2 1x � s2.
r � s � �

b
a  and rs �

c
a .

ax2 � bx � c � 0.

b2 � 4ac � 0.

x2 � 5x � k � 0.

kx2 � 24x � 16 � 0

kx2 � 8x � 1 � 0

x2 � kx � 49 � 0

x2 � kx � 25 � 0
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1. Read the problem carefully, and determine what is asked
for.

2. Label the unknown quantities with variables.

3. Draw a picture of the situation, if appropriate.

4. Translate the verbal statements in the problem and the
relationships between the known and unknown
quantities into mathematical language.

5. Consolidate the mathematical information into an
equation in one variable that can be solved or an
equation in two variables that can be graphed.

6. Solve for at least one of the unknown quantities.

7. Find all remaining unknown quantities by using the
relationships given in the problem.

8. Check and interpret all quantities found in the original
problem.

Applied
Problems
Guideline

Example 1 Number Relations

The average of two real numbers is 41.125, and their product is 1683. Find
the two numbers.

Solution

1. Read: Two numbers are asked for.
2. Label: Let the numbers be a and b.
3. Draw: A diagram is not appropriate in this problem.
4. Translate: English Language Mathematical Language

two numbers a and b

Their average is 41.125. [1]

Their product is 1683. [2]
5. Consolidate: One technique to use when dealing with two unknowns 

is to express one in terms of the other, then substitute to
obtain an equation in one variable. Solve equation [2] for b.

[2]

Divide both sides by ab �
1683

a

ab � 1683

ab � 1683

a � b
2 � 41.125

2.3 Applications of Equations

Real-life situations are usually described verbally, but they must be inter-
preted and expressed as equivalent mathematical statements. The follow-
ing guideline may be helpful.

Objectives

• Solve application problems



Substitute the result into equation [1] and simplify.

[1]

Substitute for b

Multiply both sides by 2

6. Solve: Solve the equation by using the x-Intercept Method with 

the graph of where x represents

a. See Figure 2.3-1.

The solutions of are and 

7. Find: Find the other number, b, from the equation 

Let 

Similarly, let and use the same equation to find

8. Check: The average of 44 and 38.25 is 

The product of 44 and 38.25 is 1683.

The two numbers are 44 and 38.25.
■

Solutions in Context

When solving an application problem, it is important to interpret answers
in terms of the original problem. Each solution should

• make sense
• satisfy the given conditions
• answer the original question

In particular, an equation may have several solutions, some of which may
not make sense in the context of the problem. For instance, distance can-
not be negative, the number of people cannot be a fraction, etc.

Example 2 Dimensions of a Rectangle

A rectangle is twice as wide as it is high. If it has an area of 24.5 square
inches, what are its dimensions?

Solution

1. Read: The dimensions of the rectangle are asked for.
2. Label: Let w denote the width and h denote the height.
3. Draw: See Figure 2.3-2.

44 � 38.25
2 � 41.125.

b � 44.
a � 38.25

b � 38.25

44b � 1683a � 44.

ab � 1683.

a � 38.25.a � 44a �
1683

a � 82.25

y1 � x �
1683

x � 82.25,

a �
1683

a  � 82.25

1683
a

a �
1683

a
2  � 41.125

a � b
2  � 41.125
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4. Translate: The area of a rectangle is width height.
English Language Mathematical Language
Width is twice height. [3]
The area is  . [4]

5. Consolidate: Substitute 2h for w in equation [4].

6. Solve: Solve by taking the square root of both sides.

Divide by 2

Take square root of both sides

Because height is never negative, only the positive root applies to this sit-
uation. Therefore, in.
7. Find: Find the width by using equation [3] and .

8. Check: The width is twice the height and the area is correct.

Thus, the width is 7 inches and the height is 3.5 inches.
■

Example 3 Volume of a Rectangular Box

A rectangular box with a square base and no top is to have a volume of
If the surface area of the box is what are the dimen-

sions of the box?

Solution

1. Read: The quantities to be found are the length, width, and
height of the box.

2. Label: Notice that the two sides of the base have the same length.
Let s denote a side of the square base of the box.
Let h denote the height of the box.

3. Draw: See Figure 2.3-3.
4. Translate: The volume of a box is given by length width height

and the surface area is the sum of the area of the base and
the area of the four sides of the box.
English Language Mathematical Language
length, width, height s, s, and h
surface area:

base surface area
each side surface area sh
total surface area

Volume is  [5]
Surface area is [6]s2 � 4sh � 6,0006000 cm2

s2h � 30,00030,000 cm3
s2 � 4sh

s2

��

6000 cm2,30,000 cm3.

3.5172 � 24.5 in2

w � 213.52 � 7 in.

h � 3.5
h � 3.5

 h � ±212.25 � ±3.5
 h2 � 12.25

 2h2 � 24.5
 12h2h � 24.5

 wh � 24.5

wh � 24.524.5 in2
w � 2h

�

Section 2.3 Applications of Equations 99

s
s

h

Figure 2.3-3



5. Consolidate: Solve equation [5] for h:

Substitute the expression for h into equation [6].

6. Solve: To solve by using the Intersection Method, graph 

and as shown in Figure 

2.3-4, and find the points of intersection. Therefore,

7. Find: Use to find h.

8. Check: Volume

Surface Area

One base is approximately with a height of approxi-
mately 63.71 cm. Another base is approximately 64.29 cm 64.29 cm with
a height of approximately 7.26 cm.

■

Interest Applications

Calculating interest is common in real-world applications. When an
amount, P, is deposited or borrowed, P is referred to as the principal.
Interest is the fee paid for the use of the money and is calculated as a per-
centage of the principal each year. When the duration of a loan or a bank
balance is less than 1 year, simple interest is generally used. The basic
rule of simple interest is

P represents the principal, r represents the annual interest rate, and t
represents time in years.

Example 4 Stock and Savings Returns

A high-risk stock pays dividends at a rate of 12% per year, and a savings
account pays 6% interest per year. How much of a $9000 investment
should be put in the stock and how much should be put in savings to
obtain a return of 8% per year on the total investment?

I � Prt

�
21.7 cm � 21.7 cm

� 6000.9180  � 6000.1857
� 121.722 � 4121.72 163.712   � 164.2922 � 4164.292 17.262
� 30,000.4019  � 30,007.06177
� 121.722163.712  � 164.292217.262

 �
30,000
470.89 � 63.71 cm   �

30,000
4133.2041 � 7.26 cm

h �
30,000
121.7022  h �

30,000
164.2922

h �
30,000

s2

s � 21.70 cm or s � 64.29 cm.

y2 � 6000,y1 � s2 �
120,000

s

 s2 �
120,000

s � 6000

 s2 � 4sa30,000
s2 b � 6000

h �
30,000

s2
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Solution

Read and Label: Let s be the amount invested in stock. Then the rest of
the $9000, namely will be the amount in the sav-
ings account.

Translate:

�

Therefore, the investment should be as follows:

• $3000 in stock
• in the savings account

If this is done, the total return will be 12% of $3000 plus 6% of $6000, mak-
ing a total return of —which is 8% of $9000.

■

Distance Applications

The basic formula for problems involving distance and a constant rate of
velocity is

where d represents the distance traveled at rate r for time t. The units for
rate should be the distance units divided by the time units, such as miles
per hour.

Example 5 Distance

A pilot wants to make an 840-mile round trip from Cleveland to Peoria
and back in 5 hours flying time. There will be a headwind of 30 mph
going to Peoria, and it is estimated that there will be a 40-mph tailwind
returning to Cleveland. At what constant engine speed should the plane
be flown?

Solution

Let r be the engine speed of the plane, and note that the headwind slows
the velocity by 30 and the tailwind increases the velocity by 40.

d � rt

$360 � $360 � $720

19000 � 30002 � $6000

 s �
180
0.06 � 3000

 0.06s � 180
 0.12s � 0.06s � 720 � 540

 0.12s � 540 � 0.06s � 720
 0.12s � 0.0619000 � s2 � 720

0.081900026% of 19000 � s2� 12% of s

 aReturn on s dollars
in stock at 12%

b � aReturn on 9000 � s
dollars in savings at 6%

b � 8% of $9000

9000 � s,
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In Precalculus,
combining basic algebraic
steps to promote clarity
when simplifying is
encouraged as long as it
does not cause confusion.

NOTE

> > >

>

> >



Distance Actual Velocity Time

Cleveland to Peoria 420

Peoria to Cleveland 420

The time traveling to Peoria plus the time traveling back to Cleveland is
the total time traveled, or 5 hours.

Multiply both sides by the common denominator , and
simplify.

Obviously, the negative solution does not apply. Because both sides 
were multiplied by a quantity involving the variable, the positive solu-
tion, 170, should be checked in the original problem to make sure it is a
solution.

■

Other Applications

Example 6 Width of a Garden Walk

A landscaper wants to put a cement walk of uniform width around a rec-
tangular garden that measures 24 by 40 feet. She has enough cement to
cover 660 square feet. How wide should the walk be in order to use all
the cement?

Solution

Let x denote the width of the walk in feet and draw a picture of the sit-
uation, as shown in Figure 2.3-5.

The length of the outer rectangle is the garden length plus walks on each
end, or and its width is the garden width plus walks on each
end, or The area of the walk is found by subtracting the area of
the garden from the area of the outer rectangle.

24 � 2x.
40 � 2x,

 r � 170     r � �12
 r � 170 � 0  or    r � 12 � 0

 1r � 1702 1r � 122 � 0
 r2 � 158r � 2040 � 0
 r2 � 10r � 1200 � 84r � 3360 � 84r � 2520
 1r � 302 1r � 402 � 841r � 402 � 841r � 302

 51r � 302 1r � 402 � 4201r � 402 � 4201r � 302
 51r � 302 1r � 402 �

420
r � 30 1r � 302 1r � 402 �

420
r � 40 1r � 302 1r � 402

1r � 302 1r � 402
� 5420

r � 40� 420
r � 30

 1Time to Peoria2 � 1Time to Cleveland2 � 5

D
rC

�
420

r � 40r � 40

D
rP

�
420

r � 30r � 30
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Only the positive solution makes sense, so the walk should be approxi-
mately 4.5 feet wide. Check the solution in the original problem.

■

Example 7 Box Construction

A box with no top that has a volume of 1000 cubic inches is to be con-
structed from a -inch sheet of cardboard by cutting squares of
equal size from each corner and folding up the flaps, as shown in Figure
2.3-6. What size square should be cut from each corner?

22 � 30

 x � 4.5 or x � �36.5

 x �
�32 ± 21684

2

Apply the quadratic formula x �
�32 ± 213222 � 4112 1�1652

2112
 x2 � 32x � 165 � 0

 4x2 � 128x � 660 � 0
 960 � 128x � 4x2 � 960 � 660

 140 � 2x2 124 � 2x2  �   1402 1242 � 660

 1Area of outer rectangle2 � 1Area of garden2 � Area of the walk
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30 − 2x
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x

22 − 2x30 − 2x

Figure 2.3-6

Solution

Let x represent the length of the side of the square to be cut from each
corner. The dashed rectangle in Figure 2.3-6 is the bottom of the box. Its
length is as shown in the figure. Similarly, the width of the box
will be and its height will be x inches. Therefore,

Because the cardboard is 22 inches wide, x must be less than 11, and
because x is a length, it must be positive. Therefore, the only meaningful
solutions in this context are between 0 and 11.

 130 � 2x2 122 � 2x2x � 1000

 Length � Width � Height � Volume of the box

22 � 2x,
30 � 2x,

>>>>



Graph and As shown in Figure 2.3-7,
there are two points of intersection: one at approximately (2.23, 1000) and
another at approximately (6.47, 1000), which is not identified on the graph.
Because both are viable solutions, there are two boxes that meet the given
conditions.

Find the dimensions of the box for each possible case.

Case I Case II
Height: 2.23 in. 6.47 in.
Length:
Width: 22 � 216.472 � 9.06 in.22 � 212.232 � 17.54 in.

30 � 216.472 � 17.06 in.30 � 212.232 � 25.54 in.

y2 � 1000.y1 � 130 � 2x2 122 � 2x2x
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■

Example 8 Mixture Problem

A car radiator contains 12 quarts of fluid, 20% of which is antifreeze. How-
much fluid should be drained and replaced with pure antifreeze so that
the resulting mixture is 50% antifreeze?

Solution

Let x be the number of quarts of fluid to be replaced by pure antifreeze.
When x quarts are drained, there are quarts of fluid left in the radi-
ator, 20% of which is antifreeze.

Therefore, 4.5 quarts should be drained and replaced with pure antifreeze.
■

 x �
3.6
0.8 � 4.5

 0.8x � 3.6
 2.4 � 0.2x � x � 6

 0.2112 � x2 � x �   0.51122

50% of 12�x�20% of 112 � x2

±
Amount of antifreeze
in radiator after
draining x quarts of 
fluid

≤ � ax quarts of
antifreeze b � °Amount of 

antifreeze in
final mixture

¢

12 � x

2.23 in
6.47 in

17.54 in 9.06 in
25.54 in 17.06 in

Figure 2.3-8

> > >

> >>
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Exercises 2.3

In Exercises 1–4, a problem situation is given.
a. Decide what is being asked for, and label the

unknown quantities.
b. Translate the verbal statements in the

problem and the relationships between the
known and unknown quantities into
mathematical language, using a table like
those in Examples 1–3. The table is provided
in Exercises 1–2. You need not find an
equation to be solved.

1. The sum of two numbers is 15 and the difference
of their squares is 5. What are the numbers?

Mathematical
English Language Language
the two numbers
Their sum is 15.
The difference of their squares is 5.

2. The sum of the squares of two consecutive
integers is 4513. What are the integers?

Mathematical
English Language Language
the two integers
The integers are consecutive.
The sum of their squares is 4513.

3. A rectangle has a perimeter of 45 centimeters and 
an area of 112.5 square centimeters. What are its
dimensions?

4. A triangle has an area of 96 square inches, and its
height is two-thirds of its base. What are the base
and height of the triangle?

In Exercises 5–8, set up the problem by labeling the
unknowns, translating the given information into
mathematical language, and finding an equation that
will produce the solution to the problem. You need not
solve this equation.

5. A worker gets an 8% pay raise and now makes
$1600 per month. What was the worker’s old
salary?

6. A merchant has 5 pounds of mixed nuts that cost
$30. He wants to add peanuts that cost $1.50 per
pound and cashews that cost $4.50 per pound to
obtain 50 pounds of a mixture that costs $2.90 per
pound. How many pounds of peanuts are
needed?

7. The diameter of a circle is 16 cm. By what amount
must the radius be decreased in order to decrease
the area by square centimeters?

8. A corner lot has dimensions 25 by 40 yards. The
city plans to take a strip of uniform width along
the two sides bordering the streets in order to
widen these roads. How wide should the strip be
if the remainder of the lot is to have an area of
844 square yards?

In Exercises 9–20, solve the problem.

9. You have already invested $550 in a stock with an
annual return of 11%. How much of an additional
$1100 should be invested at 12% and how much at
6% so that the total return on the entire $1650 is
9%?

10. If you borrow $500 from a credit union at 12%
annual interest and $250 from a bank at 18%
annual interest, what is the effective annual
interest rate (that is, what single rate of interest on
$750 would result in the same total amount of
interest)?

11. A radiator contains 8 quarts of fluid, 40% of
which is antifreeze. How much fluid should be
drained and replaced with pure antifreeze so that
the new mixture is 60% antifreeze?

12. A radiator contains 10 quarts of fluid, 30% of
which is antifreeze. How much fluid should be
drained and replaced with pure antifreeze so that
the new mixture is 40% antifreeze?

13. Two cars leave a gas station at the same time, one
traveling north and the other south. The
northbound car travels at 50 mph. After 3 hours
the cars are 345 miles apart. How fast is the
southbound car traveling?

14. An airplane flew with the wind for 2.5 hours and
returned the same distance against the wind in 3.5
hours. If the cruising speed of the plane was a
constant 360 mph in air, how fast was the wind
blowing? Hint: If the wind speed is r miles per
hour, then the plane travels at mph with
the wind and at mph against the wind.

15. The average of two real numbers is 41.375 and
their product is 1668. What are the numbers?

1360 � r2
1360 � r2

48p
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16. A rectangle is four times as long as it is wide. If it
has an area of 36 square inches, what are its
dimensions?

17. A 13-foot-long ladder leans on a wall. The bottom
of the ladder is 5 feet from the wall. If the bottom
is pulled out 3 feet farther from the wall, how far
does the top of the ladder move down the wall?
Hint: The ladder, ground, and wall form a right
triangle. Draw pictures of this triangle before and
after the ladder is moved. Use the Pythagorean
Theorem to set up an equation.

18. A factory that makes can openers has fixed costs
for building, fixtures, machinery, etc. of $26,000.
The variable cost for material and labor for
making one can opener is $2.75.
a. What is the total cost of making 1000 can

openers? 20,000? 40,000?
b. What is the average cost per can opener in each

case?

19. Red Riding Hood drives the 432 miles to
Grandmother’s house in 1 hour less than it takes
the Wolf to drive the same route. Her average
speed is 6 mph faster than the Wolf’s average
speed. How fast does each drive?

20. To get to work Sam jogs 3 kilometers to the train,
then rides the remaining 5 kilometers. If the train
goes 40 km per hour faster than Sam’s constant
rate of jogging and the entire trip takes 30
minutes, how fast does Sam jog?

In Exercises 21–24, an object is thrown upward,
dropped, or thrown downward and travels in a vertical
line subject only to gravity with wind resistance
ignored. The height h, in feet, of the object above the
ground after t seconds is given by

where is the initial height of the object at starting
time and is the initial velocity (speed) of the
object at time The value of is taken as posi-
tive if the object starts moving upward at time 
and negative if the object starts moving downward at

An object that is dropped (rather than thrown
downward) has initial velocity 

21. How long does it take an object to reach the
ground in each case?
a. It is dropped from the top of a 640-foot-high

building.

v0 � 0.
t � 0.

t � 0
v0t � 0.

v0t � 0,
h0

h � �16t 2 � v0t � h0

b. It is thrown downward from the top of the
same building, with an initial velocity of 52 feet
per second.

22. You are standing on a cliff 200 feet high. How
long will it take a rock to reach the ground at the
bottom of the cliff in each case?
a. You drop it.
b. You throw it downward at an initial velocity of

40 feet per second.
c. How far does the rock fall in 2 seconds if you

throw it downward with an initial velocity of
40 feet per second.

23. A rocket is fired straight up from ground level
with an initial velocity of 800 feet per second.
a. How long does it take the rocket to rise 3200

feet?
b. When will the rocket hit the ground?

24. A rocket loaded with fireworks is to be shot
vertically upward from ground level with an
initial velocity of 200 feet per second. When the
rocket reaches a height of 400 feet on its upward
trip, the fireworks will be detonated. How many
seconds after lift-off will this take place?

25. The dimensions of a rectangular box are
consecutive integers. If the box has volume of
13,800 cubic centimeters, what are its dimensions?

26. Find a real number that exceeds its cube by 2.

27. The lateral surface area S of the right circular 
cone at the left in the figure below is given by

What radius should be used to
produce a cone of height 5 inches and lateral
surface area 100 square inches?

S � pr2r2 � h2.

h

r

h

b

28. The lateral surface area of the right square
pyramid at the right in the figure above is given 
by If the pyramid has height 
10 feet and lateral surface area 100 square feet,
what is the length of a side b of its base?

S � b2b2 � 4h2.



29. Suppose that the open-top box being made from a
sheet of cardboard in Example 7 is required to
have at least one of its dimensions greater than 18
inches. What size square should be cut from each
corner?

30. A homemade loaf of bread turns out to be a
perfect cube. Five slices of bread, each 0.6 inch
thick, are cut from one end of the loaf. The
remainder of the loaf now has a volume of 
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235 cubic inches. What were the dimensions of the
original loaf?

31. A rectangular bin with an open top and volume of
38.72 cubic feet is to be built. The length of its
base must be twice the width and the bin must be
at least 3 feet high. Material for the base of the bin
costs $12 per square foot and material for the
sides costs $8 per square foot. If it costs $538.56 to
build the bin, what are its dimensions?

If 

If  c 66 0, then 00c 00 � �c.

 c �� 0, then 00c 00 � c.
Algebraic

Definition of
Absolute Value

−10 −8 −6 −4 −2 0 2 4 6 108

8 units

Figure 2.4-1

2.4 Other Types of Equations

Like linear and quadratic equations, other types of equations can be solved
algebraically. This section outlines procedures for solving absolute-value,
radical, and fractional equations.

Definition of Absolute Value

The absolute value of a number c is denoted and is defined as follows.0 c 0

Objectives

• Solve absolute-value
equations

• Solve radical equations

• Solve fractional equations

For example, because 5 is positive, and because is negative,
To determine note that and

Therefore, the second part of the definition applies.

In all cases, the absolute value of a number is nonnegative.

Absolute value can also be interpreted geometrically as a distance.
Observe that the distance between and 3 on the number line is 8 units.�5

0p � 6 0 � �1p � 62 � 6 � p

p � 6 6 0.
p � 3.140p � 6 0 ,0�3 0 � �1�32 � 3.

�305 0 � 5,

Notice that This is an example of a key geometric
property of absolute value.

0�5 � 3 0 � 0�8 0 � 8.
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−10 −8 −6 −4 −2 0 2 4 6 108

�5 + √2 �

5–   2

Figure 2.4-2

In the special case when the distance formula shows that the dis-
tance from c to 0 is which is an alternative definition of 0 c 0 .0 c � 0 0 � 0 c 0 ,d � 0,

For example, denotes the distance from to 0 on the number
line, as shown below.

�3.50 �3.5 0

If c is a real number, then

is the distance from c to 0 on the number line.00 c 00
Geometric
Definition 

of Absolute
Value

Properties of Absolute Value

The following properties are helpful in simplifying absolute value ex-
pressions.

For example, the number can be written as and
thus represents the distance between 5 and on the number line. See
Figure 2.4-2.

�22
� 5 � A�22 B �� 5 � 22 �

�−3.5�

−10 −8 −6 −4 −2 0 2 4 6 108

Figure 2.4-3

Let c and d represent real numbers.

1.

2.

3.

4. ` c
d
` �
00 c 00
00 d 00 , where d � 0

00 cd 00 � 00 c 00 � 00 d 00
00 c 00 � 00�c 00
00 c 00 �� 0 and 00 c 00 777 0 when c � 0

Properties of
Absolute Value

If c and d are real numbers, then

is the distance between c and d on the number line.00 c � d 00
Absolute Value

and Distance
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Illustrations of Properties 2, 3, and 4 for absolute value are shown below.

Property 2: Let 

Therefore, 

Property 3: Let 

Therefore, .

Property 4: Let 

Therefore, 

The caution shows that when and The
general case is called the Triangle Inequality.

d � 5.c � �30 c � d 0 6 0 c 0 � 0 d 0
`�5
 4 ` �

0�5 0
0 4 0 .

` c
d
` � ` �5

 4 ` � `�5
4 ` �

5
4  and  

0c 0
0d 0 �

0�5 0
 04 0 �

5
4

c � �5 and d � 4.

061�22 0 � 06 0 � 0�2 0
0c 0 � 0d 0 � 06 0 � 0�2 0 � 6 � 2 � 12
0cd 0 � 06 1�22 0 � 0�12 0 � 12

c � 6 and d � �2.

03 0 � 0�3 0 .
c � 3. Then 0c 0 � 03 0 � 3 and 0�c 0 � 0�3 0 � 3.

CAUTION

When c and d have
opposite signs, 
is not equal to 
For example, if 
and then

But, 

 � 8
 � 3 � 5
 � 0 �3 0 � 0 5 0
 0 c 0 � 0 d 0

 � 2
 0 c � d 0 � 0 �3 � 5 0

d � 5,
c � �3
0 c 0 � 0 d 0 .0 c � d 0

Square Root of Squares

When c is a positive number, then This is not true when c is
negative. Consider the case when 

But is equal to the absolute value of c when c is any real number.
That is, 21�322 � 29 � 3 � 0�3 0 .

2c 2

21�322 � 29 � 3, which is not �3

c � �3.
2c2 � c.

For every real number c,

2c 2 � 00 c 00 .
Square Root 

of Squares

For any real numbers c and d,

00 c � d 00 �� 00 c 00 � 00 d 00 .
The Triangle

Inequality

Solving Absolute-Value Equations

Absolute-value equations can be solved by using the definitions. Some
equations lend themselves to the geometric definition, while others are
solved more easily using the algebraic definition. Graphing techniques
can be used to check all solutions.



Example 1 Using Absolute Value and Distance

Solve using absolute value and distance.

Solution

The equation can be interpreted as

the distance from x to 4 is 8 units.

See Figure 2.4-4.

0 x � 4 0 � 8

0 x � 4 0 � 8
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When dealing
with long expressions
inside absolute value bars,
do the computations inside
first, and then take the
absolute value of the
simplified expression.

NOTE

−8 −6 −4 −2 0 2 4 6 8 12 14 1610

8 units

x

8 units

x

Figure 2.4-4

The two possible values of x that are solutions of the original equation
are and 12, as shown.

■

Extraneous Solutions

As shown in Example 2 below, some solutions do not make the original
equation true when checked by substitution. Such “fake” solutions are
called extraneous solutions, or extraneous roots. Because extraneous solu-
tions may occur when solving absolute-value equations, all solutions must
be checked by substituting into the original equation or by graphing.

Example 2 Using the Algebraic Definition of Absolute Value

Solve by using the algebraic definition of absolute value.

Solution

The absolute value of any quantity is either the quantity itself or the oppo-
site of the quantity, depending on whether the quantity is positive or
negative. So, is either Therefore, the original
equation can be rewritten as two equations that do not involve absolute
value.

or

Each solution must be checked in the original equation.

 x � �
2
6 � �

1
3

 �6x � 2 x �
6
4 �

3
2

 �x � 4 � 5x � 2 �4x � �6
 �1x � 42 � 5x � 2 x � 4 � 5x � 2

0 x � 4 0 � 5x � 2

x � 4 or �1x � 42.0 x � 4 0

0 x � 4 0 � 5x � 2

�4

Technology 
Tip

To compute absolute
values on a calculator, 

use the ABS feature. The
ABS feature is in the NUM
submenu of the MATH
menu of TI and in the
NUM submenu of the
OPTN menu of Casio.
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is a solution and checks in the original equation, as shown in 

Figure 2.4-5. However, is an extraneous root because the graphs 

do not intersect when which can be confirmed by substitution. 

Therefore, the only solution of is 

■

Example 3 Solving an Absolute Value Equation

Solve 

Solution

Use the algebraic definition of absolute value to rewrite the original equa-
tion as two equations.

The equation on the left can be solved by factoring, and the equation on
the right by using the quadratic formula.

See Figure 2.4-6 to confirm that all four values are solutions.
■

Solving Radical Equations

Radical equations are equations that contain expressions with a variable
under a radical symbol. Although the approximate solutions of a radical
equation can be found graphically, exact solutions can be found alge-
braically in many cases.

The algebraic solution method depends on the following fact.

If A and B are algebraic expressions and , 
then for every positive integer n.

For example, if then Therefore, every solution of
is also a solution of However, is a solution of

but is not a solution of x � 2 � 3.�11x � 222 � 9,
�11x � 222 � 9.x � 2 � 3

1x � 222 � 32.x � 2 � 3,

An � Bn
A � B

 x � �2 ± 25

 x �
�4 ± 220

2 �
�4 ± 225 

2 x � �5 or x � 1

 x �
�4 ± 242 � 4112 1�12

2112 1x � 52 1x � 12 � 0

x2 � 4x � 1 � 0 x2 � 4x � 5 � 0

 �x2 � 4x � 1 � 0
 �x2 � 4x � 3 � 2 x2 � 4x � 5 � 0

 �1x2 � 4x � 32 � 2 x2 � 4x � 3 � 2

0 x2 � 4x � 3 0 � 2

0 x2 � 4x � 3 0 � 2.

x �
3
2.0 x � 4 0 � 5x � 2

x � �
1
3,

x � �
1
3

x �
3
2

Squaring both
sides of an equation may
introduce extraneous roots.

NOTE

y

x

84
0

4

8 y = �x + 4�

y = 5x − 2

−4
−4

−8

−8

3
2

11
2

(  ,    )

Figure 2.4-5

y = �x2 + 4x − 3�
y = 2

y

x

84
0

4

8

−4
−4

−8

−8

Figure 2.4-6
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If both sides of an equation are raised to the same positive
integer power, then every solution of the original equation is
a solution of the new equation. However, the new equation
may have solutions that are not solutions of the original one.

Power Principle

CAUTION

Although it is always a
good idea to verify
solutions, solutions to
radical equations must
be checked in the origi-
nal equation.

0

0

10

5

Figure 2.4-7

Example 4 Solving a Radical Equation

Solve 

Solution

Rearrange terms to get the radical expression alone on one side.

Square both sides to remove the radical sign and solve the resulting 
equation.

or

If these values are solutions of the original equation, they should be
x-intercepts of the graph of But Figure 2.4-7
shows that the graph does not have an x-intercept at . That is, 
is an extraneous solution.

The graph suggests that is a solution of the original equation, which
can be confirmed by substitution.

■

Sometimes the Power Principle must be applied more than once to elim-
inate all radicals.

Example 5 Using the Power Principle Twice

Solve 

Solution

Rearrange terms so that one side contains only a single radical term.

22x � 3 � 2x � 7 � 2

22x � 3 � 2x � 7 � 2.

x � 9

x � 4x � 4
y � 23x � 11 � 1x � 52.

 x � 9 x � 4
 x � 9 � 0 x � 4 � 0

 0 � 1x � 42 1x � 92
 0 � x2 � 13x � 36

 3x � 11 � x2 � 10x � 25
 A23x � 11 B 2 � 1x � 522

23x � 11 � x � 5

5 � 23x � 11 � x



Square both sides and isolate the remaining radical.

Square both sides again, and solve the resulting equation.

or

Verify by substitution that is an extraneous root but that is
a solution.

■

Example 6 Distance

Stella is standing at point A on the bank of a river that is 2.5 kilometers
wide. She wants to reach point B, which is 15 kilometers downstream on
the opposite bank. She plans to row downstream to point C on the oppo-
site shore and then run to B, as shown in Figure 2.4-9. She can row
downstream at a rate of 4 kilometers per hour and can run at 8 kilome-
ters per hour. If her trip is to take 3 hours, how far from B should she
land?

x � 42x � 2

x � 42x � 2
x � 42 � 0x � 2 � 0

 1x � 22 1x � 422 � 0
 x2 � 44x � 84 � 0

 x2 � 28x � 196 � 16x � 112
 x2 � 28x � 196 � 161x � 72
 x2 � 28x � 196 � 42 A2x � 7 B 2

 1x � 1422 � A42x � 7 B 2
 x � 14 � 42x � 7
 2x � 3 � x � 7 � 42x � 7 � 4
 2x � 3 � A2x � 7 B 2 � 2 � 22x � 7 � 22

 A22x � 3 B 2 � A2x � 7 � 2 B 2
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y

x

5010 4020 300

5

�5

Figure 2.4-8

Figure 2.4-9

Technology 
Tip

Graphing calculators
do not always show all 

solutions of a radical equa-
tion. See Example 3 in
Section 2.1 for an illustra-
tion of a technological
quirk.

Solution

Refer to Figure 2.4-9. The basic formula for distance can be written in
different ways.

d � rt  or  t �
d
r



Let x represent the distance between C and B, t represent the time required
to run from C to B, and r represent the rate Stella can run (8 kilometers
per hour).

Therefore, denotes the time needed to run from C to B.

Similarly, can express the time required to row distance d.

Since is the distance from D to C, the Pythagorean Theorem can
be applied to right triangle ADC.

Therefore, the total time for the trip is given by a function of x.

If the trip is to take 3 hours, then .

Using the viewing window with and graph this
function.

Find the zeros of f and interpret their values in the context of the problem.

The zeros of f are and These represent the distances
that Stella should land from B. 6.74 represents a downstream destination
from A and 17.26 represents an upstream destination from A. Therefore,
Stella should land approximately 6.74 kilometers from B to make the
downstream trip in 3 hours.

■

Fractional Equations
If f(x) and g(x) are algebraic expressions, the quotient is called a frac-

tional expression with numerator f(x) and denominator g(x). As in all
fractions, the denominator, g(x), cannot be zero. That is, if the frac-

tion is undefined. The following principle is used to solve fractional 

equations of the form 
f 1x2
g1x2 � 0.

f 1x2
g1x2

g1x2 � 0,

f 1x2
g1x2

x � 17.26.x � 6.74

f 1x2 �
21x � 1522 � 6.25

4 �
x
8 � 3

�2 � y � 2,0 � x � 20

21x � 1522 � 6.25
4 �

x
8 � 3

T1x2 � 3

 �
21x � 1522 � 6.25

4 �
x
8

 � d
4 �

x
8

 T1x2 � rowing time � running time

d2 � 115 � x22 � 2.52  or equivalently  d � 2115 � x22 � 6.25

15 � x

t �
d
4

t �
x
8
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To review the
Pythagorean Theorem, see
the Geometry Review
Appendix.

NOTE
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Example 7 Solving a Fractional Equation

Solve 

Solution

Find all solutions to 

or

Discard any solution that makes 

For 

For 

Therefore, is the solution of and is not 

a solution. Figure 2.4-10a confirms that is a solution and that

is extraneous.

■

x �
1
2

x � �
1
3

x �
1
2

6x2 � x � 1
2x2 � 9x � 5

� 0,x � �
1
3

2 a1
2b

2
� 9 a1

2b � 5 � 0x �
1
2 :

2 a�1
3b

2
� 9 a�1

3b � 5 � �
70
9 � 0x � �

1
3 :

2x2 � 9x � 5 � 0.

x �
1
2x � �

1
3

 2x � 1 � 0 3x � 1 � 0
 13x � 12 12x � 12 � 0

 6x2 � x � 1 � 0

6x2 � x � 1 � 0.

6x2 � x � 1
2x2 � 9x � 5

� 0.

Let and represent algebraic expressions. Then the
solutions of the equation

are all values of x such that and g(x) � 0.f(x) � 0

f(x)
g(x)

� 0

g (x)f(x)Solving 
f(x)
g(x) � 0

�10

�10

10

10

Figure 2.4-10a

�7.7

�2.2

1.7

10.2

Figure 2.4-10b

Technology 
Tip

In Figure 2.4-10a, the vertical line shown at is not part of the
graph but is a result of the calculator evaluating the function just to the 

left of and just to the right of but not at The calcu-
lator erroneously connects these points with a near vertical segment. By
choosing a window such as and , the near
vertical line will not be drawn. Using the trace feature in Figure 2.4-10b 

identifies a hole at where the function is not defined.x �
1
2,

�2.2 � y � 10.2�7.7 � x � 1.7

x � �5.x � �5,x � �5

x � �5
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Exercises 2.4

In Exercises 1–8, rewrite each statement using the geo-
metric definition of absolute value. Represent each on
a number line, and find the value(s) of the variable.

1. The distance between y and 2 is 4.

2. The distance between x and 4 is 6.

3. The distance between 3w and 2 is 8.

4. The distance between 4x and 3 is 6.

5. The distance between and 4 is 5.

6. The distance between and 3 is 11.

7. The distance between and is 5.

8. The distance between and is 

In Exercises 9–20, find all real solutions of each equa-
tion.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. Explain why there are no real numbers that satisfy
the equation 

22. Describe in words the meaning of the inequality.

Make sure to consider positive and negative
values of a and b.

23. Joan weighs 120 pounds and her doctor told her
that her weight is 5 percent from her ideal weight.
What are the possible values, to the nearest
pound, for Joan’s ideal body weight?

24. A tightrope walker is 8 feet from one end of the
rope. If he takes 2 steps and each step is 10 inches
long, how far is he from the same end of the
rope? Give both possible answers.

0 a � b 0 � 0 a 0 � 0 b 0

0 2x2 � 3x 0 � �12.

0 12x2 � 5x � 7 0 � 40x2 � 5x � 1 0 � 3

0 x2 � 2x � 9 0 � 60 x2 � 4x � 1 0 � 4

0 2x � 1 0 � 2x � 10x � 3 0 � x

0 3x � 2 0 � 5x � 40 2x � 3 0 � 4x � 1

04x � 5 0 � �90 6x � 9 0 � 0

03x � 5 0 � 70 2x � 3 0 � 9

5
2.�6�4w

�2�3x

�4z

�2x

25. An instrument measures a wind speed of 20 feet
per second. The true wind speed is within 5 feet
per second of the measured wind speed. What are
the possible values for the true wind speed?

26. For two real numbers s and t, the notation 
min(s, t) represents the smaller of the two
numbers. When min(s, t) represents the
common value. It can be shown that min(s, t) can
be expressed as shown.

For each of the following, verify the equation.
a. and 
b. and 
c.

27. In statistical quality control, one needs to find the
proportion of the product that is not acceptable.
The upper and lower control limits (CL) are found
by solving the following equation in which p is
the mean percent defective, and n is the sample
size for CL.

Find CL when and 

In Exercises 28–63, find all real solutions of each equa-
tion. Find exact solutions when possible,  approximate
solutions otherwise.

28. 29.

30. 31.

32. 33.

34. 35.

36. 37.

38.

39.

40.

41.

42.

43. 25 9 � x2 � x2 � 1

23 x3 � 6x2 � 2x � 3 � x � 1

23 x3 � x2 � 4x � 5 � x � 1

24x2 � 10x � 5 � x � 3

23x2 � 7x � 2 � x � 1

2x � 5 � x � 1

2x � 7 � x � 52x2 � 5x � 4 � 2

2x2 � x � 1 � 123 1x � 122 � 4

23 x2 � 1 � 223 6x � 10 � 2

23 5 � 11x � 323x � 2 � 7

24x � 9 � 52x � 7 � 4

n � 200.p � 0.02

0CL � p 0 � 3 
B

p11 � p2
n

s � t � �5
t � 3s � �2

t � 1s � 4

min1s, t2 �
s � t � 0s � t 0

2

s � t,
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44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58. 59.

60. 61.

62. 63.

In Exercises 64–67, assume that all letters represent
positive numbers. Solve each equation for the required
letter.

64. 65.

66. 67.

68. A rope is to be stretched at uniform height from 
a tree to a fence, 20 feet from the tree, and then to
the side of a building, 35 ft from the tree, at a
point 30 ft from the fence, as shown in the figure.
a. If 63 ft of rope is to be used, how far from the

building wall should the rope meet the fence?
b. How far from the building wall should the

rope meet the fence if as little rope as possible
is to be used? Hint: What is the x value of the
lowest point on the graph?

A �
A

1 �
a2

b2  for bR � 2d2 � k2 for d

K �
A

1 �
x2

u2  for uT � 2p
A

m
g  for g

3x2 � 4x � 1
3x2 � 5x � 2

� 02x2 � 7x � 6
3x2 � 5x � 2

� 0

x2 � 3x � 2
x2 � x � 6

� 0x2 � x � 2
x2 � 5x � 5

� 0

2x2 � 3x � 4
x � 4 � 0x2 � 2x � 1

x � 2 � 0

2x � 2 � 3

2x3 � x2 � 3 � 2x3 � x � 3 � 1

26x2 � x � 7 � 23x � 2 � 2

220 � x � 29 � x � 3

23x � 5 � 22x � 3 � 1 � 0

2x � 3 � 2x � 5 � 4

22x � 5 � 1 � 2x � 3

23y � 1 � 1 � 2y � 4

25x � 6 � 3 � 2x � 3

23 x4 � x2 � 1 � x2 � x � 5

2x2 � 3x � 6 � x4 � 3x2 � 2

2x3 � 2x2 � 1 � x3 � 2x � 1

23 x5 � x3 � x � x � 2

24 x3 � x � 1 � x2 � 1

69. A spotlight is to be placed on a building wall to
illuminate a bench that is 32 feet from the base 
of the wall. The intensity of the light I at the 

bench is known to be where x is the 

spotlight’s height above the ground and d is the
distance from the bench to the spotlight.
a. Express I as a function of x. It may help to

draw a picture.
b. How high should the spotlight be in order 

to provide maximum illumination at the bench?
Hint: What is the x value of the highest point
on the graph?

I �
x
d3 ,

Helicopter

1 mile

Road

Field

Anne

30
20

Fence

(aerial view)Tree

70. Anne is standing on a straight road and wants to
reach her helicopter, which is located 2 miles
down the road from her and a mile off the road in
a field. She can run 5 miles per hour on the road
and 3 miles per hour in the field. She plans to run
down the road, then cut diagonally across the
field to reach the helicopter.
a. Where should she leave the road in order to

reach the helicopter in exactly 42 minutes, that
is, 0.7 hour?

b. Where should she leave the road in order to
reach the helicopter as soon as possible? (see
Exercise 68b)
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2.5 Inequalities

The statement which is read “c is less than d,’’ means that c is to
the left of d on the real number line. Similarly, the statement which
is read “c is greater than d,’’ means that c is to the right of d on the real
number line.

In the set of real numbers, any pair of numbers can be compared because
the set of real numbers is ordered. That is, for any two real numbers a
and b, exactly one of the following statements is true.

The two statements and are equivalent, and both mean that
is positive. The statement read “c is less than or equal to d,”

means either c is less than d or c is equal to d. A similar statement applies
to 

The statement called a compound inequality, means

and simultaneously

Interval Notation

An interval of numbers is the set of all numbers lying between two 
fixed numbers. Such sets appear frequently enough to merit special 
notation.

c 6 d.b 6 c

b 6 c 6 d,

c � d.

c � d,d � c
d 7 cc 6 d

a 6 b    a � b    a 7 b

c 7 d,
c 6 d,Objectives

• Use interval notation

• Solve linear inequalities 
and compound linear
inequalities

• Find exact solutions of
quadratic and factorable
inequalities

Let c and d be real numbers with 

denotes the set of all real numbers x such that 

denotes the set of all real numbers x such that 

denotes the set of all real numbers x such that 

denotes the set of all real numbers x such that c 66 x �� d.(c, d]

c �� x 66 d.[c, d)

c 66 x 66 d.(c, d)

c �� x �� d.[c, d]

c 66 d.
Interval

Notation

All four sets above are called intervals from c to d, where c and d are the
endpoints of the interval. The interval [c, d] is called the closed interval
from c to d because both endpoints are included, as indicated by brack-
ets, and (c, d) is called the open interval from c to d because neither
endpoint is included, as indicated by parentheses. The last two intervals
in the box above are called half-open intervals, where the bracket indi-
cates which endpoint is included.
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The symbol is
read “infinity’’ but does not
denote a real number. It is
simply part of the notation
used to denote half-lines.

qNOTE

The half-line extending to the right or left of b is also called an interval.

• For the half-line to the right of b,
denotes the set of all real numbers x such that 
denotes the set of all real numbers x such that 

• For the half-line to the left of b,
denotes the set of all real numbers x such that 
denotes the set of all real numbers x such that 

Similar notation is used for the entire number line.
denotes the set of all real numbers.

Solving Inequalities

Solutions of inequalities in one variable are all values of the variable that
make the inequality true. Such solutions may be found by using algebraic,
geometric, and graphical methods, each of which is discussed in this sec-
tion. Whenever possible, algebra will be used to obtain exact solutions.
When algebraic methods are tedious or when no algebraic method exists,
approximate graphical solutions will be found.

Equivalent Inequalities
Like equations, two inequalities are equivalent if they have the same solu-
tions. The basic tools for solving inequalities are as follows.

1�q, q 2
x 6 b.1�q, b2 x � b.1�q, b 4

x 7 b.1b, q 2 x � b.3b, q 2

Performing any of the following operations on an inequality
produces an equivalent inequality.

1. Add or subtract the same quantity on both sides of the
inequality.

2. Multiply or divide both sides of the inequality by the
same positive quantity.

3. Multiply or divide both sides of the inequality by the same
negative quantity, and reverse the direction of the inequality.

Basic Principles
for Solving

Inequalities

Note that Principles 1 and 2 are the same as the principles used in solv-
ing linear equations, but Principle 3 states that when an inequality is
multiplied or divided by a negative number, the inequality sign must be
reversed. For example,

Multiply by and reverse the inequality

Solving Linear Inequalities

Example 1 Solving a Compound Linear Inequality

Solve 2 � 3x � 5 6 2x � 11.

�2 7 �5
�11�12 122 7 1�12 152

2 6 5



Solution

A solution of the inequality is any number that is
a solution of both of the following inequalities.

Each of these inequalities can be solved by the principles listed above.

Subtract 5 Subtract 2x and Subtract 5

Simplify Simplify

Divide by 3

The solutions are all real numbers that satisfy both that
is, Therefore, the solutions are the numbers in the interval

as shown in Figure 2.5-1.3�1, 62,�1 � x 6 6.
�1 � x and x 6 6,

�1 � x

x 6 6�3 � 3x

3x � 2x 6 11 � 52 � 5 � 3x

2 � 3x � 5  and  3x � 5 6 2x � 11

2 � 3x � 5 6 2x � 11
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−3 −2 −1 0 1 2 3 4 5 6

Figure 2.5-1

−5 −4 −3 −2 −1 0 1 2 3 54

Figure 2.5-2

■

Example 2 Solving a Compound Linear Inequality

Solve 

Solution

When a variable appears only in the middle of a compound inequality,
the process can be streamlined by performing any operation on each part
of the compound inequality.

Subtract 3 from each part

Divide each part by 
and reverse direction of the
inequalities

Intervals are usually written from the smaller to the larger, so the solu-
tion to the compound inequality is

The solution of the compound inequality is the interval as shown

in Figure 2.5-2, where open circles indicate that the endpoints are not
included in the interval.

■

a�3, �1
5b,

�3 6 x 6 �
1
5.

�5�
1
5 7   x  7 �3

1 6 �5x 6 15
4 6 3�5x 6 18

4 6 3 � 5x 6 18.



Solving Other Inequalities
Although the basic principles play a role in the solution of nonlinear
inequalities, geometrically the key to solving such inequalities is the fol-
lowing fact.

The solutions of an inequality of the form consist of
intervals on the x-axis where the graph of f is below the graph
of g.

The solutions of consist of intervals on the x-axis
where the graph of f is above the graph of g.

In Figure 2.5-3a, the blue portion of the graph of f is below the graph of
g. The solutions of correspond to the intervals on the x-axis
denoted in red. In Figure 2.5-3a, when and when

Although the above procedure can always be used, solutions of an
inequality expressed as are often easier to find by using an
equivalent inequality in the form 

The graph of lies above the x-axis when
and below the x-axis when 

Figure 2.5-3b shows the graph of the difference of the two
functions shown in Figure 2.5-3a. This graph is below the x-axis in the
same intervals where the graph of f is below the graph of g. Therefore,
the solution of is the same as the solution of 

Any inequality of the form can be rewritten in the equivalent
form by subtracting from both sides of the inequal-
ity. The procedure for solving is to graph 
and find the intervals on the x-axis where the graph is below the x-axis.
A similar procedure applies when the inequality sign is reversed, except
that the solution is determined by x-intervals where the graph is above the 
x-axis.

Example 3 Solving an Inequality

Solve 

Solution

Rewrite the inequality as 

The graph of is shown in Figure 
2.5-4. The graph shows that has two zeros, one between and 
and the other near 2. The portion of the graph above the x-axis is shown
in red.

�1�2f 1x2f 1x2 � x4 � 10x3 � 21x2 � 40x � 80

1x4 � 10x3 � 21x22 � 140x � 802 7 0.

x4 � 10x3 � 21x2 7 40x � 80.

y � f 1x2 � g1x2f 1x2 6 g1x2g1x2f 1x2 � g1x2 6 0
f 1x2 6 g1x2

f 1x2 � g1x2 6 0.f 1x2 6 g1x2

y � f 1x2 � g1x2,
f(x) � g(x) 66 0.f(x) � g(x) 77 0

y � f(x) � g(x)

f 1x2 � g1x2 6 0.
f 1x2 6 g1x2

x 7 3.
�2 6 x 6 1f 1x2 6 g1x2f 1x2 6 g1x2

f(x) 77 g(x)

f(x) 66 g(x)
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x

f

3−2

g

y

Figure 2.5-3a

3−2

x

y
f − g

Figure 2.5-3b

y

x

2 4 6

20

0

40
60
80

100

−2−4
−40
−60
−80

−100

−6

Figure 2.5-4



The Exploration shows that the graph of f is above the x-axis approxi-
mately when and when so the approximate
solutions of the original inequality are all numbers x such that 
or 

■

Quadratic and Factorable Inequalities
The preceding example shows that solving an inequality depends only
on knowing the zeros of a function and the places where its graph is above
or below the x-axis. In the case of quadratic inequalities or completely
factored expressions, exact solutions can by found algebraically.

Example 4 Solving a Quadratic Inequality

Solve 

Solution

The solutions of are the numbers x where the graph of
lies on or below the x-axis. The zeros of f can be found

by using the quadratic formula.

As shown in Figure 2.5-5, the graph lies below the x-axis between the two
zeros. Therefore, the solutions of the original inequality are all numbers
x such that

Exact solution

Approximate solution
■

Example 5 Solving an Inequality

Solve 

Solution

The zeros of are easily read from the fac-
tored form to be 2, and 8. Therefore, you need only determine where
the graph of f is on or below the x-axis. A partial graph of f that clearly
shows all three x-intercepts is shown in Figure 2.5-6a. A complete graph,
which does not clearly show the x-intercept at 2, is shown in Figure 

�5,
f 1x2 � 1x � 52 1x � 2261x � 82

1x � 52 1x � 2261x � 82 � 0.

 �2.35 � x � 0.85

 �3 � 241
4 � x �

�3 � 241
4

x �
�3 ± 232 � 4122 1�42

2122 �
�3 ± 241

4

f 1x2 � 2x2 � 3x � 4
2x2 � 3x � 4 � 0

2x2 � 3x � 4 � 0.

x 7 1.89.
x 6 �1.53

x 7 1.89, x 6 �1.53
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Graphing Exploration

Use the graphical root finder of a calculator to find approximate
values of the x-intercepts.

−4

y

x

84
0

4

8

−4

−8

−8

Figure 2.5-5



2.5-6b. Using both graphs, or using the trace feature on either one, con-
firms that the graph is on or below the x-axis between 
Therefore, the solutions of the inequality are all numbers x such that
�5 � x � 8.

x � �5 and x � 8.
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■

The procedures used in the previous examples may be summarized as
follows.

�10

�5

10

5

Figure 2.5-6a

�10

�1,000,000

10

200,000

Figure 2.5-6b

1. Write the inequality in one of the following forms.

2. Determine the zeros of f, exactly if possible,
approximately otherwise.

3. Determine the interval, or intervals, on the x-axis where
the graph of f is above (or below) the x-axis.

f(x) 77 0  f(x) �� 0  f(x) 66 0  f(x) �� 0

Solving
Inequalities

Applications

Example 6 Solving a Cost Inequality

A computer store has determined the cost C of ordering and storing x
laser printers.

If the delivery truck can bring at most 450 printers per order, how many
printers should be ordered at a time to keep the cost below $1600?

Solution

To find the values of x that make C less than 1600, solve the inequality

2x �
300,000

x 6 1600 or equivalently, 2x �
300,000

x � 1600 6 0.

C � 2x �
300,000

x



In this context, the only solutions that make sense are those between 0
and 450. Therefore, choose a viewing window, such as the one shown in
Figure 2.5-7, and graph

The graph in Figure 2.5-7 shows that the zero of f is and the graph
of C is negative, i.e., below the x-axis, for values greater than 300. There-
fore, to keep costs under $1600, between 300 and 450 printers should be
ordered per delivery.

■

x � 300,

f 1x2 � 2x �
300,000

x � 1600.
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500

0 450

�500
Figure 2.5-7

Exercises 2.5

In Exercises 1–4, express the given statement in sym-
bols.

1. x is nonnegative. 2. t is positive.

3. c is at most 3. 4. z is at least 

In Exercises 5–10, represent the given interval on a
number line.

5. (0, 8] 6. 7.

8. 9. 10.

In Exercises 11–16, use interval notation to denote the
set of all real numbers x that satisfy the given inequal-
ity.

11. 12.

13. 14.

15. 16.

In Exercises 17–36, solve the inequality and express
your answer in interval notation.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28. �4 � 7 � 3x 6 00 6 5 � 2x � 11

1 6 5x � 6 6 92 6 3x � 4 6 8

5 � 3x 7 7x � 35 � 7x 6 2x � 4

5x � 3 � 2x � 76x � 3 � x � 5

2 � 3x 6 113 � 5x 6 13

3x � 5 7 �62x � 4 � 7

x � 12x � �8

7 6 x 6 135�3 6 x 6 14

�2 � x � 75 � x � 8

3�2, 721�q, 0 41�1, 12
3�2, 1 410, q 2

�17.

29.

30.

31.

32.

33.

34.

35.

36.

In Exercises 37–40, the constants a, b, c, and d are pos-
itive. Solve each inequality for x.

37. 38.

39. 40.

In Exercises 41–70, solve the inequality. Find exact
solutions when possible, and approximate them oth-
erwise.

41. 42.

43. 44.

45. 46.

47. 48.

49. 50. x4 � 14x3 � 48x2 � 0x3 � 2x2 � 3x 6 0

x3 � 2x2 � x 7 0x3 � x � 0

4 � 3x � x2 � 08 � x � x2 � 0

x2 � 8x � 20 � 0x2 � 9x � 15 � 0

x2 � 7x � 10 � 0x2 � 4x � 3 � 0

�d 6 x � c 6 d0 6 x � c 6 a

d � cx 7 aax � b 6 c

2x � 5 � 4 � 3x 6 1 � 4x

3 � x 6 2x � 1 � 3x � 4

4x � 2 6 x � 8 6 9x � 1

2x � 3 � 5x � 6 6 �3x � 7

x � 1
4 � 2x �

2x � 1
3 � 2

x � 1
2 � 3x �

x � 5
3

x � 31x � 52 � 3x � 21x � 12
2x � 713x � 22 6 21x � 12
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51.

52.

53.

54.

55.

56.

57. 58.

59. 60.

61. 62.

63. 64.

65. 66.

67.

68.

69. Be alert for hidden behavior.

70.

In Exercises 71–73, read the solution of the inequality
from the given graph.

1
x2 � x � 6

�
x � 2
x � 3 7 x � 3

x � 2

2x2 � 6x � 8
2x2 � 5x � 3

6 1 

x4 � 3x3 � 2x2 � 2
x � 2 7 15

x3 � 3x2 � 5x � 29
x2 � 7

7 3

1
x � 1 6 �1

x � 2
2

x � 3 �
1

x � 1

2x � 1
x � 4 7 3x � 3

x � 3 � 5

�x � 5
2x � 3 � 2x � 2

x � 1 6 1

2x2 � x � 1
x2 � 4x � 4

� 0x2 � x � 2
x2 � 2x � 3

6 0

2x � 1
5x � 3 � 03x � 1

2x � 4 7 0

x5 � 5x4 7 4x3 � 3x2 � 2

2x4 � 3x3 6 2x2 � 4x � 2

x4 � 6x3 � 2x2 6 5x � 2

x3 � 2x2 � 5x � 7 � 2x � 1

x4 � 10x2 � 9 � 0

x4 � 5x2 � 4 6 0

y

x

42

4

0

6

8

2

−2

−2

−4

y = 3 − 2x

y = 0.8x + 7

(−1.43, 5.86)

71. 3 � 2x 6 0.8x � 7

72. 8 � 0 7 � 5x 0 7 3

73. x2 � 3x � 1 � 4

y

x

84
0

8

−4

−4

−8

−8

y = 3

y = 8 − |7 − 5x|

(0.4, 3)

(2.4, 3)

y

x

42

4

0

6

8

10

2

−2
−2

−4

y = 4

y = x2 + 3x + 1

(−3.79, 4) (0.79, 4)

74. The graphs of the revenue and cost functions for a
manufacturing firm are shown in the figure.
a. What is the break-even point?
b. Which region represents profit?

1000 2000

Revenue

Cost

3000 4000

20,000

40,000

60,000

75. One freezer costs $623.95 and uses 90 kilowatt
hours (kwh) of electricity each month. A second
freezer costs $500 and uses 100 kwh of electricity
each month. The expected life of each freezer is 12
years. What is the minimum electric rate in cents
per kwh for which the 12-year total cost (purchase
price electricity costs) will be less for the first
freezer?

�



126 Chapter 2 Equations and Inequalities

medallions for dollars each, where x is 
the number of medallions produced each week,
then he can sell all that he makes. His fixed costs
are $350 per week. If he wants to sell all he 
makes and show a profit each week, what are 
the possible numbers of medallions he should
make?

84. A retailer sells file cabinets for dollars each,
where x is the number of cabinets she receives
from the supplier each week. She pays $10 for
each file cabinet and has fixed costs of $600 per
week. How many file cabinets should she order
from the supplier each week in order to guarantee
that she makes a profit?

In Exercises 85 – 88, you will need the following 
formula for the height h of an object above the ground
at time t seconds, where denotes initial velocity and

denotes initial height. 

85. A toy rocket is fired straight up from ground level
with an initial velocity of 80 feet per second.
During what time interval will it be at least 64
feet above the ground?

86. A projectile is fired straight up from ground level
with an initial velocity of 72 feet per second.
During what time interval is it at least 37 feet
above the ground?

87. A ball is dropped from the roof of a 120-foot-high
building. During what time period will it be strictly
between 56 feet and 39 feet above the ground?

88. A ball is thrown straight up from a 40-foot-high
tower with an initial velocity of 56 feet per
second.
a. During what time interval is the ball at least 8

feet above the ground?
b. During what time interval is the ball between

53 feet and 80 feet above the ground?

h � �16t 2 � v0t � h0h0

v0

80 � x

50 � x76. A business executive leases a car for $300 per
month. She decides to lease another brand for
$250 per month, but has to pay a penalty of $1000
for breaking the first lease. How long must she
keep the second car in order to come out ahead?

77. One salesperson is paid a salary of $1000 per
month plus a commission of 2% of her total sales.
A second salesperson receives no salary, but is
paid a commission of 10% of her total sales. What
dollar amount of sales must the second
salesperson have in order to earn more per month
than the first?

78. A developer subdivided 60 acres of a 100-acre
tract, leaving 20% of the 60 acres as a park.
Zoning laws require that at least 25% of the total
tract be set aside for parks. For financial reasons
the developer wants to have no more than 30% of 
the tract as parks. How many one-quarter-acre
lots can the developer sell in the remaining 40
acres and still meet the requirements for the
whole tract?

79. If $5000 is invested at 8%, how much more should
be invested at 10% in order to guarantee a total
annual interest income between $800 and $940?

80. How many gallons of a 12% salt solution should
be added to 10 gallons of an 18% salt solution in
order to produce a solution whose salt content is
between 14% and 16%?

81. Find all pairs of numbers that satisfy these two
conditions: Their sum is 20 and the sum of their
squares is less than 362.

82. The length of a rectangle is 6 inches longer than
its width. What are the possible widths if the area
of the rectangle is at least 667 square inches?

83. It costs a craftsman $5 in materials to make a
medallion. He has found that if he sells the
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2.5.A Excursion: Absolute-Value Inequalities

Polynomial and rational inequalities involving absolute value can be
solved by either of two graphing  methods.

Intersection Method

• Graph the expressions on each side of the inequality.
• Determine the intervals on the x-axis where the graph of the

expression on one side of the inequality is above or below the graph
of the expression on the other side of the inequality.

x-Intercept Method

• Rewrite the inequality in an equivalent form with 0 on one side of
the inequality.

• Graph the function given by the nonzero side of the inequality.
• Determine the x-values where the graph is above or below the x-axis.

Example 1 Solving an Absolute-Value Inequality Using the
Intersection Method

Solve 

Solution

The solutions of can be found be determining
the x-intervals for which the graph of is below
the graph of 

A graphical intersection finder shows that the points of intersection occur
when and and the graph of f is below the graph of g
between them, as shown in Figure 2.5.A-1. Therefore, approximate solu-
tions of the original inequality are all x such that

■

Example 2 Solving an Absolute-Value Inequality Using the 
x-Intercept Method

Solve 

Solution

Rewrite as graph 

and find the intervals on the x-axis where the graph is above the x-axis.

f 1x2 � ` x � 4
x � 2 ` � 3,` x � 4

x � 2 ` � 3 7 0,` x � 4
x � 2 ` 7 3

` x � 4
x � 2 ` 7 3.

0.17 6 x 6 1.92.

x � 1.92,x � 0.17

g1x2 � 11x.
f 1x2 � 0 x4 � 2x2 � x � 2 00 x4 � 2x2 � x � 2 0 6 11x

0 x4 � 2x2 � x � 2 0 6 11x.

Objectives

• Solve absolute-value
inequalities by the
Intersection Method

• Solve absolute-value
inequalities by the x-
Intercept Method

y

x

42

30

0

40

50

20

−2

−20

−4

g

f

Figure 2.5.A-1



The graph of f is above the x-axis between the two zeros, which can be 

found algebraically or graphically to be and Notice that the

function is not defined at because a fraction cannot have a zero
denominator. Therefore, the solutions of

are the x-intervals and (2, 5). The solution can also be written out.

■

Algebraic Methods

Most linear and quadratic inequalities that contain absolute values can be
solved exactly by using algebra. In fact, this is often the easiest way to
solve such inequalities. The key to the algebraic method is to interpret the
absolute value of a number as distance on the number line.

For example, the inequality states that

the distance from r to 0 is less than or equal to 5 units.

A glance at the number line in Figure 2.5.A-3a shows that these are the
numbers r such that �5 � r � 5.

0 r 0 � 5

1
2 6 x 6 2 or 2 6 x 6 5

a1
2, 2b

` x � 4
x � 2 ` � 3 7 0

x � 2

x � 5.x �
1
2
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−8 −6 −4 −2 0

5 units

2 4 6 8

5 units

Figure 2.5.A-3a

−8 −6 −4 −2 0

5 units

2 4 6 8

5 units

Figure 2.5.A-3b

Similarly, the inequality states that

the distance from r to 0 is greater than or equal to 5 units.

These values are the numbers r such that or as shown in
Figure 2.5.A-3b.

r � 5,r � �5

0 r 0 � 5

Similar conclusions hold in the general cases, with 5 replaced by any num-
ber k.

y

x

84
0

4

8

−4
−4

−8

−8

Figure 2.5.A-2
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Example 3 Solving an Absolute-Value Inequality

Solve 

Solution

Apply the first fact in the box above, with in place of r and 11 in
place of k, and conclude that is equivalent to

Add 7

Divide by 3

Therefore, the solution to is all numbers in the interval 

that is, all x such that 

■

Example 4 Solving an Absolute-Value Inequality

Solve 

Solution

Apply the second fact in the box with in place of r, 3 in place of
k, and in place of .

Therefore, the solutions of the original inequality are the numbers in either

of the intervals or that is, 

■

Example 5 Solving an Absolute-Value Inequality

Solve 

Solution

Rewrite the absolute-value inequality as two quadratic inequalities using
the algebraic definition.

0 x2 � x � 4 0 � 2.

x 6 �1 or x 7 1
5.a1

5, qb,1�q, �12

 x 6 �1     x 7 1
5

 5x � 2 6 �3  or   5x � 2 7 3

�7
5x � 2

0 5x � 2 0 7 3.

�
4
3 � x � 6.c�4

3, 6 d ,
0 3x � 7 0 � 11

 �4
�3 �  x  � 6

 �4 � 3x  � 18
 �11 � 3x � 7 � 11

0 3x � 7 0 � 11
3x � 7

0  3x � 7 0 � 11.

Let k be a positive real number and r any real number.

is equivalent to

is equivalent to  r �� �k  or r �� k.00 r 00 �� k

�k �� r �� k.00 r 00 �� k

Absolute-Value
Inequalities
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The inequality is equivalent to two inequalities.

or

The solutions are all numbers that are solutions of either one of the two
inequalities shown above.

The solutions are the intervals on the x-axis that are determined by the
following.

• is on or below the x-axis
• is on or above the x-axisg1x2 � x2 � x � 6

f 1x2 � x2 � x � 2

x2 � x � 6 � 0x2 � x � 2 � 0
x2 � x � 4 � 2 x2 � x � 4 � �2

0 x2 � x � 4 0 � 2

−2 −1 2

Solutions of x2 − x − 2 ≤ 0

3

Solutions of x2 − x − 6 ≥ 0

Solutions of either one

f(x) = x2 − x − 2

y

x

840

4

8

−4

−4

−8

−8

Figure 2.5.A-4a

y

x

84
0

4

8

−4

−4

−8

−8

g(x) = x2 − x − 6

Figure 2.5.A-4b

Figure 2.5.A-4c

As shown in Figure 2.5.A-4a, the graph of is on or below
the x-axis when

As shown in Figure 2.5.A-4b, the graph of is on or
above the x-axis when

Therefore, the solutions of the original inequality are all numbers x such
that as shown in Figure 2.5.A-4c.x � �2 or �1 � x � 2 or x � 3,

x � �2   or   x � 3.

g1x2 � x2 � x � 6

�1 � x � 2.

f 1x2 � x2 � x � 2
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Example 6 Interpreting an Absolute-Value Inequality

Let a and represent real numbers with positive.

a. Interpret geometrically.
b. Draw the interval represented.
c. Write the equivalent simplified extended inequality.
d. Interpret the last inequality.

Solution

a. Geometrically, means that

the distance from x to a is less than 
b.

d.

0 x � a 0 6 d

0 x � a 0 6 d

dd

δ units

aa − δ a + δ

δ units

Figure 2.5.A-5

c.
Add a to each term

d. The solutions of the inequality are all numbers strictly between
and 

■
a � d.a � d

 a � d 6 x 6 a � d

 �d 6 x � a 6 d

Exercises 2.5.A

In Exercises 1–32, solve the inequality. Find exact solu-
tions when possible, and approximate values
otherwise.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14. ` x � 1
x � 2 ` � 2` 2x � 1

x � 5 ` 7 1

` x � 1
3x � 5 ` 6 2` x � 1

x � 2 ` � 3

` 56 � 3x ` 6 7
6` 12

5 � 2x ` 7 1
4

0 2 � 3x 0 7 40 5x � 2 0 � 3
4

0 3x � 1 0 � 20 2x � 3 0 7 1

0 4 � 5x 0 � 40 3 � 2x 0 6 2
3

0 5x � 1 0 6 30 3x � 2 0 � 2

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27.

28.

29. 30.

31. 32. ` x2 � x � 2
x2 � x � 2

` 7 3` 2x2 � 2x � 12
x3 � x2 � x � 2

` 7 2

x2 � 90 x2 � 4 0 6 �2x � 20 x � 3 0 � 4

0 x3 � 6x2 � 4x � 5 0 6 3

0 x4 � x3 � x2 � x � 1 0 7 4

0 4x � x3 0 7 10 x5 � x3 � 1 0 6 2

0 x2 � 3x � 4 0 6 60 3x2 � 8x � 2 0 6 2

0 x2 � x � 4 0 � 20 x2 � x � 1 0 � 1

` 1
x2 � 1

` � 20 x2 � 2 0 7 4

0 x2 � 4 0 � 30 x2 � 2 0 6 1

` 3x � 1
1 � 2x

` � 2` 1 � 4x
2 � 3x ` 6 1
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33. Critical Thinking Let E be a fixed real number. 

Show that every solution of is also a 

solution of 0 15x � 42 � 11 0 6 E.

0x � 3 0 6 E
5

34. Critical Thinking Let a and b be fixed real numbers
with Show that the solutions of

are all x such that a 6 x 6 b.

`x �
a � b

2 ` 6 b � a
2

a 6 b.
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To solve an equation of the form with the Intersection
Method, use two steps.

1. Graph 
2. Find the x-coordinate of each point of intersection

When f is a function and a is a real number, the following are equiv-
alent statements:

• a is a zero of the function 
• a is an x-intercept of the graph of f
• a is a solution, or root, of the equation 

To solve an equation by the x-Intercept Method, use three steps.

1. Rewrite the equation in the form 
2. Graph f
3. Find the x-intercepts of the graph. The x-intercepts of the graph

of f are the solutions of 

The only number whose square root is zero is zero itself.

A fraction is zero only when its numerator is zero and its denomi-
nator is nonzero.

Quadratic Formula

If then the solutions of are

If then the number of real solutions of is 0,
1, or 2, depending on whether the discriminant, , is nega-
tive, zero, or positive, respectively.

Absolute Value

represents the distance between c and d on the number line.

represents the distance between c and 0 on the number line.0 c 0
0 c � d 0

 0 x 0 � �x  if x 6 0
0 x 0 � x  if x � 0

b2 � 4ac
ax2 � bx � c � 0a � 0,

x �
�b ± 2b2 � 4ac

2a

ax2 � bx � c � 0a � 0,

f 1x2 � 0.

f 1x2 � 0

f 1x2 � 0

y � f 1x2

y1 � f 1x2 and y2 � g1x2
f 1x2 � g1x2

Section 2.5.A The intersection method . . . . . . . . . . . . . . . . . . . 127
The x-intercept method . . . . . . . . . . . . . . . . . . . . 127
Algebraic methods . . . . . . . . . . . . . . . . . . . . . . . 128



In Questions 1–8, solve the equation graphically. You need only find solutions
in the given interval.

1.

2.

3.

4.

5.

6.

7.

8.

9. Solve for x: 

10. Solve for y: 

11. Solve for z: 

12. Solve for x: 

13. Solve for x: 

14. Solve for x: 

15. Find the number of real solutions of the equation 

16. For what value of k does the equation have exactly one
real solution for t?

17. A jeweler wants to make a 1-ounce ring composed of gold and silver, using
$200 worth of metal. If gold costs $600 per ounce and silver $50 per ounce,
how much of each metal should she use?

18. A calculator is on sale for 15% less than the list price. The sale price, plus a
5% shipping charge, totals $210. What is the list price?

19. Karen can do a job in 5 hours and Claire can do the same job in 4 hours.
How long will it take them to do the job together?

20. A car leaves the city traveling at 54 mph. A half hour later, a second car
leaves from the same place and travels at 63 mph along the same road.
How long will it take for the second car to catch up to the first?

21. A 12-foot rectangular board is cut into two pieces so that one piece is four
times as long as the other. How long is the bigger piece?

22. George owns 200 shares of stock, 40% of which are in the computer
industry. How many more shares must he buy in order to have 50% of his
total shares in computers?

kt2 � 5t � 2 � 0

20x2 � 12 � 31x.

x6 � 4x3 � 4 � 0

x4 � 11x2 � 18 � 0

325x2 � 17x � 127 � 0

5z2 � 6z � 7

3y2 � 2y � 5

3x2 � 2x � 5 � 0

1�5, 5221 � 2x � 3x2 � 4x3 � x4 � 0;

30, q 22x3 � 2x2 � 3x � 5 � 0;

30, q 23x4 � x3 � 6x2 � 2x
x5 � x3 � 2

� 0;

1�10, q 2x3 � 2x2 � 3x � 4
x2 � 2x � 15

� 0;

1�q, �122x4 � x3 � 2x2 � 6x � 2 � 0;

30, q 2x4 � x3 � 10x2 � 8x � 16;

1�q, 02x3 � 2x2 � 11x � 6;

30, q 2x3 � 2x2 � 11x � 6;
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Review Questions
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23. A square region is changed into a rectangular one by making it 2 feet
longer and twice as wide. If the area of the rectangular region is three times
larger than the area of the original square region, what was the length of a
side of the square before it was changed?

24. The radius of a circle is 10 inches. By how many inches should the radius
be increased so that the area increases by square inches?

25. If is the cost of producing x units, then is the average cost per unit.

The cost of manufacturing x caseloads of ballpoint pens is given by

where is in dollars. How many caseloads should be manufactured in
order to have an average cost of $25?

26. An open-top box with a rectangular base is to be constructed. The box is to
be at least 2 inches wide, twice as long as it is wide, and must have a
volume of 150 cubic inches. What should be the dimensions of the box if
the surface area is 90 square inches?

27. Simplify: 

In Exercises 28–40, find all real exact solutions.

28. 29.

30. 31.

32. 33.

34. 35.

36. 37.

38. 39.

40.

41. Express in interval notation:
a. The set of all real numbers that are strictly greater than 
b. The set of all real numbers that are less than or equal to 5.

42. Express in interval notation:
a. The set of all real numbers that are strictly between and 9;
b. The set of all real numbers that are greater than or equal to 5, but

strictly less than 14.

43. Solve for x: 

44. Solve for x: 

45. On which intervals is 2x � 1
3x � 1 6 1?

�4 6 2x � 5 6 9.

�31x � 42 � 5 � x.

�6

�8

23 x4 � 2x3 � 6x � 7 � x � 3

2x � 1 � 2x � 1 � 123 1 � t2 � �2

2x � 1 � 2 � xx2 � x � 2
x � 2 � 0

x2 � 6x � 8
x � 1 � 026x2 � 7x � 5 � 0

2x2 � x � 2 � 00 2x � 1 0 � x � 4

0 3x � 1 0 � 40 x � 5 0 � 3

0 x � 3 0 � 5
20 x � 2 0 � 4

0 b2 � 2b � 1 0

c1x2
c 1x2 �

600x2 � 600x
x2 � 1

c1x2
xc1x2

5p

Section 2.5



Section 2.5.A

46. On which intervals is 

47. Solve for x: 

48. Solve for x: 

49. If then which of these statements is true?

a. b.

c. d.

e. None of these

50. If then which of these statements is false?
a. b.

c. d.

e.

51. Solve and express your answer in interval notation:

In Questions 52–61, solve the inequality.

52. 53.

54.

55. 56.

57. 58.

59. 60.

61. 0 3x � 2 0 � 2

` 1
1 � x2 ` �

1
2` y � 2

3 ` � 5

x4 � 3x2 � 2x � 3
x2 � 4

6 �1x2 � x � 5
x2 � 2

7 �2

x2 � x � 6
x � 3 7 1x2 � x � 9

x � 3 6 1

1x � 1221x � 3241x � 2231x � 725 7 0

x � 2
x � 4 � 3x2 � x � 20 7 0

2x � 3 � 5x � 9 6 �3x � 4.

s � r � t

s � t
r 7 0�r � s � t

t � s � �rs � r � t
0 6 r � s � t,

2x � 3 6 x � 33 � 2x
x � 3 7 1

2x � 3
x � 3 6 �1x � 3

2x � 3 6 �1,

x � 3
2x � 3 7 1,

x2 � x 7 12.

1x � 1221x2 � 12x � 0.

2
x � 1 6 x?
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Maximum Area

There are two related branches of calculus: differential calculus and inte-
gral calculus. Differential calculus is a method of calculating the changes
in one variable produced by changes in a related variable. It is often used
to find maximum or minimum values of a function. Integral calculus is
used to calculate quantities like distance, area, and volume. This Can Do
Calculus finds the maximum area of the triangle formed by folding a piece
of paper using different methods.

The Maximum Area of a Triangle Problem

One corner of an -inch piece of paper is folded over to the oppo-
site side, as shown in Figure 2.C-1. A triangle is formed, and its area 

formula is (base)(height). The following Example will find the 

length of the base that will produce the maximum area of the triangle
using numerical, graphical, and algebraic methods.

Example 1 Numerical Method

One corner of an -inch piece of paper is folded over to the oppo-
site side, as shown in Figure 2.C-1. The area of the darkly shaded triangle
at the lower left is the focus of this problem.

a. Determine the shortest and the longest base that will produce a trian-
gle by folding the paper.

b. Measure the height when x has the lengths given in the chart, and cal-
culate the area in each case.

c. Create a scatter plot of the data.
d. Estimate the length of the base that produces the maximum area, and

state the approximate maximum area.

Solution

a. The base must be greater than 0 and less than 8.5 inches, and nt in the
chart indicates that no triangle can be formed with a base length of 9
inches.

b. The values shown in the chart may vary from your data.

8.5 � 11

A �
1
2

8.5 � 11

Figure 2.C-1

Base 1 2 3 4 5 6 7 8 9

Height 4.25 4.1 3.6 3.3 2.75 2 1.5 0.5 nt

Area 2.125 4.1 5.4 6.6 6.875 6 5.25 2 -

–––––––––
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0

7

0 9

Figure 2.C-2

8.5 � y

x

y

Figure 2.C-3

7

0

90

Figure 2.C-4

c. The graph of the data is shown in Figure 2.C-2.
d. A maximum area of appears to occur when the base length

is 5 in.
■

In Example 1, all calculations were accomplished with measurements.
Notice that the hypotenuse is where y is the height of the trian-
gle. (Why?)

Because each triangle formed was a right triangle, the Pythagorean The-
orem can be used to find an expression that gives the height as a function
of the length of the base. That function can then be used to write a func-
tion that gives area in terms of the length of the base.

Example 2 Algebraic Method

Find a function of the base to represent the area of the triangle described
in Example 1, graph the function along with the scatter plot of the data
found in Example 1. Find the length of the base that produces maximum
area. What is the maximum area?

Solution

The Pythagorean Theorem yields the following equation.

Hence, the area is represented by Using the max-

imum finder on a calculator indicates that the maximum area of 
occurs at approximately 

■

To get exact values of x and the area, differential calculus is needed. How-
ever, graphing technology can provide very good approximations.

x � 4.9 in.
6.95 in2

A �
1
2  1x2 a72.25 � x 

2

17 b.
 y �

72.25 � x 

2

17  Height as a function of the base

 x 

2 � 72.25 � 17y
 x 

2 � y 

2 � 72.25 � 17y � y 

2

 x 

2 � y 

2 � 18.5 � y22

8.5 � y,

6.875 in2

Exercises

In each problem, find the maximum by using a numer-
ical method like the one shown in Example 1, and then
by using an analytical and graphical method like the
one shown in Example 2. Answer all questions given
in the two examples.

1. Ten yards of wire is to be used to create a
rectangle. What is the maximum possible area of
the rectangle?

2. A rectangle is bounded by the x- and y-axes and
the semicircle What are the
dimensions of the rectangle with maximum area?

3. A rectangle is bounded by the x- and y-axes and 

the line What are the dimensions of 

the rectangle with maximum area?

y �
14 � x2

2 .

y � 236 � x 

2.
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This is rocket science!

If a rocket is fired straight up from the ground, its height is a function of time. This
function can be adapted to give the height of any object that is falling or thrown along a
vertical path. The shape of the graph of the function, a parabola, appears in applications
involving motion, revenue, communications, and many other topics. See Exercise 50 of
Section 3.3.

Functions and
Graphs

C H A P T E R

3
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3.1 Functions

3.2 Graphs of Functions

3.3 Quadratic Functions

3.4 Graphs and Transformations 

3.4.A Excursion: Symmetry

3.5 Operations on Functions 

3.5.A Excursion: Iterations and 

Dynamical Systems

Chapter Outline
3.6 Inverse Functions

3.7 Rates of Change

Chapter Review

can do calculus Instantaneous Rates of Change

Interdependence of Sections

The concept of a function and function notation are central to mod-

ern mathematics and its applications. In this chapter you will review

functions, operations on functions, and how to use function notation.

Then you will develop skill in constructing and interpreting graphs of

functions.

3.1 Functions

To understand the origin of the concept of a function it may help to con-
sider some “real-life” situations in which one numerical quantity depends
on, corresponds to, or determines another.

Example 1 Determining Inputs and Outputs of Functions

Describe the set of inputs, the set of outputs, and the rule for the follow-
ing functions:

a. The amount of income tax you pay depends on your income.
b. Suppose a rock is dropped straight down from a high place. Physics

tells us that the distance traveled by the rock in t seconds is feet.
c. The weather bureau records the temperature over a 24-hour period

in the form of a graph (Figure 3.1-1). The graph shows the
temperature that corresponds to each given time.

16t2

Objectives

• Determine whether a
relation is a function

• Find the domain of functions

• Evaluate piecewise-defined
and greatest integer
functions

3.3

3.1 3.2 3.4

3.5
3.6

3.7

>

>

>
>

> >

70º

60º

50º

40ºTe
m

pe
ra

tu
re

20 24161284
P.M.A.M. Noon

Hours

Figure 3.1-1



Solution

The table below summarizes the features of each function.

Example 2 Determining Whether a Relation is a Function

The tables below list the inputs and outputs for two relations. Determine
whether each relation is a function.

142 Chapter 3 Functions and Graphs

■

The formal definition of function incorporates the set of inputs, the func-
tion rule, and the set of outputs, with a slight change in terminology.

a.

b.

c.

Set of inputs Set of outputs Function rule

all incomes all tax amounts tax laws

number of seconds, t, distance rock Distance
after dropping the travels
rock

time temperature time/temperature graph

� 16t2

a. Inputs 1 1 2 3 3

Outputs 5 6 7 8 9

Inputs 1 3 5 7 9

Outputs 5 5 7 8 5

b.

A function consists of

• a set of inputs, called the domain

• a rule by which each input determines one and only one
output

• a set of outputs, called the range

Definition of 
a Function

The phrase “one and only one” means that for each input (element of 
the domain), the rule of a function determines exactly one output (ele-
ment of the range). However, different inputs may produce the same
output.
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Solution

In table a, the input 1 has two corresponding outputs, 5 and 6; and the
input 3 has two corresponding outputs, 8 and 9. So the relation in table a
is not a function.

In table b, each input determines exactly one output, so the relation in
table b is a function. Notice that the inputs 1, 3, and 9 all produce the
same output, 5, which is allowed in the definition of a function.

■

The value of a function f that corresponds to a specific input value a, is
found by substituting a into the function rule and simplifying the result-
ing expression. See Section 1.1 for a discussion of function notation.

Example 3 Evaluating a Function

Find the indicated values of 

a. b. c.

Solution

a. To find the output of the function f for input 3, simply replace x
with 3 in the function rule and simplify the result.

Similarly, replace x with and 0 for b and c.
b.

c.
■

Example 4 Finding a Difference Quotient

For each output.

a. b. c.

Solution

When function notation is used in expressions such as the basic
rule applies: Replace x in the function rule with the entire expression
within parentheses and simplify the resulting expression.

a. Replace x with in the rule of the function.

 � x2 � 2xh � h2 � x � h � 2
f 1x � h2 � 1x � h2 2 � 1x � h2 � 2

x � h

f 1x � h2,

f 1x � h2 � f 1x2
h

f 1x � h2 � f 1x2f 1x � h2
f 1x2 � x2 � x � 2 and h � 0, find

f 102 � 202 � 1 � 1

f 1�52 � 21�52 2 � 1 � 226 � 5.099
�5

f 132 � 232 � 1 � 210 � 3.162

f 102f 1�52f 132
f 1x2 � 2x2 � 1 .

Technology 
Tip

Function notation can
be used directly. For
example, if a function
is entered as evalu-
ate the function at

press 
then ENTER.

Y1 132,x � 3,

Y1,

Figure 3.1-2



b. By part a,

c. By part b,

■

If f is a function, then the quantity as in Example 4, is

called the difference quotient of f. Difference quotients, whose signifi-
cance is explained in Section 3.7, play an important role in calculus.

Functions Defined by Equations

Equations in two variables can be used to define functions. However, not
every equation in two variables represents a function.

Example 5 Determining if an Equation Defines a Function

Determine whether each equation defines y as a function of x.

a.

b.

Solution

a. The equation can be solved uniquely for y.

If a number is substituted for x in this equation, then exactly one
value of y is produced. So the equation defines a function whose
domain is the set of all real numbers and whose rule is stated below.

b. The equation can not be solved uniquely for y:

or

This equation does not define y as a function of x because, for example,
the input produces two outputs, 2 and 

■
�2.x � 5

y � �2x � 1y � 2x � 1
 y � ±2x � 1

 y2 � x � 1

y2 � x � 1 � 0

f 1x2 �
A
3 2x �

5
2

 y � A
3 2x �

5
2

 y 3 � 2x �
5
2

 2y 3 � 4x � 5

4x � 2y 3 � 5 � 0

y2 � x � 1 � 0
4x � 2y 3 � 5 � 0

f 1x � h2 � f 1x2
h

,

f 1x � h2 � f 1x2
h

�
2xh � h2 � h

h
�

h12x � h � 12
h

� 2x � h � 1

 � 2xh � h2 � h

 � x2 � 2xh � h2 � x � h � 2 � x2 � x � 2

f 1x � h2 � f 1x2 � 3x2 � 2xh � h2 � x � h � 2 4 � 3x2 � x � 2 4
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Domains

When the rule of a function is given by a formula, as in Examples 3–6, its
domain (set of inputs) is determined by the following convention.
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Unless information to the contrary is given, the domain of a
function f consists of every real number input for which the
function rule produces a real number output.

Domain
Convention

Thus, the domain of a polynomial function such as is
the set of all real numbers, since is defined for every value of x. How-
ever, in cases where applying the rule of a function leads to one of the
following, the domain may not consist of all real numbers.

• division by zero
• the square root of a negative number (or nth root, where n is even)

Example 6 Finding Domains of Functions

Find the domain for each function given below.

a. b.

Solution

a. When the denominator of is 0 and the output is not

defined. When however, the denominator is nonzero and the
fraction is defined. Therefore, the domain of k consists of all real
numbers except 1, which is written as 

b. Since negative numbers do not have real square roots, is a
real number only when that is, when Therefore,
the domain of f consists of all real numbers greater than or equal to

that is, the interval 
■

Applications and the Domain Convention
The domain convention does not always apply when dealing with ap-
plications. Consider the distance function for falling objects, 
Since t represents time, only nonnegative values of t make sense here,
even though the rule of the function is defined for all values of t. Analo-
gous comments apply to other applications.

A real-life situation may lead to a function whose domain 
does not include all the values for which the rule of the
function is defined.

d1t2 � 16t2.

3�2, q 2.�2,

u � �2.u � 2 � 0,
2u � 2

x � 1.

x � 1,

x2 � 6x
x � 1x � 1,

f 1u2 � 2u � 2k 1x2 �
x2 � 6x
x � 1

f 1x2 f 1x2 � x3 � 4x � 1



Example 7 Finding the Domain of a Profit Function

A glassware factory has fixed expenses (mortgage, taxes, machinery, etc.)
of $12,000 per week. In addition, it costs 80 cents to make one cup (labor,
materials, shipping). A cup sells for $1.95. At most, 18,000 cups can be man-
ufactured each week. Let x represent the number of cups made per week.
a. Express the weekly revenue R as a function of x.
b. Express the weekly cost C as a function of x.

c. Find the rule and the domain of the weekly profit function P.

Solution

a.

b.

c.

Although this rule is defined for all real numbers x, the domain of the
function P consists of the possible number of cups that can be made each
week. Since only whole cups can be made and the maximum production
is 18,000, the domain of P consists of all integers from 0 to 18,000.

■

Piecewise-Defined and Greatest Integer Functions

A piecewise-defined function is one whose rule includes several formu-
las. The formula for each piece of the function is applied to certain values
of the domain, as specified in the definition of the function.

Example 8 Evaluating a Piecewise-Defined Function

For the piecewise-defined function

find each of the following.

a. b. c. the domain of f.

Solution

a. Since is less than 4, the first part of the rule applies.

b. Since 8 is between 4 and 10, the second part of the rule applies.

c. The rule of f gives directions when and when so
the domain of f consists of all real numbers x such that that
is, 

■
1�q, 10 4 . x � 10,

4 � x � 10,x 6 4
f 182 � 82 � 1 � 63

f 1�52 � 21�52 � 3 � �7
�5

f 182f 1�52

f 1x2 � e2x � 3 if  x 6 4
x2 � 1 if  4 � x � 10

P1x2 � 1.15x � 12,000
P1x2 � 1.95x � 10.80x � 12,0002P1x2 � revenue � cost � R 1x2 � C 1x2
C 1x2 � 0.80x � 12,000
C 1x2 � 1cost per cup2 � 1number sold2 � 1fixed expenses2
R 1x2 � 1.95x
R 1x2 � 1price per cup2 � 1number sold2
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The greatest integer function is a piecewise-defined function with infi-
nitely many pieces.

The rule can be written in words as follows:

f 1x2 � g
o

�3 if �3 � x 6 �2
�2 if �2 � x 6 �1
�1 if �1 � x 6 0

0 if 0 � x 6 1
1 if 1 � x 6 2
2 if 2 � x 6 3
o
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Technology 
Tip

The greatest integer
function is denoted INT 

in the NUM submenu of
the MATH menu of TI. It is
denoted INTG in the NUM
submenu of the Casio
OPTN menu.

The domain of the greatest integer function is all real numbers, and the
range is the set of integers. It is written as .

Example 9 Evaluating the Greatest Integer Function

Let Evaluate the following:

a. b. c. d. e.

Solution

a. b.

c. d.

e.
■

f 1p2 � 3p 4 � 3

f a5
4b � c 54 d � 31.25 4 � 1f 102 � 30 4 � 0

f 1�32 � 3�3 4 � �3f 1�4.72 � 3�4.7 4 � �5

f 1p2f a5
4bf 102f 1�32f 1�4.72

f 1x2 � 3x 4 .

f 1x2 � 3x 4

For any number x, round down to the nearest integer less than
or equal to x.

Greatest Integer
Function
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Exercises 3.1

In Exercises 1–4, describe the set of inputs, the set of
outputs, and the rule for each function.

1. The amount of your paycheck before taxes is a
function of the number of hours worked.

2. Your shoe size is a function of the length of your
foot.

3. In physics, the pressure P of a gas kept at a
constant volume is a function of the temperature
T, related by the formula for some
constant k.

4. The number of hours of daylight at a certain
latitude is a function of the day of the year. The
following graph shows the number of hours of
daylight that corresponds to each day.

In Exercises 5–12, determine whether the equation
defines y as a function of x.

5. 6.

7. 8.

9. 10.

11. 12.

Exercises 13–34 refer to the functions below. Find the
indicated value of the function.

13. 14.

15. 16. f A22 � 1 Bf A22 B
f 112f 102

 h(x) � x2 �
1
x � 2

 g(t) � t 2 � 1

 f(x) � 2x � 3 � x � 1

y2 � 3x4 � 8 � 0x2 � y2 � 9

y � 4x3 � 14 � 03x � 2y � 12

5x � 4y4 � 64 � 0y2 � 4x � 1

y � 2x4 � 3x2 � 2y � 3x2 � 12

y

x

300200100

8

4

12

16

P � T � k

17. 18.

19. h(3) 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

In Exercises 35–42, compute and simplify the differ-
ence quotient (shown below). Assume 

35. 36.

37. 38.

39. 40.

41. 42.

In Exercises 43–56, determine the domain of the func-
tion according to the domain convention.

43. 44.

45. 46.

47. 48.

49. 50.

51. 52.

53. 54.

55.

56. f 1x2 � 2�x �
2

x � 1

f 1x2 � �29 � 1x � 922
f 1t2 � 24 � t2g1u2 �

u2 � 1
u2 � u � 6

f 1t2 � 2�tg 1y2 � 3�y 4
h1x2 �

2x � 1
x2 � 1

g1u2 �
0u 0
u

h1x2 � 21x � 122k 1x2 � 0 x 0 � 2x � 1

k 1u2 � 2uh1t2 � 0 t 0 � 1

g1x2 �
1
x2 � 2f 1x2 � x2

f 1x2 �
1
xf 1x2 � 2x

f 1x2 � x3f 1x2 � x � x2

f 1x2 � x2f 1x2 � 3x � 7

f 1x2 � �10xf 1x2 � x � 1

f(x � h) � f(x)
h

h � 0.

g1t � h2g1�t2
g11 � r2g1s � 12
g1x2g102
g1�22g132
h1x � 32h 12 � x2
h 1�x2h 1a � k2
h 1p � 12h a3

2b
h 1�42
f a�3

2bf 1�22
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In Exercises 57–62, find the following:

a. b.
c. d.
e. The domain of f

57. 58.

59.

60.

61.

62.

63. Find an equation that expresses the area A of a
circle as a function of its
a. radius r b. diameter d

64. Find an equation that expresses the area A of a
square as a function of its
a. side s b. diagonal d

65. A box with a square base of side x is four times
higher than it is wide. Express the volume V of
the box as a function of x.

66. The surface area of a cylindrical can of radius r
and height h is If the can is twice as
high as the diameter of its top, express its surface
area S as a function of r.

67. A rectangular region of 6000 square feet is to be
fenced in on three sides with fencing that costs
$3.75 per foot and on the fourth side with fencing
that costs $2.00 per foot.
a. Express the cost of the fence as a function of

the length x of the fourth side.
b. Find the domain of the function.

68. A box with a square base measuring is to
be made of three kinds of wood. The cost of the
wood for the base is $0.85 per square foot; the
wood for the sides costs $0.50 per square foot, and
the wood for the top $1.15 per square foot. The
volume of the box must be 10 cubic feet.

t � t ft

2pr2 � 2prh.

f 1x2 � •x2 if �4 � x 6 �2
x � 3 if �2 � x � 1
2x � 1 if x 7 1

f 1x2 � •2x � 3 if x 6 �10x 0 � 5 if �1 � x � 2
x2 if x 7 2

f 1x2 � ex � 5 if �3 6 x � 0
3x if 0 6 x � 5

f 1x2 � ex2 � 2x if x 6 2
3x � 5 if 2 � x � 20

f 1x2 � e�x if x 6 0
x if x � 0f 1x2 � 3x 4

f (5 � 2P)f (�2.3)
f (1.6)f (0)

a. Express the total cost of the box as a function
of the length t.

b. Find the domain of the function.

69. A man walks for 45 minutes at a rate of 3 mph,
then jogs for 75 minutes at a rate of 5 mph, then
sits and rests for 30 minutes, and finally walks for
90 minutes at a rate of 3 mph.
a. Write a piecewise-defined function that

expresses his distance traveled as a function of
time.

b. Find the domain of the function.

70. Average tuition and fees in private four-year
colleges in recent years were as follows. (Source:
The College Board)

⎧
⎨
⎩

⎧
⎨
⎩

Year Tuition & fees

1995 $12,432

1996 $12,823

1997 $13,664

1998 $14,709

1999 $15,380

2000 $16,332

a. Use linear regression to find the rule of a
function f that gives the approximate average
tuition in year x, where corresponds to
1990.

b. Find and How do they
compare with the actual data?

c. Use f to estimate tuition in 2003.

71. Suppose that a state income tax law reads as
follows:

f 1102.f 162, f 182,
x � 0

Annual income Amount of tax

less than $2000 0

$2000–$6000 2% of income over $2000

more than $6000 $80 plus 5% of income
over $6000

Write a piecewise-defined function that represents the
income tax law. What is the domain of the function?



72. The table below shows the 2002 federal income
tax rates for a single person.
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Taxable income Tax

not over $6000 10% of income

over $6000, but of
not over $27,950 amount over $6000

over $27,950, but of
not over $67,700 amount over $27,950

over $67,700, but of
not over $141,250 amount over $67,700

over $141,250, but of
not over $307,050 amount over $141,250

over $307,050 of
amount over $307,050
$94,720 � 38.6%

$36,690 � 35%

$14,625 � 30%

$3892.50 � 27%

$600 � 15%

3.2 Graphs of Functions

Functions Defined by Graphs

A graph may be used to define a function or relation. Suppose that f is a
function defined by a graph in the coordinate plane. If the point is
on the graph of f, then y is the output produced by the input x, or 

Example 1 A Function Defined by a Graph

The graph in Figure 3.2.1 defines the function f. Determine the following.

a. b. c. the domain of f d. the range of ff 132f 102

y � f 1x2.1x, y2

Objectives

• Determine whether a graph
represents a function

• Analyze graphs to
determine domain and
range, local maxima and
minima, inflection points,
and intervals where they
are increasing, decreasing,
concave up, and concave
down

• Graph parametric equations

a. Write a piecewise-defined function such that
is the tax due on a taxable income of  

dollars. What is the domain of the function?
b. Find , , and . T1100,0002T135,0002T124,0002

xT1x2 T

y

x

1050

5

−5

−10

−5−10

10

Figure 3.2-1

An open circle on
a graph indicates that the
point is not a part of the
graph, and a solid circle
indicates that the point is a
part of the graph.

NOTE
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Solution

a. To find f(0), notice that the point (0, 7) is on the graph. Thus, 7 is the
output produced by the input 0, or 

b. To find f(3), notice that the point (3, 0) is on the graph. Thus, 0 is the
output produced by the input 3, or 

c. To find the domain of the function, find the x-coordinates of the
point farthest to the left and farthest to the right. Then, determine
whether there are any gaps in the function between these values.
( ) is the point farthest to the left, and (7, 8) is farthest to the
right. The function does not have a point with an x-coordinate of 2,
so the domain of f is ) and ( .

d. To find the range of the function, find the y-coordinates of the
highest and lowest points, then determine if there are any gaps
between these values. The highest point is (7, 8) and the lowest point
is ( , ), and there are no y-values between and 8 that do not
correspond to at least one x-value. Thus, the range of f is 

■

The Vertical Line Test

If a graph represents a function, then each input determines one and only
one output. Thus, no two points can have the same x-coordinate and dif-
ferent y-coordinates. Since any two such points would lie on the same
vertical line, this fact provides a useful test for determining whether a
graph represents a function.

3�9, 8 4 .�9�9�8

2, 7 43�8, 2

�8, �9

f 132 � 0.

f 102 � 7.

A graph in a coordinate plane represents a function if and
only if no vertical line intersects the graph more than once.

Vertical 
Line Test

Example 2 Determining Whether a Graph Defines a Function 

Use the Vertical Line Test to determine whether the following graphs rep-
resent functions. If not, give an example of an input value that corresponds
to more than one output value.

y

x

84
0

4

8

−4
−4

−8

−8

y

x

84
0

4

8

−4
−4

−8

−8

Figure 3.2-2

y

x

84
0

4

8

−4
−4

−8

−8

y

x

84
0

4

8

−4
−4

−8

−8
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y

x

8
0

4

8

−4
−4

−8

−8

y

x

84
0

4

8

−4
−4

−8

−8

Figure 3.2-3

The vertical line intersects
the graph above at (4, 2) and

so the graph is not a func-
tion. The input 4 has two
corresponding outputs, 2 and �2.

14, �22,
x � 4

■

Analyzing Graphs

In order to discuss a graph or compare two graphs, it is important to be
able to describe the features of different graphs. The most important fea-
tures are the x- and y-intercepts, intervals where the graph is increasing or
decreasing, local maxima and minima, intervals where the graph is con-
cave up or concave down, and points of inflection.

Increasing and Decreasing Functions
A function is said to be increasing on an interval if its graph always rises
as you move from left to right over the interval. It is decreasing on an
interval if its graph always falls as you move from left to right over the
interval. A function is said to be constant on an interval if its graph is a
horizontal line over the interval.

There is no vertical line that inter-
sects the graph above in more
than one place, so this graph
defines a function.

increasing decreasing constant

y

x

y

x

y

x

Figure 3.2-4
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Example 3 Where a Function is Increasing/Decreasing 

On what interval is the function increasing? decreas-
ing? constant?

Solution

The graph of the function, shown in Figure 3.2-5, suggests that f is decreas-
ing on the interval increasing on , and constant on 
Using the trace feature on a graphing calculator, you can confirm the func-
tion is constant between 0 and 2. For an algebraic proof that f is constant
on see Exercise 55.

■

Local Maxima and Minima
The graph of a function may include some peaks and valleys, as in 
Figure 3.2-6. A peak may not be the highest point on the graph, but it is
the highest point in its neighborhood. Similarly, a valley is the lowest
point in its neighborhood.

A function f has a local maximum (plural: local maxima) at if the
graph of f has a peak at the point This means that for
all x near c. Similarly, a function has a local minimum (plural: local min-
ima) at if the graph of f has a valley at . This means

for all x near d.

Calculus is usually needed to find exact local maxima and minima. How-
ever, they can be approximated with a calculator.

Example 4 Finding Local Maxima and Minima

Graph and find all local maxima and minima.

Solution

In the decimal or standard window, the graph does not appear to have
any local maxima or minima (see Figure 3.2-7). Select a viewing window
such as the one in Figure 3.2-8 to see that the function actually has a local
maximum and a local minimum (Figure 3.2-9). The calculator’s minimum
finder and maximum finder show that the local minimum occurs when

and the local maximum occurs when x � 0.437.x � 0.763

f 1x2 � x3 � 1.8x2 � x � 1

f 1x2 � f 1d2 1d, f 1d2 2x � d

f 1x2 � f 1c21c, f 1c2 2. x � c

30, 2 4 ,

30, 2 4 .12, q 21�q, 02,

f 1x2 � 0 x 0 � 0 x � 2 0

�2

5�5

7

Figure 3.2-5

x

ypeaks

valleys

Figure 3.2-6

�3.1

4.7�4.7

3.1

Figure 3.2-7

1.2

0.1 1

1.1
Figure 3.2-8

1.2

0.1

1.1

1

Figure 3.2-9

1.2

0.1 1

1.1

■



Concavity and Inflection Points
Concavity is used to describe the way that a curve bends. For any two
points in a given interval that lie on a curve, if the segment that connects
them is above the curve, then the curve is said to be concave up over the
given interval. If the segment is below the curve, then the curve is said to
be concave down over the interval (see Figure 3.2-10). A straight line is
neither concave up nor concave down. A point where the curve changes
concavity is called an inflection point.
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Example 5 Analyzing a Graph

Graph the function and estimate the follow-
ing, using the graph and a maximum and minimum finder.

a. all local maxima and minima of the function
b. intervals where the function is increasing and where it is decreasing
c. all inflection points of the function
d. intervals where the function is concave up and where it is concave

down

Solution

a.–b. The maximum and minimum finders show that the function has a
local maximum at and a local minimum at Thus,
the graph shows that the function is decreasing over the intervals

and and increasing over the interval (0.0871,
1.9129).

c.–d. The function is concave up on the left and concave down on the
right, and the inflection point appears to be at about Thus, the func-
tion is concave up over the interval and concave down over the
interval 

■
11, q 2. 1�q, 12 x � 1.

11.9129, q 2,1�q, 0.08712
x � 0.0871.x � 1.9129

f 1x2 � �2x3 � 6x2 � x � 3

concave up concave down

y

x

y

x

inflection
point

concave
up

concave
down

y

x

Figure 3.2-10

�10

4.7�4.7

10

Figure 3.2-11



Graphs of Piecewise-Defined and Greatest 
Integer Functions

The graphs of piecewise-defined functions are often discontinuous, that
is, they commonly have jumps or holes. To graph a piecewise-defined
function, graph each piece separately.

Example 6 Graphing a Piecewise-Defined Function

Graph the piecewise-defined function below.

Solution

The graph is made up of parts of two different graphs, corresponding to
the different parts of the function.

f 1x2 � ex2 if x � 1
x � 2 if 1 6 x � 4
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■

Piecewise-defined functions can be graphed on a calculator, provided that
you use the correct syntax. However, the screen does not show which
endpoints are included or excluded from the graph.

−4

y

x

y

x

84
0

8

−4
−4

−8

−8 84
0

4

8

−4

−8

−8

y

x

84
0

8

−4
−4

−8

−8

Figure 3.2-12

For the graph of f
coincides with the graph of
y � x 2.

x � 1, For the graph of
f coincides with the graph
of y � x � 2.

1 6 x � 4,

Combining these partial
graphs produces the graph
of f.



■
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Example 7 The Absolute-Value Function

Graph 

Solution

The absolute-value function is also a piecewise-defined func-
tion, since by definition

Its graph can be obtained by drawing the part of the line to the
right of the origin and the part of the line to the left of the origin
or by graphing on a calculator.Y1 � ABS X

y � �x
y � x

0 x 0 � e�x if x 6 0
x if x � 0

f 1x2 � 0 x 0

f 1x2 � 0 x 0 .

Technology 
Tip

Inequality symbols are
in the TEST menu of 

TI-84/TI-83. TI-89 has the
symbols <, >, and | on 
the keyboard, and other
inequality symbols and
logical symbols (such as
“and”) are in the TEST
submenu of the MATH
menu.

Graphing Exploration

Graph the function f from Example 6 on a calculator as follows:
On TI-84/TI-83 calculators, graph these two equations on the same
screen:

On a TI-89/92, graph these equations on the same screen:

and  

To graph f on a Casio, graph these equations on the same screen
(including commas and square brackets):

How does your graph compare with Figure 3.2-12?

 Y2 � X � 2, 31, 4 4
 Y1 � X2, 3�6, 1 4

X � 4 Y2 � X � 2 0 X 7 1
 Y1 � X2 0 X � 1

 Y2 � X � 2� 1 1X 7 12 1X � 42 2
 Y1 � X2� 1X � 12

y

x

84
0

4

8

−4
−4

−8

−8

y

x

84
0

4

8

−4
−4

−8

−8

y

x

84
0

4

8

−4
−4

−8

−8

Figure 3.2-14

�3.1

4.7�4.7

3.1

Figure 3.2-13
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Example 8 The Greatest Integer Function

Graph the greatest integer function 

Solution

The greatest integer function can easily be graphed by hand, by consid-
ering the values of the function between each two consecutive integers.
For instance, between and the value of is always

so the graph there is a horizontal line segment, all of whose points
have y-coordinate with a solid circle on the left endpoint and an open
circle on the right endpoint. The rest of the graph is obtained similarly.

�2,
�2,

f 1x2 � 3x 4x � �1x � �2

f 1x2 � 3x 4 .

−2

y

x

5421 3

1

0

2

3

4

5

−2

−3

−4

−5

−3−4−5

Figure 3.2-15
■

A function whose graph consists of horizontal line segments, such as Fig-
ure 3.2-15, is called a step function. Step functions can be graphed on a
calculator, but some features of their graphs may not be shown.

Technology 
Tip

To change to dot mode,
select DOT in the TI
MODE menu. In the
Casio SETUP menu, 
set the DRAWTYPE
to PLOT.

Graphing Exploration

Graph the greatest integer function on your calculator
(see the Technology Tip on page 147). Does your graph look like
Figure 3.2-15? Change your calculator to “dot” rather than “con-
nected” mode (see the Technology Tip at left) and graph again. How
does this graph compare with Figure 3.2-15? Can you tell from the
graph which endpoints are included and which are excluded?

f 1x2 � 3x 4

Parametric Graphing

In parametric graphing, the x-coordinate and the y-coordinate of each
point on a graph are each given as a function of a third variable, t, called
a parameter. The functions that give the rules for the coordinates are called
parametric equations.
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t (x, y)

�2 �3 1

�1 �1 �2

0 1 �3

1 3 �2

2 5 1 (5, 1)

3 7 6 (7, 6)

13, �22
11, �32
1�1, �22
1�3, 12

y � t2 � 3x � 2t � 1

A parametric graph can be thought of as representing the function

where
and

are the rules for the x- and y-coordinates. Note that the graph will not
necessarily pass the Vertical Line Test.

Example 9 Graphing a Parametric Equation

Graph the curve given by

Solution

Make a table of values for t, x, and y. Then plot the points from the table
and complete the graph.

y � t2 � 3
x � 2t � 1

y � y 1t2x � x1t2
f 1t2 � 1x, y2

y

x

1082

(−3, 1)

(−1, −2)
(1, −3)

(7, 6)

(5, 1)

(3, −2)
6

2

0

4
6
8

10

−4

−4
−6
−8

−10

−6−8−10

Figure 3.2-16
■

Graphing Exploration

Graph the equations from Example 9 on a calculator in parametric
mode in the standard viewing window. Set the range so that

with t-step Use the trace feature to find at least
three points on the graph that are not given in the table in Exam-
ple 9.

� 0.1.�10 � t � 10,

Parametric mode can be used to graph equations of the form or
the form x � f 1y2. y � f 1x2

Technology 
Tip

To change to paramet-
ric mode, choose PAR
in the TI MODE menu
or PARM in the TYPE
submenu of the Casio
GRAPH menu (on the
main menu).
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Example 10 Graphing in Parametric Mode

Graph the following equations in parametric mode on a calculator.

a. b.

Solution

a. Let b. Let x � t2 � 3t � 1 and y � t.x � t and y � a t � 1
2 b2

� 3.

x � y2 � 3y � 1y � ax � 1
2 b2

� 3

�10

10�10

10

�10

10�10

10

Figure 3.2-17

Notice that the graph in part b does not pass the Vertical Line Test.
The equation does not represent y as a function of x.

■

Parametric equations will be studied more thoroughly in Chapter 11.

To graph in parametric mode, let

To graph in parametric mode, let

 y � t
 x � f(t)

x � f(y)

y � f(t)
x � t

y � f(x)
Graphing 

or in
Parametric Mode

x � f(y)
y � f(x)

The graph in part
a is the same as in Example
9. To obtain the equation in
part a from the parametric
equations in Example 9,
solve the first equation for t
and substitute the result
into the second equation.

NOTE
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Exercises 3.2

In Exercises 1–4, the graph below defines a function, f.
Determine the following:

1. 2.

3. the domain of f 4. the range of f

In Exercises 5–8, the graph below defines a function, g.
Determine the following:

5. 6.

7. the domain of g 8. the range of g

In Exercises 9–14, use the Vertical Line Test to deter-
mine whether the graph defines a function. If not, give
an example of an input value that corresponds to more
than one output value.

g152g112

y

x

84
0

4

8

−4

−4

−8

−8

f 112f 1�52

y

x

84
0

4

8

−4

−4

−8

−8

9.

10.

11.

12. y

x

84
0

4

8

−4

−4

−8

−8

y

x

84
0

4

8

−4

−4

−8

−8

y

x

84
0

4

8

−4

−4

−8

−8

y

x

84
0

4

8

−4

−4

−8

−8
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13.

14.

In Exercises 15 and 16, the graph of a function is
shown. Find the approximate intervals on which the
function is increasing and on which it is decreasing.

15.

16.

In Exercises 17–22, graph each function. Find the
approximate intervals on which the function is
increasing, decreasing, and constant.

17.

18.

19. f 1x2 � �x3 � 8x2 � 8x � 5

g1x2 � 0x � 1 0 � 0x � 2 0
f 1x2 � 0x � 1 0 � 0x � 1 0

−2−3 321

x

y

−1−5−6 −4

−2−3 3 421

x

y

−1−5−6 −4

y

x

84
0

4

8

−4

−4

−8

−8

y

x

84
0

4

8

−4

−4

−8

−8

20.

21.

22.

In Exercises 23–28, graph each function. Estimate all
local maxima and minima of the function.

23. 24.

25. 26.

27.

28.

29. a. A rectangle has a perimeter of 100 inches, and
one side has length x. Express the area of the
rectangle as a function of x.

b. Use the function in part a to find the
dimensions of the rectangle with perimeter 100
inches and the largest possible area.

30. a. A rectangle has an area of 240 in , and one side
has length x. Express the perimeter of the
rectangle as a function of x.

b. Use the function in part a to find the
dimensions of the rectangle with area 240 in
and the smallest possible perimeter.

31. a. A box with a square base has a volume of 867
in . Express the surface area of the box as a
function of the length x of a side of the base.
(Be sure to include the top of the box.)

b. Use the function in part a to find the
dimensions of the box with volume 867 in and
the smallest possible surface area.

32. a. A cylindrical can has a surface area of 60 in .
Express the volume of the can as a function of
the radius r.

b. Use the function in part a to find the radius
and height of the can with surface area 60 in
and the largest possible volume.

In Exercises 33–36, graph each function. Find the
approximate intervals on which the function is con-
cave up and concave down, and estimate all inflection
points.

33. 34.

35.

36. g1x2 � x3 � 3x2 � 2x � 1

h1x2 � x4 � 2x2

f 1x2 � x3 � 2xf 1x2 � x3

2

2

3

3

2

2

g1x2 � 2x3 � x2 � 1

f 1x2 � x3 � 1.8x2 � x � 2

k 1x2 � x3 � 3x � 1h 1x2 �
x

x2 � 1

g1t2 � �216 � t2f 1x2 � x3 � x

g 1x2 � x4 � x3 � 4x2 � x � 1

g1x2 � 0.2x4 � x3 � x2 � 2

f 1x2 � x4 � 0.7x3 � 0.6x2 � 1
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In Exercises 37–40,

a. Graph each function.

b. Find the approximate intervals on which the
function is increasing, decreasing, and constant.

c. Estimate all local maxima and minima.

d. Find the approximate intervals on which the
function is concave up and concave down.

e. Estimate the coordinates of any inflection points.

37. 38.

39. 40.

In Exercises 41–44, sketch the graph of the function.
Be sure to indicate which endpoints are included and
which are excluded.

41.

42.

43.

44.

In Exercises 45–49,

a. Use the fact that the absolute-value function is
piecewise-defined (see Example 7) to write the
rule of the given function as a piecewise-defined
function whose rule does not include any
absolute value bars.

b. Graph the function.

45. 46.

47. 48.

49.

In Exercises 50–53, sketch the graph of the function.
Be sure to indicate which endpoints are included and
which are excluded.

50.

51. (This is not the same function as in
Exercise 50.)
g1x2 � 3�x 4
f 1x2 � � 3x 4

f 1x2 � 0 x � 5 0
g1x2 � 0 x � 3 0h1x2 �

0 x 0
2 � 2

g1x2 � 0 x 0 � 4f 1x2 � 0 x 0 � 2

f 1x2 �     
x2 if x 6 �2
x if �2 � x 6 4
2x if x � 4

k 1u2 �   
�2u � 2 if u 6 �3
u � 3u 4 if �3 � u � 1
2u2 if u 7 1

g1x2 � e 0x 0 if x 6 1
�3x � 4 if x � 1

f 1x2 � e2x � 3 if x 6 �1
x2 if x � �1

g1x2 � �x3 � 4x � 2g1x2 � x3 � 3x2 � 2

f 1x2 � �x2 � 4x � 3f 1x2 � x2 � 2x � 1

52. 53.

54. A common mistake is to graph the function f in
Example 6 by graphing both and 
on the same screen, with no restrictions on x.
Explain why this graph could not possibly be the
graph of a function.

55. Show that the function is
constant on the interval Hint: Use the
piecewise definition of absolute value in Example
7 to compute when 

In Exercises 56–59, use your calculator to estimate the
domain and range of the function by tracing its graph.

56. 57.

58. 59.

In Exercises 60 and 61, draw the graph of a function f
that satisfies the given conditions. The function does
not need to be given by an algebraic rule.

60. •

• when x is in the interval 

• starts decreasing when 
•
• starts increasing when 

61. • domain 
• range 
•

•

In Exercises 62–67, graph the curve determined by the
parametric equations.

62.

63.

64.

65.

66.

67.
y � t2  1�4 � t � 42
x � 3t2 � 5

y � 1 � t � t2
x � t2 � t � 1

y � t3 � t � 1  1�4 � t � 42
x � 1 � t2

y � 1t�7  1�5 � t � 92
x � t2 � 6t

y � 8 � t3  1�4 � t � 42
x � t2 � 3t � 2

y � 1 � t 1�5 � t � 62
x � 0.1t3 � 0.2t2 � 2t � 4

f a1
2b � 0

f 1�12 � f 132
f � 3�5, 6 4

f � 3�2, 4 4
x � 5f 1x2

f 132 � 3 � f 102
x � 1f 1x2

a�1, 12bf 1x2 � 2

f 1�12 � 2

f 1x2 � 3x � 2k 1x2 � 2x2 � 4

h1x2 � 2x2 � 4g1x2 � x2 � 4

0 � x � 2.f 1x2
30, 2 4 .

f 1x2 � 0 x 0 � 0 x � 2 0

y � x � 2y � x2

f 1x2 � 2 3x 4h1x2 � 3x 4 � 3�x 4

⎧
⎪
⎨
⎪
⎩

⎧
⎪
⎨
⎪
⎩



In Exercises 68–71, graph the equation in parametric
mode. Give the rule for x and for y in terms of t.

68.

69. y � x4 � 3x3 � x2

y � x3 � x2 � 6x
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70.

71. x � y4 � 3y2 � 5

x � y3 � 5y2 � 4y � 5

3.3 Quadratic Functions

Parabolas

The rule of a quadratic function is a polynomial of degree 2. The shape
of the graph of a quadratic function is a parabola. Three parabolas are
shown in Figure 3.3-1, with important points labeled.

Objectives

• Define three forms for
quadratic functions

• Find the vertex and
intercepts of a quadratic
function and sketch its graph

• Convert one form of a
quadratic function to another•

y

x

84
0

8

−4
−4

−8

−8

4

y

x

4
0

8

−4
−4

−8

−8

y

x

84
0

8

−4
−4

−8

−8

opens upward

vertex
x-intercept
y-intercept

y-intercept

y-intercept

opens downward opens upward

vertex

vertex

x-intercepts

Figure 3.3-1

Notice that the graph of a quadratic function

• can open either upward or downward
• always has a vertex which is either the maximum or minimum
• always has exactly 1 y-intercept
• can have 0, 1, or 2 x-intercepts

A parabola is symmetric about a line through the vertex called the axis of sym-
metry.

Quadratic Functions

Quadratic functions can be written in several forms.
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A quadratic function can be written in any of the following
forms:

Transformation form:

Polynomial form:

x-Intercept form:

where a, b, c, h, k, s, and t are real numbers and If a is
positive, the graph opens upward; and if a is negative, the
graph opens downward.

a � 0.

f(x) � a(x � s)(x � t)

f(x) � ax2 � bx � c

f(x) � a(x � h)2 � k

Three Forms 
of a Quadratic

Function

Transformation Form
The transformation form is the most useful form for finding the vertex. For
a quadratic function written in transformation form, 
the vertex is the point with coordinates 

Since the y-intercept of a function is 

shows the y-intercept is 

Since the x-intercepts occur when the x-intercepts are the solutions
of the quadratic equation 

The x-intercepts are and 

Example 1 Transformation Form

For the function find the vertex and the x- and 
y-intercepts. Then sketch the graph.

Solution

In and . The
vertex is

the y-intercept is

ah2 � k � 21322 � 1�42 � 14

1h, k2 � 13, �42
k � �4h � 3a � 2,f 1x2 � 21x � 322 � 4 � 21x � 322 � 1�42,

f 1x2 � 21x � 322 � 4,

h �
A

�k
a .h �

A
�k

a

 x � h ±
A

�k
a

 x � h � ±
A

�k
a

 1x � h22 �
�k

a

 a1x � h22 � �k
a1x � h22 � k � 0

a 1x � h22 � k � 0.
y � 0,

ah2 � k.

f 102 � a10 � h22 � k � ah2 � k

f 102,
1h, k2. f 1x2 � a1x � h22 � k,
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and the x-intercepts are

To graph the function, plot the vertex and intercepts, then draw the
parabola. Since a is positive, the parabola opens upward.

■

Polynomial Form
The polynomial form is the most useful form for finding the y-intercept.
Since the y-intercept of a function is the y-intercept is c.

The x-intercepts are the solutions of the quadratic equation 
0, which can be solved either by factoring or by the quadratic formula. In
general, the x-intercepts are

for values which make positive. If then there is only
one x-intercept. If is negative, then there are no x-intercepts.

To find the vertex of the graph of a quadratic function in polynomial form,
compare the transformation form to the polynomial form. First, multiply
and distribute the terms in the transformation form, so the coefficients
can be compared.

transformation form

multiply

distribute the a

Match the second coefficient in each of the two equivalent forms.

Since h is the x-coordinate of the vertex in the transformation form, 

is the x-coordinate of the vertex in the polynomial form. The y-coordinate

of the vertex can be found by substituting into the function. Thus, 

the vertex of the graph of a quadratic function is

a�b
2a , f a�b

2abb

�b
2a

�b
2a

�b
2a � h

b � �2ah

  � ax2 � 2ahx � 1ah2 � k2
  � ax2 � 2ahx � ah2 � k
  � a1x 2 � 2hx � h2 2 � k
f 1x2 � a1x � h22 � k

b2 � 4ac
b2 � 4ac � 0,b2 � 4ac

�b � 2b2 � 4ac
2a   and  �b � 2b2 � 4ac

2a

ax2 � bx � c �

f 102 � a1022 � b102 � c � 0 � 0 � c � c

f 102,

h �
A

�k
a � 3 �

A

�1�42
2 � 3 � 12 � 1.6

h �
A

�k
a � 3 �

A

�1�42
2 � 3 � 12 � 4.4

y

x

84

4

0

8

12

16

20

−4
−4

(3, −4)

Figure 3.3-2



Example 2 Polynomial Form

For the function find the vertex and the x- and 
y-intercepts. Then sketch the graph.

Solution

In and Thus, the y-intercept is

and the vertex is

Since the quadratic equation has no solu-
tions, so there are no x-intercepts.

To graph the function, plot the vertex and y-intercept, then draw the
parabola. Since a is positive, the parabola opens upward.

■

x-Intercept Form
The x-intercept form is the most useful form for finding the x-intercepts.
For a quadratic function written in x-intercept form,

the x-intercepts of the graph are s and t. Notice
that both of these values are solutions to the equation 

and

Since the y-intercept of a function is 

so the y-intercept is ast.

To find the vertex of a graph of a quadratic function in x-intercept form,
recall that a parabola is symmetric about a line through the vertex. Thus,
the vertex is exactly halfway between the x-intercepts. The x-coordinate 

of the vertex is the average of the x-intercepts, or To find the 

y-coordinate of the vertex, substitute this value into the function. The 

vertex is

Example 3 x-Intercept Form

For the graph of the function find the vertex

and the x- and y-intercepts. Then sketch the graph.

f 1x2 � �
1
2 1x � 42 1x � 22,

as � t
2 , f as � t

2 bb

as � t
2 b .

f 102 � a10 � s2 10 � t2 � ast

f 102,
f 1t2 � a1t � s2 1t � t2 � a1t � s2 102 � 0

f 1s2 � a1s � s2 1s � t2 � a102 1s � t2 � 0

f 1x2 � 0.
f 1x2 � a1x � s2 1x � t2,

x2 � 2x � 3 � 0b2 � 4ac � �8,

a�b
2a , f a�b

2abb � a �2
2112 , f a�2

2112 bb � 1�1, 22

c � 3

c � 3.f 1x2 � x2 � 2x � 3, a � 1, b � 2,

f 1x2 � x2 � 2x � 3,
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y

x

63
0

3

6

9

−3−6

(−1, 2)

Figure 3.3-3

Not all quadratic
functions can be written in 
x-intercept form. If the
graph of a quadratic
function has no x-intercepts,
then there are no real values
of s and t for which
f 1x2 � a1x � s2 1x � t2.

NOTE
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Solution

In and . The x-intercepts 

are

and the y-intercept is

and the vertex is

To graph the function, plot the vertex and intercepts, then draw the
parabola. Since a is negative, the parabola opens downward.

■

Changing from One Form to Another
It is sometimes necessary to change a quadratic function from one form
to another. To change either transformation or x-intercept form to poly-
nomial form, distribute and collect like terms. To change either
polynomial or transformation form to x-intercept form, factor out the lead-
ing coefficient, then factor or use the quadratic formula to find the
x-intercepts.

Example 4 Changing to Polynomial and x-Intercept Form

Write the following functions in polynomial and x-intercept form, if pos-
sible.

a.

b.

c.

Solution

a. To change the function f to polynomial form, distribute and collect
like terms.

Since is negative, there are no x-intercepts. Thus,
the function f cannot be written in x-intercept form.

b2 � 4ac � �3.2

 f 1x2 � 0.4x2 � 2.4x � 5.6

 f 1x2 � 0.41x2 � 6x � 92 � 2

 f 1x2 � 0.41x � 322 � 2

h1x2 � �21x � 42 1x � 22
g1x2 � 3x2 � 3.9x � 43.2
f 1x2 � 0.41x � 322 � 2

as � t
2 , f as � t

2 bb � a4 � 1�22
2 , f a4 � 1�22

2 bb � 11, 4.52

ast � �
1
2 142 1�22 � 4

s � 4, and t � �2

t � �2f 1x2 � �
1
2 1x � 42 1x � 22, a � �

1
2, s � 4,

0

y

x

84

4

8

−4

−4

−8

−8

(1, 4.5)

Figure 3.3-4



b. The function g is already given in polynomial form. To find the 
x-intercept form, first factor out then use the quadratic
formula on the remaining expression.

x-intercepts:

So the x-intercept form is

c. The function h is already given in x-intercept form. To change the
function to polynomial form, distribute and collect like terms.

■

To convert a quadratic function to transformation form, it may be neces-
sary to complete the square.

Example 5 Changing to Transformation Form

Write the following functions in transformation form.

a.

b.

Solution

a. Factor out of the first two terms, then complete the square as
shown below.

Factor 3 out of first two terms

Add and subtract 

Write as a perfect 

square

Distribute the over the 

Combine like termsf 1x2 � �3 ax �
2
3b

2
�

1
3

�
4
9�3� �3ax �

2
3b

2
�

4
3 � 1

x2 �
4
3 x �

4
9� �3 aax �

2
3b

2
�

4
9b � 1

ab
2b

2

� �3ax2 �
4
3 x �

4
9 �

4
9b � 1

� �3 ax2 �
4
3xb � 1

f 1x2 � �3x2 � 4x � 1

a � �3

g1x2 � 0.31x � 22 1x � 12
f 1x2 � �3x2 � 4x � 1

 h1x2 � �2x2 � 4x � 16

 h1x2 � �21x2 � 2x � 82
 h1x2 � �21x � 42 1x � 22

 g1x2 � 31x � 4.52 1x � 3.22

 
1.3 ± 21�1.322 � 4112 1�14.42

2 �
1.3 ±  7.7

2 � 4.5 and �3.2

 g1x2 � 31x2 � 1.3x � 14.42
 g1x2 � 3x2 � 3.9x � 43.2

a � 3,
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b. Multiply the terms in parentheses, then complete the square as
shown below.

Multiply

Add and subtract 

Write as a perfect square

Combine like terms

Distribute the 0.3 over the 
■

Summary of Quadratic Forms

Below is a summary of the basic forms and the important points of a
quadratic function. You should memorize the highlighted items.

�2.25 g1x2 � 0.31x � 0.522 � 0.675
 � 0.31 1x � 0.522 � 2.252

x2 � x � 0.25 � 0.31 1x � 0.522 � 0.25 � 22
ab

2b
2

 � 0.31x2 � x � 0.25 � 0.25 � 22
 � 0.31x2 � x � 22

 g1x2 � 0.31x � 22 1x � 12
CAUTION

When completing the
square of an expression
that is part of a func-
tion, it is not possible to
divide by the leading
coefficient or add a term
to both sides. It is neces-
sary to factor out the
leading coefficient, then
add and subtract the 

term.ab
2b

2

Summary of
Quadratic
Functions

Applications

In the graph of a quadratic function, the vertex of the parabola is either
a maximum or a minimum of the function. Thus, the solution of many
applications depends on finding the vertex of the parabola.

Example 6 Maximum Area for a Fixed Perimeter

Find the dimensions of a rectangular field that can be enclosed with 3000
feet of fence and that has the largest possible area.

Solution

Let x denote the length and y the width of the field, as shown in Fig-
ure 3.3-5.

 Area � xy
 Perimeter � x � x � y � y � 2x � 2y

x

x

yy

Figure 3.3-5

Name Transformation Polynomial x-Intercept

Form

Vertex

x-Intercepts and s and t

and

y-Intercept c astah2 � k

�b � 1b2 � 4ac
2ah �

A
�k

a

�b � 1b2 � 4ac
2ah �

A
�k

a

as � t
2 , f as � t

2 bba�b
2a , f a�b

2abb(h, k)

f(x) � a(x � s)(x � t)f(x) � ax2 � bx � cf(x) � a(x � h)2 � k



The perimeter is the length of the fence, or 3000.

The area of the field is

The graph of the function A is a parabola that opens downward, so the
maximum occurs at the vertex. The function is in polynomial form, so the 

vertex occurs when 

The largest possible area is which occurs when and
The dimensions of the field are 750 by 750 ft.

■

Example 7 Maximizing Profit

A vendor can sell 275 souvenirs per day at a price of $2 each. The cost to
the vendor is $1.50 per souvenir. Each price increase decreases sales
by 25 per day. What price should be charged to maximize profit?

Solution

Let x be the number of price increases. Then the profit on each sou-
venir is and the number of souvenirs sold per day is

Thus, the profit per day is

or, in x-intercept form,

The graph is a parabola that opens downward, so the maximum occurs
at the vertex. The function is in x-intercept form, so the vertex occurs when 

The maximum profit of $160 per day occurs for 3 price increases, so the
price should be per souvenir.

■
$2 � 31$0.102 � $2.30

x �
s � t

2 �
�5 � 11

2 � 3.

P1x2 � �2.51x � 52 1x � 112

P1x2 � 10.1x � 0.52 1�25x � 2752
275 � 25x.

$0.50 � $0.10x,
10¢

10¢

y � 1500 � 750 � 750.
x � 750562,500 ft2,

x �
�b
2a �

�1500
21�12 � 750.

A1x2 � xy � x11500 � x2 � �x2 � 1500x

 y � 1500 � x
 2x � 2y � 3000
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Exercises 3.3

In Exercises 1–4, determine the vertex of the given
quadratic function and state whether its graph opens
upward or downward.

1. 2.

3. 4. h1x2 � �x2 � 1f 1x2 � �1x � 122 � 2

g1x2 � �61x � 222 � 5f 1x2 � 31x � 522 � 2

In Exercises 5–8, determine the y-intercept of the given
quadratic function and state whether its graph opens
upward or downward.

5. 6.

7. 8. g1x2 � 2x2 � x � 1h1x2 � �3x2 � 4x � 5

g1x2 � x2 � 8x � 1f 1x2 � x2 � 6x � 3
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In Exercises 9–12, determine the x-intercepts of the
given quadratic function and state whether its graph
opens upward or downward.

9.

10.

11.

12.

In Exercises 13–21, determine the vertex and x- and 
y-intercepts of the given quadratic function, and
sketch a graph.

13. 14.

15. 16.

17. 18.

19. 20.

21.

Write the following functions in polynomial form.

22.

23.

24.

25.

Write the following functions in x-intercept form.

26. 27.

28. 29.

Write the following functions in transformation form.

30. 31.

32.

33.

34. Write a rule in transformation form for the
quadratic function whose graph is the parabola
with vertex at the origin that passes through (2, 12).

g1x2 � 21x � 12 1x � 62
h1x2 � �1x � 42 1x � 22

f 1x2 � �3x2 � 6x � 1g1x2 � x2 � 4x � 5

f 1x2 � 6 ax �
2
3b

2

�
2
3g1x2 � 31x � 322 � 3

h1x2 � �2x2 � 13x � 7f 1x2 � x2 � 3x � 4

f 1x2 � �
1
2 1x � 422 � 5

h1x2 � 31x � 422 � 47

g1x2 � �21x � 52 1x � 22
f 1x2 � 31x � 22 1x � 12

g1x2 � 21x � 32 1x � 42
h1x2 � �1x � 22 1x � 62g1x2 � 1x � 12 1x � 32
f 1x2 � 2x2 � 4x � 2h1x2 � �x2 � 8x � 2

f 1x2 � x2 � 6x � 3h1x2 � 1x � 122 � 4

g1x2 � �
1
2 1x � 422 � 2f 1x2 � 21x � 322 � 4

f 1x2 � �0.41x � 2.12 1x � 0.72
g1x2 �

1
3 ax �

3
4b ax �

1
2b

h1x2 � �21x � 32 1x � 12
f 1x2 � 1x � 22 1x � 32

35. Write a rule in transformation form for the
quadratic function whose graph is the parabola
with vertex (0, 1) that passes through ( ).

36. Find the number c such that the vertex of
lies on the x-axis.

37. If the vertex of is at (2, 4), find
b and c.

38. If the vertex of has 
y-coordinate 17 and is in the second quadrant, 
find b.

39. Find the number b such that the vertex of
lies on the y-axis.

40. If the vertex of has 
x-coordinate 7, find s.

41. If the y-intercept of is 3, find a.

42. Find two numbers whose sum is and whose
product is the maximum.

43. Find two numbers whose difference is 4 and
whose product is the minimum.

44. The sum of the height h and the base b of a
triangle is 30. What height and base will produce
a triangle of maximum area?

45. A field bounded on one side by a river is to be
fenced on three sides to form a rectangular
enclosure. If the total length of fence is 200 feet,
what dimensions will give an enclosure of
maximum area?

46. A salesperson finds that her sales average 40 cases
per store when she visits 20 stores per week. If
she visits an additional store per week, her
average sales per store decrease by one case. How
many stores per week should she visit to
maximize her sales?

47. A potter can sell 120 bowls per week at $4 per
bowl. For each decrease in price, 20 more
bowls are sold. What price should be charged in
order to maximize revenue?

48. When a basketball team charges $4 per ticket,
average attendance is 400 people. For each 
decrease in ticket price, average attendance
increases by 40 people. What should the ticket
price be to maximize revenue?

20¢

50¢

�18

f 1x2� a1x � 32 1x � 22

f 1x2 � a1x � s2 1x � 42
f 1x2 � x2 � bx � c

f 1x2 � �x2 � bx � 8

f 1x2 � x2 � bx � c

f 1x2 � x2 � 8x � c

2, �7



49. A ballpark concessions manager finds that each
vendor sells an average of 40 boxes of popcorn
per game when 20 vendors are working. For
every additional vendor, each averages 1 fewer
box sold per game. How many vendors should be
hired to maximize sales?

In Exercises 50–53, use the following equation for the
height (in feet) of an object moving along a vertical
line after t seconds:

where is the initial height (in ft) and is the ini-
tial velocity (in ft /sec). The velocity is positive if it is
traveling upward, and negative if it is traveling down-
ward.

50. A rocket is fired upward from ground level with
an initial velocity of 1600 ft/sec. When does the
rocket reach its maximum height and how high is
it at that time?

51. A ball is thrown upward from a height of 6 ft
with an initial velocity of 32 ft/sec. When does
the ball reach its maximum height and how high
is it at that time?

52. A ball is thrown upward from the top of a 96-ft
tower with an initial velocity of 80 ft/sec. When
does the ball reach its maximum height and how
high is it at that time?

v0s0

s � �16t2 � v0t � s0

172 Chapter 3 Functions and Graphs

53. A bullet is fired upward from ground level with
an initial velocity of 1500 ft/sec. When does the
bullet reach its maximum height and how high is
it at that time?

54. Critical Thinking The discriminant of a quadratic
function is the value 
For each value of the discriminant listed, state
which graphs below could possibly be the graph
of f.
a. b.
c. d. b2 � 4ac � 72b2 � 4ac � �49

b2 � 4ac � 0b2 � 4ac � 25

b2 � 4ac.f 1x2 � ax2 � bx � c

x

y

x

y

x

y

x

y

(i) (ii)

(iii) (iv)

3.4 Graphs and Transformations

When the rule of a function is algebraically changed in certain ways to
produce a new function, then the graph of the new function can be
obtained from the graph of the original function by a simple geometric
transformation.

Parent Functions

The functions on the next page are often called parent functions. A parent
function is a function with a certain shape that has the simplest algebraic
rule for that shape. For example, is the simplest rule for a
parabola. You should memorize the basic shapes of the parent functions.

f 1x2 � x2

Objectives

• Define parent functions

• Transform graphs of parent
functions
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y

x

42

2

4

−2
−2

−4

−4

y

x
0

42

2

4

−2
−2

−4

−4

y

x

42

2

4

−2
−2

−4

−4

y

x

42

2

4

−2
−2

−4

−4

y

x
0

42

2

4

−2

−4

−4

y

x

42

2

4

−2
−2

−4

−4

(0, 0)(0, 0)(0, 0)

(0, 0)(0, 0) (0, 0)

f(x) = 1
Constant function

f(x) = x
Identity function

f(x) = |x|
Absolute-value function

f(x) = [x]
Greatest integer function

f(x) = x2

Quadratic function
f(x) = x3

Cubic function

f(x) =   
Reciprocal function

f(x) =   x
Square root function

f(x) =    x
Cube root function

(0, 0) (0, 0) (0, 0)

(1, 1)
(1, 1) (1, 1)

(1, 1)(1, 1)
(1, 1)

(1, 1)
(1, 1)

(1, 1)

31
x

y

x

42

2

4

−2
−2

−4

−4

y

x
0

42

2

4

−2
−2

−4

−4

y

x

42

2

4

−2
−2

−4

−4

Figure 3.4-1

The parent functions will be used to illustrate the rules for the basic trans-
formations. Remember, however, that these transformation rules work for
all functions.

The points and are labeled for reference in each
case. The origin is not on the graph of the constant or reciprocal
function.

11, 1210, 02NOTE
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Vertical Shifts

Let c be a positive number.

The graph of is the graph of f shifted upward
c units.

The graph of is the graph of f shifted
downward c units.

g(x) � f(x) � c

g(x) � f(x) � c

Vertical Shifts

Notice that when a value is added to the effect is to add the value
to the y-coordinate of each point. The result is to shift every point on the
graph by the same amount. A similar result is true for subtracting a value
from f 1x2.

f 1x2,

Example 1 Shifting a Graph Vertically

Graph and 

Solution

The parent function is The graph of is the graph of
shifted upward 4 units, and the graph of is the graph of
shifted downward 3 units.

h 1x2 � 0x 0 � 3g 1x2 � 0x 0 � 4

f 1x2 � 0 x 0 h1x2f 1x2 � 0 x 0 g1x2f 1x2 � 0x 0 .

h 1x2 � 0x 0 � 3.g 1x2 � 0x 0 � 4

Technology 
Tip

If the function f is
entered as Y1, then the 

function 

can be entered in Y2 as
Y1 � C and the function 

can be entered in Y3 as
Y1 � C.

g1x2 � f 1x2 � c

g1x2 � f 1x2 � c

Graphing Exploration

Graph these functions on the same screen and describe your results.

f 1x2 � 23 x  g1x2 � 23 x � 2  h1x2 � 23 x � 3

(0, 4)

(1, 5)
4

y

x

84
0

8

−4
−4

−8

−8

4

y

x

84
0

8

−4
−4

−8

−8

(0, −3)
(1, −2)

Figure 3.4-2
■
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Horizontal Shifts

x �3 �2 �1 0 1 2 3 4 5

x � 1 �4 �3 �2 �1 0 1 2 3 4

x2 9 4 1 0 1 4 9 16 25

(x � 1)2 16 9 4 1 0 1 4 9 16

Technology 
Tip

If the function f is
entered as Y1, then the 

function 

can be entered in Y2 as
Y1(X � C) and the function 

can be entered in Y3 as
Y1(X � C).

g1x2 � f 1c � x2

g1x2 � f 1x � c2

Graphing Exploration

Graph these functions on the same screen and describe your results.

h1x2 � 1x � 322g1x2 � 1x � 122f 1x2 � x2

A table of values is helpful in visualizing the direction of a horizontal shift.

When 1 is subtracted from the x-values, the result is that the entries in
the table shift 1 position to the right. Thus, the entire graph is shifted 1
unit to the right. Construct a table for to see that the entries
shift 3 positions to the left.

h1x2 � 1x � 322

>

>

Let c be a positive number.

The graph of is the graph of f shifted c units
to the left. 

The graph of is the graph of f shifted c units
to the right.

g (x) � f(x � c)

g(x) � f(x � c)

Horizontal Shifts

Example 2 Shifting a Graph Horizontally

Graph and 

Solution

The parent function is The graph of is the graph of 

shifted 3 units to the right and the graph of is the graph of 

shifted 4 units to the left.

f1x2 �
1
xh1x2

f1x2 �
1
xg1x2f 1x2 �

1
x .

h 1x2 �
1

x � 4.g 1x2 �
1

x � 3
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h 1x2 �
1

x � 4g 1x2 �
1

x � 3

0

y

x

84

4

8

(3, 0)
(4, 1)

y

x

84

4

8

Figure 3.4-3

The results of the first part of the Graphing Exploration show that in the 
functions and if the point (a, b) is on the graph of
f, then the point is on the graph of g. These two points are reflec-
tions of each other across the x-axis, as shown in Figure 3.4-4.

In the second part of the Graphing Exploration, the results show that in 
the functions and if the point (a, b) is on the graph
of f, then the point ( ) is on the graph of h. These two points are reflec-
tions of each other across the y-axis, as shown in Figure 3.4-4.

�a, b
h1x2 � 1�x,f 1x2 � 1x

1a, �b2 g1x2 � �1x,f 1x2 � 1x

Technology 
Tip

If the function f is
entered as Y1, then the 

function 

can be entered in Y2 as
�Y1 and the function 

can be entered in Y3 as
Y1(�X).

g1x2 � f 1�x2

g1x2 � �f 1x2

Graphing Exploration

Graph these functions on the same screen.

Use the TRACE feature to verify that for every point on the graph
of f there is a point on the graph of g with the same x-coordinate
and opposite y-coordinate.

Graph these functions on the same screen.

Use the TRACE feature to verify that for every point on the graph
of f there is a point on the graph of h with the same y-coordinate
and opposite x-coordinate.

f 1x2 � 2x  h1x2 � 2�x

f 1x2 � 2x  g1x2 � �2x

■

Reflections

(−a, b) (a, b)

(a, −b)

y

x

Figure 3.4-4
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Example 3 Reflecting a Graph Across the x- or y-Axis

Graph and 

Solution

The parent function is The graph of is the graph of
reflected across the x-axis, and the graph of is the graph

of reflected across the y-axis. One difference in the reflections
is whether the endpoint of each segment is included on the left or on the
right. Study the functions closely, along with the parent function, to deter-
mine another difference in the two reflections.

h1x2 � 3�x 4g1x2 � � 3 x 4

f 1x2 � 3x 4 h1x2f 1x2 � 3x 4 g1x2f 1x2 � 3x 4 .

h1x2 � 3�x 4 .g1x2 � � 3x 4

The graph of is the graph of f reflected across
the x-axis.

The graph of is the graph of f reflected across
the y-axis.

g(x) � f(�x)

g(x) � �f(x)
Reflections

Technology 
Tip

If the function f is
entered as Y1, then the 

function 

can be entered in Y2 as 
C � Y1 and the function 

can be entered in Y3 as
Y1(C X).�

g1x2 � f 1c � x2

g 1x2 � c � f 1x2

x

y

42
0

2

4

−2

−4

−4

−2

y

x

42
0

2

4

−2

−4

−4

−2

(0, 0)

(1, −1)

(−1, 1)
(0, 0)

Figure 3.4-5
■

Stretches and Compressions

Graphing Exploration

Graph these functions on the same screen.

Use the TRACE feature to locate the y-value on each graph when
Describe your results. Predict the graph of j1x2 � 42x.x � 1.

f1x2 � 2x  g1x2 � 23x  h1x2 � 32x



In addition to reflections and shifts, graphs of functions may be stretched
or compressed, either vertically or horizontally. The following example
illustrates the difference between a vertical stretch and compression.

Example 4 Vertically Stretching and Compressing a Graph

Graph 

Solution

The parent function is For the function every 
y-coordinate of the parent function is multiplied by 2, stretching the graph 

of the function in the vertical direction, away from the x-axis. For the func-

tion every y-coordinate of the parent function is multiplied

by compressing the graph of the function in the vertical direction,

toward the x-axis.

h1x2 �
1
4 x3g1x2 � 2x 3

1
4,

h 1x2 �
1
4 x3,

g 1x2 � 2x3,f 1x2 � x3.

g 1x2 � 2x3 and h 1x2 �
1
4 x3.
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■

The following example illustrates the difference between a vertical and a
horizontal stretch.

Example 5 Stretching a Function Vertically and Horizontally

Graph 

Solution

The parent function is In the y-values are multi-
plied by 2, and in the x-values are multiplied by 2. The result
is that in the graph of the first function, the “steps” get higher, and in the
graph of the second function, they get narrower.

h1x2 � 32x 4 , g1x2 � 2 3x 4 ,f 1x2 � 3x 4 .

g 1x2 � 2 3x 4  and h1x2 � 32x 4 .

(0, 0)

(1, 2)

(0, 0)

y

x

84
0

4

8

−4

−4

−8

−8 −4−8

y

x

84
0

4

8

−4

−8

1,   )( 1
4

Figure 3.4-6



h1x2 � 32x 4g1x2 � 2 3x 4

Section 3.4 Graphs and Transformations 179

■

x

y

x

42

(1, 2)
, 1)((0, 0) (0, 0)

0

2

4

−2−4

y

42
0

2

4

−2−4

1
2

Figure 3.4-7

Let c be a positive number.

Vertical Stretches and Compressions

If is a point on the graph of then is a point
on the graph of .

If the graph of is the graph of f stretched
vertically, away from the x-axis, by a factor of c.

If the graph of is the graph of f
compressed vertically, toward the x-axis, by a factor of c.

Horizontal Stretches and Compressions

If is a point on the graph of then is a 

point on the graph of 

If the graph of is the graph of f

compressed horizontally, toward the y-axis, by a factor of 

If the graph of is the graph of f stretched 

horizontally, away from the y-axis, by a factor of 1
c .

g (x) � f(c � x)c 66 1,

1
c .

g(x) � f(c � x)c 77 1,

g(x) � f(c � x).

a1
c  x, ybf(x),(x, y)

g (x) � c � f(x)c 66 1,

g (x) � c � f(x)c 77 1,

g (x) � c � f(x)
(x, cy)f(x),(x, y)

Stretches and
Compressions

Some horizontal compressions can be expressed as vertical
stretches, and vice versa. The graph of the function g below can be 

obtained from a horizontal compression of by a factor of or 

from a vertical stretch by a factor of 9.

This is not possible for the greatest integer function (see Example 5) or
trigonometric functions, which you will study in later chapters.

g 1x2 � 13x22 � 32x2 � 9x2

1
3f 1x2 � x2

NOTE
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Example 6 Combining Transformations

Graph the following function.

Solution

Rewrite as The parent

function is f 1x2 � 0 x 0 .
g1x2 � � `2ax �

1
2b ` � 4.g1x2 � �0 2x � 1 0 � 4

g1x2 � � 02x � 1 0 � 4

Shift the graph 

unit to the right.

1
2Compress the

graph horizontally 

by a factor of 1
2.

Reflect the graph
across the x-axis.

Shift the graph
upward 4 units.

y

x

42

(   , 1)
(1, 1)

(1, −1)

(1, 3)

(0, 0)

0

2

−4

−2
−4 −2

y

x

42
0

4

2

−4

−2
−4 −2

y

x

42
0

4

2

−4

−2
−4 −2

y

x

42
0

4

2

−4

−2
−4 −2

, 0)(
1
2

1
2

, 0)(
1
2

, 4)(
1
2

4

(1,1)

Figure 3.4-8

For a function of the form first
graph 

1. If reflect the graph across the y-axis.

2. Stretch or compress the graph horizontally by a factor of 

3. Shift the graph horizontally by b units: right if 
and left if 

4. If reflect the graph across the x-axis.

5. Stretch or compress the graph vertically by a factor of 

6. Shift the graph vertically by d units: up if and
down if d 6 0.

d 7 0,

0 c 0 .
c 6 0,

b 6 0.
b 7 0,

` 1a ` .

a 6 0,

f(x).
g(x) � c � f(a(x � b)) � d,

Combining
Transformations

Transformations can be combined to produce many different functions.
There is often more than one correct order in which to perform these trans-
formations; however, not every possible order is correct. One method is
shown below.

■



Example 7 Package Delivery
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An overnight delivery service charges $18 for a package weighing less
than 1 pound, $21 for one weighing at least 1 pound, but less than 2
pounds, $24 for one weighing at least 2 pounds, but less than 3 pounds,
and so on. The cost c(x) of shipping a package weighing x pounds is given
by Graph and interpret the result.

Solution

The parent function of is The parent function is stretched
vertically by a factor of 3, then shifted upward 18 units. Note: although this
rule is defined for all real numbers, the domain of this cost function is x 7 0.

f 1x2 � 3x 4 .c1x2

c1x2c1x2 � 18 � 3 3x 4 .

y

x

−2−4 4
0

2
(0, 0)

(1, 3)

(1, 21)

(0, 18)
12

6

18

24

30

y

x

−2−4 4
0

2

12

6

18

24

30

Figure 3.4-9

The function is stretched vertically by a factor of 3 because the increment
from one step to the next is $3, and the function is shifted 18 units upward
because the lowest rate for any package is $18.

■

Graphing Exploration

For the function list several different pos-
sible orders of the transformations performed on the graph of

to produce the graph of Then graph on a cal-
culator. Did any orders of transformations that you listed produce
an incorrect graph? Try to determine some rules about the order in
which the transformations may be performed. Compare your rules
with those of your classmates.

g1x2g1x2.f 1x2 � 2x

g1x2 � �32�2x � 4 � 1,
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Exercises 3.4

In Exercises 1–9, identify the parent function that can
be used to graph each function. Do not graph the func-
tion.

1. 2.

3. 4.

5. 6.

7.

8. 9.

In Exercises 10–21, graph each function and its parent
function on the same set of axes.

10. 11.

12. 13.

14. 15.

16. 17.

18. 19.

20. 21.

In Exercises 22–27, write a rule for the function whose
graph can be obtained from the given parent function
by performing the given transformations.

22. parent function: 
transformations: shift the graph 5 units to the left
and upward 4 units

23. parent function: 
transformations: reflect the graph across the x-axis
and shift it upward 3 units

24. parent function: 
transformations: shift the graph 6 units to the
right, stretch it vertically by a factor of 2, and shift
it downward 3 units

f 1x2 � 3x 4

f 1x2 � 2x

f 1x2 � x3

h1x2 �
1

3x
g1x2 � a1

4 xb 3

f 1x2 �
1
2g1x2 � 3x

h1x2 � 0 x � 2 0f 1x2 � 2x � 4

g1x2 � 3x 4 � 1f 1x2 � x � 5

h1x2 � 23 �xg1x2 � 0�x 0
h1x2 � �

1
xf 1x2 � �x2

h1x2 � 213 � x22 � 4g1x2 � 223 x � 5

h1x2 � �6 c12 x � 3d �
2
3

f 1x2 � �3x � 2g1x2 �
2

x � 1
� 4

h 1x2 � 2�2x � 4f 1x2 � 7

g1x2 � 4 0x 0�3f 1x2 � �1x � 223

25. parent function: 
transformations: shift the graph 3 units to the left,
reflect it across the x-axis, and shrink it vertically 

by a factor of 

26. parent function: 

transformations: shift the graph 2 units to the
right, stretch it horizontally by a factor of 2, and
shift it upward 2 units

27. parent function: 
transformations: shift the graph 3 units to the left,
reflect it across the y-axis, and stretch it vertically
by a factor of 1.5

In Exercises 28–33, describe a sequence of transfor-
mations that transform the graph of the parent
function f into the graph of the function g. Do not
graph the functions.

28.

29.

30.

31.

32.

33.

In Exercises 34–41, graph each function and its parent
function on the same graph.

34. 35.

36. 37.

38. 39.

40. 41. g1x2 �
2
5 15 � x23 �

3
5h1x2 � 2�4x � 3 � 1

f 1x2 �
�3

2 � x � 4g1x2 � 0�x � 5 0 � 3

h1x2 � 31x � 12 � 5f 1x2 � �
3
4 c�1

3  x d

g1x2 �
1
42

3 x � 3 � 1f 1x2 � �21x � 122 � 3

g1x2 � 23 1.3x � 4.2 � 0.4f 1x2 � 23 x

g1x2 �
3

4 � 2x
f 1x2 �

1
x

g1x2 � 412 � x23 � 3f 1x2 � x3

g1x2 � 2 c 1
3

x d � 5f 1x2 � 3x 4
g1x2 � �31x � 42 � 1f 1x2 � x

g1x2 � �
A

�
1
2x � 3f 1x2 � 2x

f 1x2 � x2

f 1x2 �
1
x

1
2

f 1x2 � 0 x 0



In Exercises 42–45, use the graph of the function f in the
figure to sketch the graph of the function g.

42. 43.

44. 45.

In Exercises 46–49, use the graph of the function f in the
figure to sketch the graph of the function h.

46. 47.

48. 49.

In Exercises 50–55, use the graph of the function f in the
figure to sketch the graph of the function g.

50. 51. g1x2 � f 1x � 22 � 3g1x2 � f 1x � 22

x

y

f(x)

h1x2 � f 1�2x2h1x2 � f 1�x2
h1x2 � �f 1x2h1x2 � �4 f 1x2

x

y

f(x)

g1x2 � f 1x2 � 3g1x2 � 0.25 f 1x2
g1x2 � 3f 1x2g1x2 � f 1x2 � 1

x

y

f(x)
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52. 53.

54. 55.

Exercises 56–61 refer to the parent function 

The graph of f is a semicircle with radius 1, as shown
below.

Use the graph of f to sketch the graph of the function g.

56. 57.

58. 59.

60.

61.

62. In 2002, the cost of sending first-class mail was
$0.37 for a letter weighing less than 1 ounce, $0.60
for a letter weighing at least one ounce, but less
than 2 ounces, $0.83 for a letter weighing at least 2
ounces, but less than 3 ounces, and so on.
a. Write a function that gives the cost of

mailing a letter weighing x ounces (see
Example 7).

b. Graph c(x) and interpret the result.

63. A factory has a linear cost function 
where b represents fixed costs and a represents the
labor and material costs of making one item, both
in thousands of dollars.
a. If property taxes (part of the fixed costs) are

increased by $28,000 per year, what effect does
this have on the graph of the cost function?

b. If labor and material costs for making 100,000
items increase by $12,000, what effect does this
have on the graph of the cost function?

f 1x2 � ax � b,

c1x2

g1x2 � 5
B

1 � Q15 xR2
g1x2 � 21 � 1x � 22 2 � 1

g1x2 � 321 � x2g1x2 � 21 � 1x � 322
g1x2 � 21 � x2 � 4g1x2 � �21 � x2

y

x

1
0

1

−1

−1

f (x) � 21 � x2

g1x2 � f 1x � 32g1x2 � f 1�x2 � 2

g1x2 � 2 � f 1x2g1x2 � f 1x � 12 � 3
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3.4.A Excursion: Symmetry

This section presents three kinds of symmetry that a graph can have and
ways to identify these symmetries both geometrically and algebraically.

y-Axis Symmetry

A graph of a function or relation is symmetric with respect to the y-axis
if the part of the graph on the right side of the y-axis is the mirror image
of the part on the left side of the y-axis, as shown in Figure 3.4.A-1.

Objectives

• Determine whether a graph
has y-axis, x-axis, or origin
symmetry

• Determine whether a
function is even, odd, or
neither

x2 + 4y2 = 24y

(−6, 3) (6, 3)

(−x, y) (x, y)

x

y

P Q

Figure 3.4.A-1

Each point P on the left side of the graph has a mirror image point Q on
the right side of the graph, as indicated by the dashed lines. Note that

• their y-coordinates are the same
• their x-coordinates are opposites of each other
• the y-axis is the perpendicular bisector of PQ

A graph is symmetric with respect to the y-axis if whenever
is on the graph, then is also on it.

In algebraic terms, this means that replacing x by 
produces an equivalent equation.

�x

(�x, y)(x, y)

y-Axis Symmetry

Example 1 y-Axis Symmetry

Verify that is symmetric with respect to the y-axis.y � x4 � 5x2 � 3
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x = y2 − 3

(x, y)

(x, −y)

(2,

(2, −

5)

x

y

P

Q

5)

Figure 3.4.A-2

Solution

Replace x by in the equation.

which is equivalent to the original equation because and
Therefore, the graph is symmetric with respect to the y-axis.

■
1�x24 � x4.

1�x22 � x2

 y � 1�x24 � 51�x22 � 3
 y � x4 � 5x2 � 3

�x

x-Axis Symmetry

A graph of a relation is symmetric with respect to the x-axis if the part
of the graph above the x-axis is the mirror image of the part below the
x-axis, as shown in Figure 3.4.A-2.

Graphing Exploration

Graph the equation from Example 1. Use the
TRACE feature to locate at least three points (x, y) on the graph and
show that for each point, is also on the graph.1�x, y2

y � x4 � 5x2 � 3

Each point P on the top of the graph has a mirror image point Q on the
bottom of the graph, as indicated by the dashed lines. Note that

• their x-coordinates are the same
• their y-coordinates are opposites of each other
• the x-axis is the perpendicular bisector of PQ

A graph is symmetric with respect to the x-axis if whenever
is on the graph, then is also on it.

In algebraic terms, this means that replacing y by 
produces an equivalent equation.

�y

(x,�y)(x, y)

x-Axis Symmetry
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Origin Symmetry

A graph is symmetric with respect to the origin if a line through the
origin and any point P on the graph also intersects the graph at a
point Q such that the origin is the midpoint of as shown in Figure
3.4.A-3.

PQ,

(x, y)

(−x, −y)

O

P

Q

x3

4

x

y

y =

Figure 3.4.A-3

Graphing Exploration

Graph the equation from Example 2 in parametric
mode by entering the parametric equations below.

Use the TRACE feature to locate at least three points (x, y) on the
graph and show that for each point, is also on the graph.1x, �y2

 y1 � t

 x1 �
1
4 t2 � 3

y2 � 4x � 12

Example 2 x-Axis Symmetry

Verify that is symmetric with respect to the x-axis.

Solution

Replacing y by in the equation gives

which is equivalent to the original equation because There-
fore, the graph is symmetric with respect to the x-axis.

■

1�y22 � y2.

1�y22 � 4x � 12

�y

y2 � 4x � 12

Except for
, the graph of a

function is never symmetric
with respect to the x-axis.
By the Vertical Line Test, a
function’s graph cannot
contain points that lie on a
vertical line, such as 
and .1x, �y2

1x, y2

f 1x2 � 0
NOTE

Using Figure 3.4.A-3, symmetry with respect to the origin can also be
described in terms of coordinates and equations.
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A graph is symmetric with respect to the origin if whenever
is on the graph, then is also on it.

In algebraic terms, this means that replacing x by and y
by produces an equivalent equation.�y

�x

(�x, �y)(x, y)

Origin Symmetry

Example 3 Origin Symmetry

Verify that is symmetric with respect to the origin.

Solution

Replace x by and y by in the equation.

Simplify

Multiply both sides by 

Simplify

Therefore, the graph is symmetric with respect to the origin.
■

y �
x3

10 � x

�1�11�y2 � �1a�x3

10 � xb
�y �

�x3

10 � x

�y �
1�x2 3

10 � 1�x2
�y�x

y �
x3

10
� x

Graphing Exploration

Graph the equation from Example 3. Use the TRACE

feature to locate at least three points (x, y) on the graph and show
that for each point, is also on the graph.1�x, �y2

y �
x3

10 � x

Summary

There are a number of techniques used to understand the fundamental
features of a graph. Symmetry, whether line or point, is beneficial when
graphing a function. Knowing a graph’s symmetry prior to graphing
reduces the necessary number of coordinates needed to display a com-
plete graph; thus, the graph can be sketched more quickly and easily.

Here is a summary of the various tests for line and point symmetry:



Even and Odd Functions

For relations that are functions, the algebraic description of symmetry can
take a different form.

Even Functions
A function f whose graph is symmetric with respect to the y-axis is called
an even function.

188 Chapter 3 Functions and Graphs

For example, is even because 

Thus, the graph of f is symmetric with respect to the y-axis, as you can
verify with your calculator.

Odd Functions
A function f whose graph is symmetric with respect to the origin is called
an odd function. If both (x, y) and are on the graph of such a
function f, then

and

so f 1�x2 � �f 1x2.
�y � �f 1x2

�y � f 1�x2y � f 1x2
1�x, �y2

f 1�x2 � 1�x24 � 1�x22 � x4 � x2 � f 1x2
f 1x2 � x4 � x2

A function f is even if

for every value x in the domain of f.

The graph of an even function is symmetric with respect to
the y-axis.

f(�x) � f(x)

Even Functions 

If the rule of a
function is a polynomial in
which all terms have even
degree, then the function is
even. (A constant term has
degree 0, which is even.)

NOTE

Symmetry
with respect Coordinate test Algebraic test
to

y-Axis If is on the Replacing x by 
graph, then produces an
is on the graph. equivalent equation.

x-Axis If is on the Replacing y by 
graph, then produces an
is on the graph. equivalent equation.

Origin If is on the Replacing x by 
graph, then and y by 
is on the graph. produces an

equivalent equation.

�y1�x, �y2 �x1x, y2

1x, �y2 �y1x, y2

1�x, y2 �x1x, y2

Symmetry 
Tests
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A function f is odd if

for every value x in the domain of f.

The graph of an odd function is symmetric with respect to
the origin.

f(�x) � �f(x)

Odd Functions

For example, is an odd function because

Hence, the graph of f is symmetric with respect to the origin, as you can
verify with your calculator.

 �f 1x2 � �1x3 � 2x2 � �x3 � 2x
 f 1�x2 � 1�x23 � 21�x2 � �x3 � 2x

f 1x2 � x3 � 2x
If the rule of a

function is a polynomial in
which all terms have odd
degree, then the function is
odd.

NOTE

Exercises 3.4.A

In Exercises 1–6, graph the equation and state whether
the graph has symmetry. If so, is it symmetric with
respect to the x-axis, the y-axis, or the origin?

1. 2.

3. 4.

5. 6.

In Exercises 7–10, determine algebraically whether or
not the graph of the given equation is symmetric with
respect to the y-axis.

7. 8.

9. 10.

In Exercises 11–14, determine algebraically whether
the graph of the given equation is symmetric with
respect to the x-axis.

11. 12.

13. 14.

In Exercises 15–18, determine algebraically whether
the graph of the given equation is symmetric with
respect to the origin.

15. 16.

17. 18. 3x2 � 4y � 2x � 60x 0 � 0y 0 � x2 � y2

x3 � y3 � x4x2 � 3y2 � xy � 6

x2 � x � y2 � y � 0x2 � 2x � y2 � 2y � 2

x2 � 8x � y2 � �15x2 � 6x � y2 � 8 � 0

x4 � x2 � x � y3 � 14x2 � 3y � y2 � 7

y � x3 � x2x2 � y2 � 1

0y 0 � xy �
23 x
x2

y � 1x � 223y � x3 � 2

x � 1y � 322y � x2 � 2

In Exercises 19–24, determine whether the given graph
is symmetric with respect to the y-axis, the x-axis, the
origin, or any combination of the three.

19.

20.

21.

22.

x

y

x

y

x

y

x

y



23.

24.

In Exercises 25–34, determine whether the given func-
tion is even, odd, or neither.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

In Exercises 35–38, complete the graph of the given
function, assuming that it satisfies the given symme-
try condition.

35. Even

36. Even

x

y

x

y

g1x2 �
x2 � 1
x2 � 1

f 1x2 �
x2 � 2
x � 7

h1x2 � 27 � 2x2f 1t2 � 2t2 � 5

f 1x2 � x 1x4 � x22 � 4k 1t2 � t4 � 6t2 � 5

h1u2 � 03u 0f 1x2 � x2 � 0 x 0
k 1t2 � �5tf 1x2 � 4x

x

y

x

y
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37. Odd

38. Odd

39. a. Plot the points (0, 0), (2, 3), (3, 4), (5, 0),
and 

b. Suppose the points in part a lie on the graph of
an odd function f. Plot the points 

(1, f(1)),
(4, f(4)), and (6, f(6)).

40. a. Plot the points and

b. Suppose the points in part a lie on the graph of
an even function f. Plot the points 

and 

41. Show that any graph that has two of the three
types of symmetry (x-axis, y-axis, origin) always
has the third type.

42. Use the midpoint formula (see the Algebra
Review Appendix) to show that (0, 0) is the
midpoint of the segment joining (x, y) and
1�x, �y2.

1�4, f 1�42 2.1�2, f 1�22 2,15, f 152 2, 13, f 132 2,
1�1, f 1�12 2,

14, 12.
12, 32,11,�32, 1�5, 22, 1�3, 52,

 1�7, f 1�72 2,1�5, f 1�52 2,1�3, f 1�32 2, 
1�2, f 1�22 2, 
1�6, 12.17, �32, 1�1, �12, 1�4, �12,

x

y

x

y
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3.5 Operations on Functions

There are several ways in which two or more given functions can be used
to create new functions.

Sums and Differences of Functions

If f and g are functions, their sum is the function h defined by this rule.

For example, if and then

Instead of using a different letter h for the sum function, we shall usually
denote it by Thus, the sum is defined by the rule

1 f � g2 1x2 � f 1x2 � g1x2
f � gf � g.

h1x2 � f 1x2 � g1x2 � 13x2 � x2 � 14x � 22 � 3x2 � 5x � 2

g1x2 � 4x � 2,f 1x2 � 3x2 � x

h1x2 � f 1x2 � g1x2

Objectives
• Form sum, difference, prod-

uct, and quotient functions
and find their domains

• Form composite functions
and find their domains

This rule is not just a formal manipulation of symbols. If x is
a number, then so are and g(x). The plus sign in is
addition of numbers, and the result is a number. But the plus sign in

is addition of functions, and the result is a new function.f � g

f 1x2 � g1x2f 1x2
NOTE

The difference function is the function defined by a similar rule.

The domain of the sum and difference functions is the set of all real num-
bers that are in both the domain of f and the domain of g.

Example 1 Sum and Difference Functions

For and 

a. write the rule for and 
b. find the domain of and 

Solution

a.

b. The domain of f consists of all x such that that is,
Similarly, the domain of g consists of all x such that

that is, The domain of and consists of
all real numbers in both the domain of f and the domain of g,
namely, all x such that 

■
2 � x � 3.

f � gf � gx � 2.x � 2 � 0,
�3 � x � 3.

9 � x2 � 0,
1 f � g2 1x2 � 29 � x2 � 2x � 2
1 f � g2 1x2 � 29 � x2 � 2x � 2

f � g.f � g

f � g.f � g

g1x2 � 2x � 2f 1x2 � 29 � x2

1 f � g2 1x2 � f 1x2 � g1x2
f � g

Technology 
Tip

If two functions are
entered as Y1 and Y2, 

their sum function can be
graphed by entering

.

Difference, product, and
quotient functions can be
graphed similarly.

Y3 � Y1 � Y2



Products and Quotients of Functions

The product and quotient of functions f and g are the functions defined
by the following rules.

The domain of fg consists of all real numbers in both the domain of f

and the domain of g. The domain of consists of all real numbers x

in both the domain of f and the domain of g such that 

Example 2 Product and Quotient Functions

For and 

a. write the rule for and .

b. find the domain of and .

Solution

a.

b. The domain of f consists of all x such that that is, 
Similarly, the domain of g consists of all x such that that
is, or The domain of fg consists of all real numbers in
both the domain of f and the domain of g, that is, The

domain of consists of all these x for which so the

value x = 1 must also be excluded. Thus, the domain of is

■

Products with Constant Functions
If c is a real number and f is a function, then the product of f and the con-
stant function is

The domain of cf is the same as the domain of f. For example, if
and then 5f is the function

and the domain of 5f is still all real numbers.

15f 2 1x2 � 5 � f 1x2 � 51x3 � x � 22 � 5x3 � 5x � 10

c � 5,f 1x2 � x3 � x � 2

1cf 2 1x2 � c � f 1x2
g1x2 � c

x 7 1.

a f
g b

g1x2 � 0,a f
g b

x � 1.
x � 1.x � �1

x2 � 1 � 0,
x � 0.3x � 0,

a f
gb1x2 �

23x
2x2 � 1

�
23x3 � 3x

x2 � 1

1 fg2 1x2 � 23x � 2x2 � 1 � 23x3 � 3x

f
gfg

f
gfg

g1x2 � 2x2 � 1f 1x2 � 23x

g1x2 � 0.

a f
gb

1 fg2 1x2 � f 1x2 � g1x2    and    a f
g b 1x2 �

f 1x2
g1x2
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CAUTION

The function with the 
rule is de-
fined for values that
are not in the domain
of f and g. The domain
of a sum, difference,
product, or quotient
function must be deter-
mined before the
function is simplified.

23x3 � 3x



Composition of Functions

Another way of combining functions is to use the output of one function
as the input of another. This operation is called composition of functions.
The idea can be expressed in function notation as shown below.

output of f
input of f output of g

input of g
x f g g1 f 1x2 2SSS

�

f 1x2 �
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Technology 
Tip

To evaluate or graph
composite functions,
enter the equations as
Y1 and Y2. Then enter
Y1(Y2(X)) or Y2(Y1(X)).

If f and g are functions, then the composite function of f and g is 

The expression is read “g circle f” or “f followed by g.”
Note the order carefully; the functions are applied right to left.

g � f

(g � f )(x) � g( f(x))

Composite
Functions

Example 3 Composite Functions

If and find the following.

a. b.

c. d.

Solution

a. To find first find 

Next, use the result as an input in g.

So 

b. To find first find 

Next, use the result as an input in f.

So 1 f � g2 1�12 � 5.

f 112 � 41122 � 1 � 5

g1�12 �
1

�1 � 2 � 1

g1�12.1 f � g2 1�12,
1g � f 2 122 �

1
19.

g1172 �
1

17 � 2 �
1
19

f 122 � 41222 � 1 � 17

f 122.1g � f 2 122,

1 f � g2 1x21g � f 2 1x2
1 f � g2 1�121g � f 2 122

g1x2 �
1

x � 2
,f 1x2 � 4x2 � 1



c. To find replace x with the rule for in g.

d. To find replace x with the rule for g(x) in f.

Notice that 
■

Domains of Composite Functions
The domain of is determined by the following convention.g � f

1g � f 2 1x2 � 1 f � g2 1x2.
1 f � g2 1x2 � f 1g1x2 2 � 41g1x2 22 � 1 � 4a 1

x � 2b
2

� 1 �
4

1x � 222 � 1

1 f � g2 1x2 � f 1g1x2 2,
1g � f 2 1x2 � g1 f 1x2 2 �

1
f 1x2 � 2

�
1

14x2 � 12 � 2
�

1
4x2 � 3

f 1x21g � f 2 1x2 � g1 f 1x2 2,
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Example 4 Finding the Domain of a Composite Function

If and 

a. find and .
b. find the domain of each composite function.

Solution

a.

b. Domain of even though the rule is defined for every real
number x, the domain of is not the set of all real numbers.

• The domain of f is 
• The domain of g is all real numbers, so all values of are in

the domain of g.

Thus, the domain of is 

Domain of 

• The domain of g is all real numbers.
• The values of g(x) that are in the domain of f are

Thus, the domain of is 
■

x � �25 or x � 25.f � g

x � �25 or x � 25
x2 � 5 � 0

f � g:

x � 0.g � f

f 1x2
x � 0

g � f
x � 5g � f :

1 f � g2 1x2 � f 1g1x2 2 � 2g1x2 � 2x2 � 5

1g � f 2 1x2 � g1 f 1x2 2 � 1 f 1x2 22 � 5 � A2x B 2 � 5 � x � 5

f � gg � f

g1x2 � x2 � 5,f 1x2 � 2x

Let f and g be functions. The domain of is the set of all
real numbers x such that

• x is in the domain of f

• is in the domain of gf(x)

g � f
Domain of 

g �� f



Expressing Functions as Composites
In calculus, it is often necessary to write a function as the composition of
two simpler functions. For a function with a complicated rule, this can
usually be done in several ways.

Example 5 Writing a Function as a Composite

Let Write h as a composition of functions in two dif-
ferent ways.

Solution

The function h can be written as the composite where 
and 

Additionally, h can be written as the composite where 
and 

■

Graphs of Composite Functions

The graph of a composite function can sometimes be described in terms
of transformations. 

Example 6 Compositions with Absolute-Value Functions

Let Graph f and the composite function
, and describe the relationship between the graphs of f and

in terms of transformations.

Solution

For , the graphs of f and are the same. For , the graph of
is the graph of , a reflection of the graph of f across the y-axis.f 1�x2f � g

x 6 0f � gx � 0

f � g
f � g � f 1 0 x 0 2g1x2 � 0 x 0  and f 1x2 � 1x.

1 j � k2 1x2 � j1k 1x2 2 � j13x22 � 23x2 � 1

k 1x2 � 3x2.
j1x2 � 2x � 1j � k,

1g � f 2 1x2 � g1 f 1x2 2 � g13x2 � 12 � 23x2 � 1

g1x2 � 1x.
f 1x2 � 3x2 � 1g � f,

h1x2 � 33x2 � 1.
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y

x

8 104 62
0

4
2

6
8

10

−4−6
−4
−6

−2

−8
−10

4
6
8

10

−4
−6
−8

−10

−8−10 8 104 62−4−6 −2−8−10

y

x
0

2
(4, 2)(4, 2) (−4, 2)

f 1x2 � 1x f � g � f 1 0 x 0 2 � 2 0 x 0



Applications

Composition of functions arises in applications involving several func-
tional relationships. In such cases, one quantity may have to be expressed
as a function of another.

Example 7 The Area of a Circular Puddle

A circular puddle of liquid is evaporating and slowly shrinking in size. 
After t minutes, the radius r of the surface of the puddle measures 

inches. The area A of the surface of the puddle is given by

Express the area as a function of time by finding and
compute the area of the surface of the puddle at minutes.

Solution

Substitute into the area function 

At minutes, the area of the surface of the puddle is

■

1A � r2 1122 � p a 18
2 � 12 � 3b

2

�
4p
9 � 1.396 square inches.

t � 12

1A � r2 1t2 � Aa 18
2t � 3 b � p a 18

2t � 3b
2

A1r2.r 1t2 �
18

2t � 3

t � 12
1A � r2 1t2 � A1r1t2 2,

A1r2 � pr2.

r 1t2 �
18

2t � 3
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Exercises 3.5

In Exercises 1–4, find 
and their domains.

1.

2.

3.

4.

In Exercises 5–7, find 

5.

6.

7. f 1x2 � 2x2 � 1   g1x2 � 2x � 1

f 1x2 � 4x2 � x4   g1x2 � 2x2 � 4

f 1x2 � �3x � 2   g1x2 � x3

a f
gb(x), and  ag

f
b(x).( fg)(x),

f 1x2 � 2x   g1x2 � x2 � 1

f 1x2 �
1
x    g1x2 � x2 � 2x � 5

f 1x2 � x 2 � 2   g1x2 � �4x � 7

f 1x2 � �3x � 2   g1x2 � x3

(g � f )(x),( f � g)(x),( f � g)(x),
In Exercises 8–11, find the domains of fg and 

8.

9.

10.

11.

In Exercises 12–14, find and

12.

13.

14. f 1x2 � x2 � 1   g1x2 � 2x

f 1x2 � 0x � 2 0    g1x2 � �x2

f 1x2 � 3x � 2   g1x2 � x2

( f �� f )(0).
( f �� g)(1),( g �� f )(3),

f 1x2 � 3x2 � x4 � 2   g1x2 � 4x � 3

f 1x2 � 24 � x2   g1x2 � 23x � 4

f 1x2 � x � 2   g1x2 �
1

x � 2

f 1x2 � x2 � 1   g1x2 �
1
x

f
g .
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In Exercises 15–18, find the indicated values, where

and 

15. 16.

17. 18.

In Exercises 19–22, find the rule of the function 
and its domain and the rule of and its domain.

19.

20.

21.

22.

In Exercises 23–26, find the rules of the functions ff
and 

23. 24.

25. 26.

In Exercises 27–30, verify that and
for the given functions f and g.

27.

28.

29.

30.

In Exercises 31–36, write the given function as the com-
posite of two functions, neither of which is the identity
function, (There may be more than one pos-
sible answer.)

31.

32.

33.

34.

35. 36. g1t2 �
3

2t � 3
� 7f 1x2 �

1
3x2 � 5x � 7

k 1x2 � 23 17x � 322
h1x2 � 17x3 � 10x � 1727
g1x2 � 2x � 3 � 23 x � 3

f 1x2 � 23 x2 � 2

f(x) � x.

f 1x2 � 2x3 � 5  g1x2 �
B

3 x � 5
2

f 1x2 � 23 x � 2  g1x2 � 1x � 223
f 1x2 � 23 x � 1  g1x2 � x3 � 1

f 1x2 � 9x � 2  g1x2 �
x � 2

9

(g �� f )(x) � x
(f �� g)(x) � x

f 1x2 �
1

x � 1f 1x2 �
1
x

f 1x2 � 1x � 122f 1x2 � x3

f �� f.

f 1x2 �
1

2x � 1    g1x2 � x2 � 1

f 1x2 �
1
x    g1x2 � 2x

f 1x2 � �3x � 2   g1x2 � x3

f 1x2 � x2   g1x2 � x � 3

f �� g
g �� f

f 12g112 2g1 f 122 � 32
1 f � g2 132 � 2f 112g1 f 102 2 � f 1g102 2

f(x) � 1 � x.g (t) � t 2 � t

In Exercises 37 and 38, graph both and on
the same screen. Use the graphs to show that

37.

38.

For Exercises 39 – 42, complete the given tables by
using the values of the functions f and g given below.

f 1x2 � x3 � x  g1x2 � 23 x � 1

f 1x2 � x5 � x3 � x  g1x2 � x � 2

g �� f � f �� g.

f �� gg �� f

39. 40.
x

1 4

2 ?

3 5

4 ?

5 ?

(g �� f )(x) x

1 ?

2 2

3 ?

4 ?

5 ?

( f �� g)(x)

x f(x)

1 3

2 5

3 1

4 2

5 3

x

1 5

2 4

3 4

4 3

5 2

g(x)

x

1 ?

2 ?

3 3

4 ?

5 ?

( f �� f )(x) x

1 ?

2 ?

3 ?

4 4

5 ?

(g �� g)(x)
41. 42.

In Exercises 43–46, let Graph the function f
and the composite function on the same
graph.

43.

44.

45. 46. f 1x2 � 0x 0 � 2f 1x2 � x � 3

f 1x2 � x3 � 4x2 � x � 3

f 1x2 � 0.5x2 � 5

g �� f � 00 f(x) 00g(x) � 00x 00 .



47. a. Use the piecewise definition of absolute value
to explain why the following statement is true:

b. Use part a and your knowledge of
transformations to explain why the graph of

consists of the parts of the graph of f that
lie above the x-axis together with the reflection
across the x-axis of those parts of the graph of f
that lie below the x-axis.

In Exercises 48–52, let Graph the function f
and the composite function on the same
graph.

48. 49.

50. 51.

52. Write a piecewise definition for .

53. If f is any function and I is the identity function
what are and 

54. In a laboratory culture, the number N(d) of
bacteria (in thousands) at temperature d degrees
Celsius is given by the function

and the temperature D(t) at time t hours is given
by the function 
a. What does the composite function 

represent?
b. How many bacteria are in the culture after 4

hours? after 10 hours?

55. Suppose that a manufacturer produces n
telephones. The unit cost for producing each
telephone is given by the function

The price P of each telephone is the unit cost plus
a 30% markup. Find , and interpret the
result.

56. Find the unit price in Exercise 55 if 10,000
telephones are produced.

57. As a weather balloon is inflated, its radius
increases at the rate of 4 cm per second. Express
the volume of the balloon as a function of time,
and determine the volume of the balloon after 4
seconds. Hint: the volume of a sphere of radius

r is 4
3 pr3.

1P � U2 1n2

U1n2 �
total cost

number of phones
�

12,000 � 15n
n

N � D
D1t2 � 2t � 4  10 � t � 142

N1d2 �
�90

d � 1
� 20  14 � d � 322

I � f ?f � II1x2 � x,

f � g

f 1x2 � 2x � 1f 1x2 � 0.51x � 422 � 9

f 1x2 � x3 � 3f 1x2 � x � 4

f �� g � f A 00x 00 Bg(x) � 0 x 0 .

g � f

1g � f 2 1x2 � e�f 1x2  if f 1x2 6 0
  f 1x2     if f 1x2 � 0
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58. Express the surface area of the weather balloon in
Exercise 57 as a function of time. Hint: the surface
area of a sphere of radius r is 

59. Brandon, who is 6 ft tall, walks away from a
streetlight that is 15 ft high at a rate of 5 ft per
second, as shown in the figure. Express the length
s of Brandon’s shadow as a function of time. Hint:
first use similar triangles to express s as a function
of the distance d from the streetlight to Brandon.

60. A water-filled balloon is dropped from a window
120 ft above the ground. Its height above the
ground after t seconds is ft. Laura is
standing on the ground 40 ft from the point where
the balloon will hit the ground, as shown in the
figure.
a. Express the distance d between Laura and the

balloon as a function of time.
b. When is the balloon exactly 90 ft from Laura?

61. Critical Thinking Find a function f (other than the
identity function) such that for
every value of x in the domain of f.
(More than one correct answer is possible.)

1 f � f � f 2 1x2 � x

d

40 ft

120 � 16t2

6 ft

d s

15 ft

4pr2.
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3.5.A Excursion: Iterations and Dynamical Systems

Discrete dynamical systems, which deal with growth and change, occur in
economics, biology, and a variety of other scientific fields. Compound
interest provides a simple example of a discrete dynamical system. As
discussed in Chapter 5, an investment of P dollars at 8% interest com-
pounded annually for one year grows by a factor of 1.08 each year. For
example, an investment of $1000 grows like this:

Initial amount

Amount after one year

Amount after two years

Amount after three years

This process can be described in function notation as follows. Let

Initial amount

After one year

After two years

After three years

In each step after the first one the output of the function f becomes the input
for the next step, and the final result can be expressed in terms of a com-
posite function.

Iteration

Iterations of a function are the repeated compositions of a function with
itself.

1. Select a number k as the initial input.
2. Compute the output 
3. Using the output from Step 2 as input, compute the output .
4. Continue the process repeatedly, using the output from each step as

the input for the next step.

Iterated Function Notation
Because function notation becomes cumbersome after several steps, the
following abbreviated notation is used for iterations of functions:

x is the initial value
denotes the first iteration

denotes the second iteration
denotes the third iteration 

and in general

denotes the nth iteration.f n1x2

f 1 f 1 f 1x2 2 2,f 3 1x2
f 1 f 1x2 2,f 2 1x2

f 1x2,f 1x2

f 1 f 1k2 2
f 1k2.

 $1259.71 � 1.0811166.402 � f 11166.402 � f 1 f 1 f 110002 2 2
 $1166.40 � 1.08110802 � f 110802 � f 1 f 110002 2

 $1080 � 1.08110002 � f 110002
$1000.00

f 1x2 � 1.08x.

1.0811166.402 � $1259.71
1.08110802 � $1166.40
1.08110002 � $1080.00

$1000.00

CAUTION

Do not confuse this
notation with
exponents. does
not represent the
product of two output
values, f 1x2 � f 1x2.

f 2 1x2
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Throughout this
section all numerical results
are displayed rounded to
four decimal places, but
computations are done
using the full decimal
expansion given by a
calculator.

NOTE Example 1 Iterated Function Notation

Write the first four iterations of the function with 
using iterated function notation.

Solution

■

Orbits

For a given function, the orbit of a number, c, is the sequence of output
values produced by starting with c and then iterating the function. That
is, the orbit of a number c for a given function f is the sequence

Example 2 Orbits

Find the orbit of for 

Solution

Enter in the equation memory. Using the Technology Tip in the
margin yields the orbit of x � 0.25.

Y1 � 2X

f 1x2 � 2x.x � 0.25

c, f 1c2, f 21c2, f 31c2, f 41c2, f 51c2, p

 f 410.252 � 54320.25 � 0.9170

 f 310.252 � 4320.25 � 0.8409

 f 210.252 � 320.25 � 0.7071

 f 10.252 � 20.25 � 0.5

x � 0.25f 1x2 � 2x

Figure 3.5.A-1

Technology 
Tip

If a function has been
entered as Y1 in the 

equation memory, it can be
iterated as follows:
• Store the initial value

as X.
• Key in Y1 STO � X.
Pressing ENTER repeat-
edly produces the iterated
values of the function.

■

Converging Orbits
Notice that the orbit of in Example 2 has the property that as n
gets larger, the terms of the orbit get closer and closer to 1. The orbit is
said to converge to 1.

x � 0.25



Example 2 and the preceding Exploration suggest that the orbit of every
positive number under the function converges to 1. The fol-
lowing notation is sometimes used to express this fact.

Example 3 Orbits

Find the orbits of and for the function 

Solution

Let and Figure 3.5.A-2 shows that the orbit begins

0.4, 0.16, 0.0256, 0.0006554, 0.0000004295, . . .

and that the orbit appears to converge to 0.

Now let Figure 3.5.A-3 shows that the orbit begins

2, 4, 16, 256, 65536, 4294967296, . . .

In this case, the orbit is not converging: its terms get larger and larger
without bound as n increases. The fact is expressed by saying that the
orbit diverges or that the orbit approaches infinity.

■

x � 2.

x � 0.4.Y1 � X2

f 1x2 � x2.x � 2x � 0.4

f n1x2S 1 as n S q
For f 1x2 � 2x and x 7 0,

f 1x2 � 2x
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Figure 3.5.A-3

Figure 3.5.A-2

Example 3 and the preceding Exploration suggest that the orbit of a num-
ber x converges to 0 when but that the orbit of x approaches
infinity when This fact is expressed as follows.

For f 1x2 � x2 and 0x 0 7 1, f n1x2 S q as n S q
For f 1x2 � x2 and 0x 0 6 1, f n1x2 S 0 as n S q

0x 0 7 1.
�1 6 x 6 1,

Calculator Exploration

Let and compute the first twelve terms of the orbit of
To what number does the orbit appear to converge?

Choose another positive number and compute its orbit. Does the
orbit appear to converge? To what number?

x � 100.
f 1x2 � 2x

Calculator Exploration

Choose a number strictly between and 1 and find its orbit under
the function Does the orbit converge? To what number?

Choose another number with absolute value greater than 1 and find
its orbit. How would you describe the behavior of the orbit?

f 1x2 � x2.
�1



Fixed Points and Periodic Orbits

In addition to orbits that converge and orbits that approach infinity, there
are several other possibilities, some of which are illustrated in the next
example.

Example 4 Orbits

Describe the orbit of each of the following.

a. under the function 
b. under 

c. under 

d. under 

Solution

a. Because the orbit is Consequently, 1 is
said to be a fixed point of the function 

b. The orbit is because Hence, is
said to be an eventually fixed point of the function 

c. Because and the orbit is 

Since it repeats the same values, the orbit is said to be periodic and
4 is said to be a periodic point.

d. Direct computation shows that

Therefore, the orbit is Because the orbit
begins to repeat its values after a few steps, it is said to be eventually
periodic and is said to be an eventually periodic point.

■

Example 5 Orbit Analysis

Analyze all the orbits of and illustrate them graphically.

Solution

Example 3 and the Calculator Exploration after it suggest two possibilities.
When the orbit of x converges to 0.
When the orbit of x approaches infinity.0x 0 7 1,

0x 0 6 1,

f 1x2 � x2

22

22, 1, 0, �1, 0 �1, 0, �1, p .

 f 4A22 B � 1�122 � 1 � 0.
 f 3A22 B � 02 � 1 � �1
 f 2A22 B � 12 � 1 � 0

 f 1222 � A22 B 2 � 1 � 1

4, 14, 4, 14, 4, p .f a1
4b �

1
1
4

� 4,f 142 �
1
4

f 1x2 � x2.
�1f 1�12 � 1�122 � 1.�1, 1, 1, 1, p

f 1x2 � 2x.
1, 1, 1, p .f 112 � 21 � 1,

f 1x2 � x2 � 1x � 22

f 1x2 �
1
xx � 4

f 1x2 � x2x � �1
f 1x2 � 2xx � 1
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The orbit of 1 is 1, 1, 1, so 1 is a fixed point.
The orbit of 0 is 0, 0, 0, so 0 is a fixed point.
The orbit of is 1, 1, so is an eventually fixed point.

Figure 3.5.A-4 illustrates the orbits of f 1x2 � x2.

�1p,�1,�1
p,
p,
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0−1−2−3−4−5 1 2 3 4 5

Red: Fixed points

Orange: Eventually fixed point

Green: Orbits that converge to 0

Blue: Orbits that approach qFigure 3.5.A-4

Exercises 3.5.A

In Exercises 1–6, find the first eight terms of the orbit
of the given number under the given function.

1. and 

2. and 

3. and 

4. and 

5. and 

6. and 

In Exercises 7–12, determine whether the orbit of the
point under the function converges or
approaches infinity or neither.

7. 8.

9. 10.

11. 12. x � 1.5x � 1

x � 0.5x � 0

x � �0.5x � �1

f(x) � 4x(1 � x)

f 1x2 � x3 � x2x � 0.1

f 1x2 � x3 � xx � 0.5

f 1x2 � 4x11 � x2x � 1.2

f 1x2 � 4x11 � x2x � 0.2

f 1x2 � �2.5xx � 0.8

f 1x2 � 1.08xx � 2

In Exercises 13–18, find the real number fixed points
of the function (if any) by solving the equation

13. 14.

15. 16.

17. 18.

19. Determine all the fixed points and all the
eventually fixed points of the function 

20. Let 
a. Find the orbit of x for every integer value of x

such that . Classify each point as
fixed, eventually fixed, periodic, or eventually
periodic.

b. Describe a pattern in the classifications you
made in part a.

21. Let and perform an orbit analysis
as follows.
a. Show that is a fixed point and that

is an eventually fixed point.
b. Show that and are periodic points.x � 1x � 0

x � �0.5
x � 0.5

f 1x2 � 0 x � 1 0

�4 � x � 4

f 1x2 � 0 x � 2 0 .
f 1x2 � 0 x 0 .

g1x2 � x2 � x � 2g1x2 � x2 � x � 1

g1x2 � x3 � 2x2 � 2xg1x2 � x3

g1x2 � x2 � 3x � 3g1x2 � x2 � 6

g(x) � x.

■

For a function f, if for some value a, then a is called a fixed point
of the function.

f 1a2 � a,
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3.6 Inverse Functions

Inverse Relations and Functions

Consider the following question:

What was the world population in 1997?

The answer to the question can be thought of as the output of a function.
The input of the function is a year, 1997, and the output is a number of
people. The function can be represented by a table of values or a scatter
plot, as shown below. From the table, the output corresponding to the
input of 1997 was a world population of 5.85 billion people.

Objectives

• Define inverse relations and
functions

• Find inverse relations from
tables, graphs, and
equations

• Determine whether an
inverse relation is a
function

• Verify inverses using
composition Population

Year (in billions)

1995 5.69

1996 5.77

1997 5.85

1998 5.92

1999 6.00

2000 6.08

Population
(in billions) Year

5.69 1995

5.77 1996

5.85 1997

5.92 1998

6.00 1999

6.08 2000

7

y

x

6.5

6

19961994 1998 2000

5.5

5

Po
pu

la
ti

on
Figure 3.6-1

y

x

2000

1998

5.55 6 6.5 7

1996

1994

Ye
ar

Figure 3.6-2

Now consider another question:

In what year was the world population 6 billion people?

In this question, the input and output are reversed. The input is a popu-
lation, 6 billion, and the output is a year. To create a function to answer
this question, exchange the columns in the table, or the axes of the scat-
ter plot. From the table, the output corresponding to the input of 6 billion
people was the year 1999.



The result of exchanging the input and output values of a function or rela-
tion is called an inverse relation. If the inverse is a function, it is called
the inverse function.

Graphs of Inverse Relations

Suppose that is a point on the graph of a function. Then is a
point on its inverse function or relation. This fact can be used to graph
the inverse of a function.

Example 1 Graphing an Inverse Relation

The graph of a function f is shown below. Graph the inverse, and describe
the relationship between the function and its inverse.

1y, x21x, y2
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y

x

84
0 (0, 0)

(2, 4)

(1, 1)

(3, 9)(−3, 9)

(−2, 4)

(−1, 1)

4

8

−4

−4

−8

−8

Figure 3.6-3

■

y

x

84
0

(0, 0)

(1, 1)

(1, −1)

(4, 2)

(4, −2)

(9, 3)

(9, −3)

4

8

−4

−4

−8

−8

Figure 3.6-4

Solution

Start by reversing the coordinates of each labeled point. Plot these points,
then sketch the relation.



Exercise 55 shows that the line is the perpendicular bisector of the
segment from (a, b) to (b, a), which means that the two points are reflec-
tions of each other across the line Thus, the graph of the inverse
of in Example 1 is a reflection of the original graph across the
line y � x.

f 1x2 � x2
y � x.

y � x
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y

x

84
0

4

8

−4

−4

−8

−8

Figure 3.6-5

CAUTION

When using a calculator
to verify that an inverse
is a reflection over the
line it is impor-
tant to use a square
viewing window.

y � x,

Let f be a function. If is a point on the graph of f, then
is a point on the graph of its inverse.

The graph of the inverse of f is a reflection of the graph of f
across the line

y � x

(b, a)
(a, b)

Graphs of
Inverse

Relations

The definition of an inverse makes it very easy to graph an inverse by
using parametric graphing mode. Recall that to graph the function

in parametric mode, let and To graph the inverse,
let and 

Example 2 Graphing an Inverse in Parametric Mode

Graph the function and its
inverse in parametric mode.

Solution

To graph f, let and 

To graph the inverse of f, exchange x and y by letting
and 

Figure 3.6-6 shows the graph of f and its inverse on the same screen with
the graph of y � x.

y2 � t.x2 � 0.7t5 � 0.3t4 � 0.2t3 � 2t � 0.5

y1 � 0.7t5 � 0.3t4 � 0.2t3 � 2t � 0.5.x1 � t

f 1x2 � 0.7x5 � 0.3x4 � 0.2x3 � 2x � 0.5

y2 � t.x2 � f 1t2 y1 � f 1t2.x1 � ty � f 1x2
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Figure 3.6-6

�3.1

4.7�4.7

3.1

■

Algebraic Representations of Inverses

Suppose that a function is represented by an equation in x and y. Then
the inverse of the function is found by exchanging the input and output
values, that is, by exchanging x and y.

Example 3 Finding an Inverse from an Equation

Find the inverse of 

Solution

First, write the function in terms of x and y.

Exchange the x and the y.

Thus, the inverse relation is It is common to solve for y, so
that the relation can be represented in function notation.

■

 g1x2 �
x � 2

3

 y �
x � 2

3

x � 3y � 2.

x � 3y � 2

y � 3x � 2

f 1x2 � 3x � 2.g1x2,

Example 4 Finding an Inverse from an Equation

Find the inverse of f 1x2 � x2 � 4x.

Graphing Exploration

Graph the functions f and g from Example 3 together on the same
screen with the line and describe your results. Be sure to use
a square viewing window.

y � x,



Determining Whether a Graph is One-to-One
In Example 1, the points and are both on the graph of f.
These two points have different inputs and the same output, so f is not
one-to-one. Also, the points and lie on the same horizontal
line, which suggests a graphical test for whether a function is one-to-one.

1�2, 4212, 42
1�2, 4212, 42
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A function f is one-to-one if

implies that 

If a function is one-to-one, then its inverse is also a function.

a � b.

f(a) � f(b)

One-to-One
Functions

A function f is one-to-one if and only if no horizontal line
intersects the graph of f more than once.

Horizontal 
Line Test

By the definition
of a function, implies
that .f1a2 � f1b2

a � b
NOTE

Solution

Write the function in terms of x and y.

Exchange x and y.

Thus, the inverse is To solve for y, write the relation as a
quadratic equation in y.

Then use the quadratic formula with , and .

Notice that the inverse is not a function, so it cannot be written in function
notation.

■

Determining Whether an Inverse is a Function

The inverse of a function is also a function if every input of the inverse
corresponds to exactly one output. This means that in the original func-
tion, every output corresponds to exactly one input. A function that has
this property is called a one-to-one function.

 y � �2 ± 24 � x

 y �
�4 ± 216 � 4x

2

c � �xa � 1, b � 4

y2 � 4y � x � 0

x � y2 � 4y.

x � y2 � 4y

y � x2 � 4x
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Example 5 Using the Horizontal Line Test

Graph each function below and determine whether the function is one-
to-one. If so, graph its inverse function.

a.

b.

c.

Solution

Complete graphs of each function are shown below.

h1x2 � 1 � 0.2x3

g1x2 � x3 � 3x � 1
f 1x2 � 7x5 � 3x4 � 2x3 � 2x � 1

3.1

4.7−4.7

−3.1

4.7−4.7

−3.1

4.7−4.7

−3.1

3.1 3.1

a. b. c.

Figure 3.6-7

a. The graph of f passes the Horizontal Line Test, since no horizontal
line intersects the graph more than once. Hence, f is one-to-one. The
inverse function is the reflection of f across the line shown in
Figure 3.6–8.

b. The graph of g fails the Horizontal Line Test because many
horizontal lines, including the x-axis, intersect the graph more than
once. Therefore, g is not one-to-one, and its inverse is not a function.

c. The graph of h appears to contain a horizontal line segment, so h
appears to fail the Horizontal Line Test. In this case, it is helpful to
use the trace feature to see that the points on the segment that
appears horizontal do not have the same y-value. Thus, the graph 
of h passes the Horizontal Line Test, and so it is one-to-one. The
function and its inverse are shown in Figure 3.6–9.

■

y � x,

�3.1

4.7�4.7

3.1

Figure 3.6-8

The function f in Example 5 is always increasing and the
function h is always decreasing. Every increasing or decreasing function
is one-to-one because its graph can never touch the same horizontal
line twice—it would have to change from increasing to decreasing, or
vice versa, to do so.

NOTE

�3.1

4.7�4.7

3.1

Figure 3.6-9
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Restricting the Domain

For a function that is not one-to-one, it is possible to produce an inverse
function by considering only a part of the function that is one-to-one. This
is called restricting the domain.

Example 6 Restricting the Domain

Find an interval on which the function is one-to-one, and find
on that interval.

Solution

The graph of f is one-to-one on the interval as shown in the graph.
To find a rule for first write the function in terms of x and y.

Exchange x and y in the equation, and solve for y.

y � 2x   or   y � �2x
 y � ± 2x
 x � y2

y � x2

f �1,
30, q 2,

f �1
f 1x2 � x2

Let f be a function. The following statements are equivalent.

• The inverse of f is a function.

• f is one-to-one.

• The graph of f passes the Horizontal Line Test.

The inverse function, if it exists, is written as where 

The notation does not mean .1
f

f �1

if y � f(x), then x � f �1 (y).

f �1,

Inverse
Functions

y

x

84
0

4

8

−4
−4

−8

−8

Figure 3.6-10



Because every point on the graph of the restricted function f has non-
negative coordinates, the inverse function must be . Thus,

f �11x2 � 2x

y � 2x
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y

x

84
0

4

8

−4

−4

−8

−8

y = x

f −1

f

Figure 3.6-11
■

Composition of a Function and its Inverse

The inverse of a function f is designed to send each output of f back to
the input it came from, that is,

Consequently, if you first apply f and then apply to the result, you
obtain the number you started with.

Similarly,

The results above can be generalized to all values in the domains of f and
f �1.

f 1 f �11b2 2 � f 1a2 � b

f �11 f 1a2 2 � f �11b2 � a

f �1

f 1a2 � b  exactly when  f �11b2 � a

A one-to-one function f and its inverse function have
these properties.

Also, any two functions having both properties are one-to-one
and are inverses of each other.

 ( f � f�1) (x) � x   for every x in the domain of f �1

(  f �1 � f )(x) � x    for every x in the domain of f

f �1
Composition 

of Inverse
Functions



Example 7 Verifying the Inverse of a Function

Let

Use composition to verify that f and g are inverses of each other.

Solution

Thus, f and g are inverses of each other.
■

 � 5
4x � 5 � 4x

x

�
5
5
x

� x

 1 f � g2 1x2 �
5

21g1x2 2 � 4
�

5

2a4x � 5
2x b � 4

�
5

4x � 5
x � 4

 �
20 � 512x � 42

10 �
20 � 10x � 20

10 �
10x
10 � x

 1g � f 2 1x2 �
41 f 1x2 2 � 5

21 f 1x2 2 �

4a 5
2x � 4b � 5

2a 5
2x � 4b

�

20 � 512x � 42
2x � 4

10
2x � 4

f 1x2 �
5

2x � 4  and  g1x2 �
4x � 5

2x

In Exercises 3 and 4, the graph of a function f is given.
Sketch the graph of the inverse function of f and give
the coordinates of three points on the inverse.

3.

1

1

y

x
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Exercises 3.6

In Exercises 1 and 2, write a table that repre-
sents the inverse of the function given by the table.

2.
x f(x)

1 4

2 2

3 3

4 6

5 1

x g(x)

4

0 3

1 4

2 1

3 5

�1

1.
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29.

30.

In Exercises 31–36, each given function has an inverse
function. Sketch the graph of the inverse function.

31.

32.

33.

34.

35.

36.

In Exercises 37–44, none of the functions is one-to-
one. State at least one way of restricting the domain
of the function so that the restricted function has an
inverse that is a function. Then find the rule of the
inverse function (see Example 6).

37. 38.

39. 40.

41. 42.

43.

44.

In Exercises 45–50, use composition to show that f and
g are inverses of each other (see Example 7).

45.

46.

47.

48.

49.

50.

51. Show that the inverse function of the function f

whose rule is is f itself.f 1x2 �
2x � 1
3x � 2

f 1x2 � x3 � 1  g1x2 � 23 x � 1

f 1x2 � x5  g1x2 � 25 x

f 1x2 �
�3

2x � 5  g1x2 �
�3 � 5x

2x

f 1x2 �
1

x � 1  g1x2 �
1 � x

x

f 1x2 � 2x � 6  g1x2 �
x
2 � 3

f 1x2 � x � 1  g1x2 � x � 1

f 1x2 � 31x � 522 � 2

f 1x2 �
1

x2 � 1

f 1x2 � 24 � x2f 1x2 �
x2 � 6

2

f 1x2 � x2 � 4f 1x2 � �x2

f 1x2 � 0x � 3 0f 1x2 � 0x 0

f 1x2 � ex2 � 1   for x � 0
�0.5x � 1  for x 7 0

f 1x2 � 25 x3 � x � 2

f 1x2 � 23 x � 3

f 1x2 � 0.3x5 � 2

f 1x2 � 23x � 2

f 1x2 � 2x � 3

f 1x2 � 0.1x3 � 0.005x � 1

f 1x2 � 0.1x3 � 0.1x2 � 0.005x � 14.

In Exercises 5–8, graph f and its inverse in parametric
mode (see Example 2).

5. 6.

7. 8.

In Exercises 9–22, find the rule for the inverse of 
the given function. Solve your answers for y and, if
possible, write in function notation (see Examples 3
and 4).

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

In Exercises 23–30, use a calculator and the Horizon-
tal Line Test to determine whether the function f is
one-to-one.

23.

24.

25.

26.

27.

28. f 1x2 � x3 � 4x2 � x � 10

f 1x2 � x5 � 2x4 � x2 � 4x � 5

f 1x2 � ex � 3   for x � 3
2x � 6 for x 7 3

f 1x2 � x3 � x � 5

f 1x2 � x4 � 4x � 3

f 1x2 � x4 � 4x2 � 3

f 1x2 �
B

5 3x � 1
x � 2f 1x2 �

x3 � 1
x3 � 5

f 1x2 �
x

x2 � 1
f 1x2 �

1
2x2 � 1

f 1x2 �
1
2x

f 1x2 �
1
x

f 1x2 � 5 � 23x � 2f 1x2 � 24x � 7

f 1x2 � 1x5 � 123f 1x2 � 5 � 2x3

f 1x2 � �3x2 � 5f 1x2 � 5x2 � 4

f 1x2 � �x � 1f 1x2 � �x

f 1x2 � 2x2 � 1f 1x2 � x4 � 3x2

f 1x2 � 23 x2 � 1f 1x2 � x3 � 3x2 � 2

1

1

y

x



52. List three different functions (other than the one
in Exercise 51), each of which is its own inverse.
Many correct answers are possible.

53. Critical Thinking Let m and b be constants with
Show that the function is

one-to-one, and find the rule of the inverse
function 

54. Critical Thinking Prove that the function
of Example 5c is one-to-one by

showing that it satisfies the definition:
If then 
Hint: Use the rule of f to show that when

then If this is the case, then it is
impossible to have when 

55. Critical Thinking Show that the points 
and are symmetric with respect to the
line as follows: 
a. Find the slope of the line through P and Q.
b. Use slopes to show that the line through P and

Q is perpendicular to 
c. Let R be the point where the line 

intersects Since R is on it has
coordinates (c, c) for some number c, as shown
in the figure. Use the distance formula to show
that has the same length as Conclude
that the line is the perpendicular bisector
of Therefore, P and Q are symmetric with
respect to the line y � x.

PQ.
y � x

RQ.PR

y � x,PQ.
y � x

y � x.

y � x
Q � 1b, a2

P � 1a, b2
a � b.f 1a2 � f 1b2

a � b.f 1a2 � f 1b2
f 1a2 � f 1b2.a � b,

h 1x2 � 1 � 0.2x3

f �1.

f 1x2 � mx � bm � 0.
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56. Let C be the temperature in degrees Celsius. 
Then the temperature in degrees Fahrenheit is
given by

Let g be the function that converts degrees
Fahrenheit to degrees Celsius. Find the rule of g
and show that g is the inverse function of f.

f 1C2 �
9
5 C � 32.

(c, c)

(b, a)

(a, b) y = x
y

P

x

R

Q

3.7 Rates of Change

Rates of change play a central role in calculus. They also have an impor-
tant connection with the difference quotient of a function, which was
introduced in Section 3.1.

Average Rates of Change

When a rock is dropped from a high place, the distance the rock travels
(ignoring wind resistance) is given by the function

with distance measured in feet and time t in seconds. The following
table shows the distance the rock has fallen at various times.

d1t2
d1t2 � 16t2

Objectives

• Find the average rate of
change of a function over
an interval

• Represent average rate of
change geometrically as
the slope of a secant line

• Use the difference quotient
to find a formula for the
average rate of change of a
function

Time t 0 1 2 3 3.5 4 4.5 5

Distance 0 16 64 144 196.5 256 324.5 400d(t) 



To find the distance the rock falls from time to note that at
the end of three seconds, the rock has fallen feet, whereas it
had only fallen feet at the end of one second.

So during this time interval the rock traveled 128 feet. The distance trav-
eled by the rock during other time intervals can be found the same way.

In general,

the distance traveled from time to time is feet.

From the chart, the length of each time interval can be computed by tak-
ing the difference between the two times. For example, from to 
is a time interval of length seconds. Similarly, the interval from

to is of length seconds. In general,

the length of the time interval from to is seconds.

so the average speed over the time interval from to is

.

Example 1 Average Speed over a Given Interval

Find the average speed of the falling rock 

a. from to and 
b. from to 

Solution

a. Apply the average speed formula with and .

b. Similarly, from to the average speed is

■

The units in which average speed is measured in Example 1 (feet per sec-
ond) indicate the rate of change of distance (feet) with respect to time
(seconds). The average speed, or average rate of change of distance with
respect to time, as time changes from to is given by

 �
change in distance

change in time
�

d1b2 � d1a2
b � a

.

 average speed � average rate of change

t � bt � a

d14.52 � d122
4.5 � 2 �

324 � 64
4.5 � 2 �

260
2.5 � 104 feet per second.

t � 4.5t � 2

 � 80 feet per second

 average speed �
d142 � d112

4 � 1 �
256 � 16

4 � 1 �
240
3

b � 4a � 1

t � 4.5.t � 2
t � 4t � 1

average speed �
distance traveled

time interval
�

d1b2 � d1a2
b � a

t � bt � a

average speed �
distance traveled

time interval

Since distance traveled � average speed � time interval,

b � at � bt � a

3.5 � 2 � 1.5t � 3.5t � 2
4 � 1 � 3

t � 4t � 1

d(b) � d(a)t � bt � a

d132 � d112 � 144 � 16 � 128 feet

d112 � 16
d132 � 144

t � 3,t � 1
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Although speed is the most familiar example, rates of change play a role
in many other situations as well, as illustrated in Examples 2–4 below.
The average rate of change of any function is defined below.

216 Chapter 3 Functions and Graphs

Let f be a function. The average rate of change of with
respect to x as x changes from a to b is the value

change in f(x)
change in x

�
f(b) � f(a)

b � a

f(x)
Average 
Rate of 
Change

Example 2 Rate of Change of Volume

A balloon is being filled with water. Its approximate volume in gallons is 

where x is the radius of the balloon in inches. Find the average rate of
change of the volume of the balloon as the radius increases from 5 to 10
inches.

Solution

■

Analyzing units is helpful in interpreting the meaning of a
rate of change. In Example 2, the units of the answer are gallons per
inch. This means that for every inch that the radius increases between 
5 and 10 inches, the volume increases by an average of 3.18 gallons.

Example 3 Manufacturing Costs

A small manufacturing company makes specialty office desks. The cost
(in thousands of dollars) of producing x desks is given by the function

Find the average rate of change of the cost

a. from 0 to 10 desks
b. from 10 to 30 desks
c. from 30 to 50 desks.

c1x2 � 0.0009x3 � 0.06x2 � 1.6x � 5

NOTE

 � 3.18 gallons per inch

 
change in volume
change in radius

�
V1102 � V152

10 � 5 � 18.18 � 2.27
10 � 5 � 15.91

5

V1x2 �
x3

55



Solution

a. As production increases from 0 to 10 desks, the average rate of
change of cost is

This means that costs are rising at an average rate of 1.09 thousand
dollars (that is, $1090) per desk.

b. As production goes from 10 to 30 desks, the average rate of change
of cost is

so costs are rising at an average rate of only $370 per desk.
c. As production goes from 30 to 50 desks

so the rate increases to $1210 per desk.
■

Example 4 Rate of Change of Temperature

The graph of the temperature function f during a particular day is given
below. The temperature at x hours after midnight is What is the aver-
age rate of change of the temperature

a. from 4 a.m. to noon? 
b. from 3 p.m. to 8 p.m.?

f 1x2.

c1502 � c1302
50 � 30 �

47.5 � 23.3
50 � 30 �

24.2
20 � 1.21

c1302 � c1102
30 � 10 �

23.3 � 15.9
30 � 10 �

7.4
20 � 0.37

change in cost
change in production

�
c1102 � c102

10 � 0 �
15.9 � 5

10 �
10.9
10 � 1.09
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(4, 40)

(12, 58)

Figure 3.7-2

Solution

a. The graph shows that the temperature at 4 a.m. is and the
temperature at noon is Thus, the average rate of change
of temperature is

Notice that the rate of change is positive. This is because the
temperature is increasing at an average rate of per hour.

b. The time 3 p.m. corresponds to and 8 p.m. to The
graph shows that and Thus, the average
rate of change of temperature is

The rate of change is negative because the temperature is decreasing
at an average rate of per hour.

■

Geometric Interpretation of Average Rate of Change

If P and Q are points on the graph of a function f, then the straight line
determined by P and Q is called a secant line. Figure 3.7-2 shows the
secant line joining the points (4, 40) and (12, 58) on the graph of the tem-
perature function f of Example 3.

3°

 � �3° per hour

 
change in temperature

change in time
�

f 1202 � f 1152
20 � 15 �

53 � 68
20 � 15 �

�15
5

f 1202 � 53°.f 1152 � 68°
x � 20.x � 15

2.25°

 � 2.25° per hour

change in temperature
change in time

 �
f 1122 � f 142

12 � 4 �
58 � 40
12 � 4 �

18
8

f 1122 � 58°.
f 142 � 40°

Using the points (4, 40) and (12, 58), the slope of 

this secant line is To say 

that (4, 40) and (12, 58) are on the graph of f means  
that and Thus,

The same thing happens in the general case.

 � goes from 4 to 12.
 � average rate of change as x

 �
f 1122 � f 142

12 � 4

 � 58 � 40
12 � 4

 slope of secant line � 2.25

f 1122 � 58.f 142 � 40

58 � 40
12 � 4 �

18
8 � 2.25.
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The Difference Quotient

Average rates of change are often computed for very small intervals, such
as the rate from 4 to 4.01 or from 4 to 4.001. Since and

both cases are essentially the same: computing the rate
of change over the interval from 4 to for some small quantity h. Fur-
thermore, it is often possible to define a formula to determine the average
rate for all possible values of h.

Example 5 Computing Average Speed by using a Formula

Find a formula for the average speed of a falling rock from time x to time
Use the formula to find the average speed from 3 to 3.1 seconds.

Solution

Recall that the distance the rock travels is given by the function 
with distance measured in feet and time t in seconds.d1t2 d1t2 � 16t2

x � h.

4 � h
4.001 � 4 � 0.001,

4.01 � 4 � 0.01

Let f be a function.

average rate of change
 of f from x � a to x � b

�
f(b) � f (a)

b � a
�

slope of secant line joining (a, f (a))
and (b, f (b)) on the graph of f

Secant Lines
and Average

Rates of Change

 � 32xh � 16h2

h
�

h132x � 16h2
h

� 32x � 16h

 �
161x2 � 2xh � h22 � 16x2

h
�

16x2 � 32xh � 16h2 � 16x2

h

 average speed �
d1x � h2 � d1x2
1x � h2 � x

�
161x � h22 � 16x2

h

To find the average speed from 3 to 3.1 seconds, apply the formula above,
with and 

■

In general, the average rate of change of any function f over the interval
from x to can be computed as in Example 5: Apply the definition
of average rate of change with and 

This last quantity is just the difference quotient of f (see page 144).

average rate of change �
f 1b2 � f 1a2

b � a
�

f 1x � h2 � f 1x2
1x � h2 � x

�
f 1x � h2 � f 1x2

h

b � x � h.a � x
x � h

 � 32132 � 1610.12 � 96 � 1.6 � 97.6 feet per second
 average speed � 32x � 16h

h � 0.1.x � 3



To find the average rate of change as x changes from 8 to 
let and So the average rate of change is

■

3x2 � 3xh � h2

55 �
3 � 82 � 3 � 810.012 � 10.0122

55 � 3.495

h � 0.01.x � 8
8.01 � 8 � 0.01,

220 Chapter 3 Functions and Graphs

Let f be a function. The average rate of change of f over 
the interval from x to is given by the difference
quotient.

f(x � h) � f(x)
h

x � h

Difference
Quotients and

Rates of Change

Exercises 3.7

1. A car moves along a straight test track. The
distance traveled by the car at various times is
shown in the table below. Find the average speed
of the car over each interval.
a. 0 to 10 seconds
b. 10 to 20 seconds
c. 20 to 30 seconds
d. 15 to 30 seconds

Time (seconds) 0 5 10 15 20 25 30

Distance (feet) 0 20 140 400 680 1400 1800

Year 1996 1997 1998 1999

Profit $5000 $6000 $6500 $6800

Year 2000 2001 2002 2003

Profit $7200 $6700 $6500 $7000

Example 6 Using a Rate of Change Formula

Find the difference quotient of and use it to find the average 

rate of change of V as x changes from 8 to 8.01.

Solution

Find the difference quotient of and simplify.V1x2

V1x2 �
x3

55

�
3x2 � 3xh � h2

55

�
1
55 �

1x � h23 � x3

h
�

1
55 �

x3 � 3x2h � 3xh2 � h3 � x3

h

 
V1x � h2 � V1x2

h
�

1x � h23
55 �

x3

55
h

�

1
55 1 1x � h23 � x32

h

V(x � h) V(x)⎧⎨⎩ ⎧⎨⎩

2. The yearly profit of a small manufacturing firm is
shown in the tables below. What is the average
rate of change of profits over the given time span?
a. 1996–2000 b. 1996–2003
c. 1999–2002 d. 1998–2002
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3. Find the average rate of change of the volume of
the balloon in Example 2 as the radius increases
a. from 2 to 5 inches. b. from 4 to 8 inches.

4. Find the average rate of change of cost for the
company in Example 3 when production increases
from
a. 5 to 25 desks. b. 0 to 40 desks.

5. The graph in the figure shows the monthly sales
of floral pattern ties (in thousands of ties) made
by a company over a 48-month period. Sales are
very low when the ties are first introduced; then
they increase significantly, hold steady for a while,
and then drop off as the ties go out of fashion.
Find the average rate of change of sales (in ties
per month) over the given interval.
a. 0 to 12 b. 8 to 24
c. 12 to 24 d. 20 to 28
e. 28 to 36 f. 32 to 44
g. 36 to 40 h. 40 to 48

6. A certain company has found that its sales are
related to the amount of advertising it does in
trade magazines. The graph in the figure shows
the sales (in thousands of dollars) as a function
of the amount of advertising (in number of
magazine ad pages). Find the average rate of
change of sales when the number of ad pages
increases from
a. 10 to 20. b. 20 to 60.
c. 60 to 100. d. 0 to 100.
e. Is it worthwhile to buy more than 70 pages of

ads if the cost of a one-page ad is $2000? if the
cost is $5000? if the cost is $8000?

10

8

6

4

2

Ti
es

484032241680
Month

200

100Sa
le

s

605040 90 10080703020100

Pages

7. When blood flows through an artery (which can
be thought of as a cylindrical tube) its velocity is
greatest at the center of the artery. Because of
friction along the walls of the tube, the blood’s
velocity decreases as the distance r from the
center of the artery increases, finally becoming 0
at the wall of the artery. The velocity (in
centimeters per second) is given by the function

where r is measured in centimeters. Find the
average rate of change of the velocity as the
distance from the center changes from
a. to .
b. to .
c. to .

8. A car is stopped at a traffic light and begins to
move forward along a straight road when the light
turns green. The distance (in feet) traveled by the
car in t seconds is given by for

What is the average speed of the car
from
a. to b. to 
c. to d. to 

In Exercises 9–14, find the average rate of change of
the function f over the given interval.

9.
from 

10.
from 

11.
from 

12.
from x � 0 to x � 3
f 1x2 � �22x 2 � x � 4

x � �1 to x � 3
f 1x2 � x3 � 3x 2 � 2x � 6

x � �1 to x � 4
f 1x2 � 0.25x4 � x2 � 2x � 4

x � 0 to x � 2
f 1x2 � 2 � x2

t � 10.1?t � 10t � 30?t � 10
t � 10?t � 5t � 5?t � 0

0 � t � 30
s1t2 � 2t 2

r � 0.025r � 0
r � 0.003r � 0.002
r � 0.002r � 0.001

v � 18,50010.000065 � r22



27. Two cars race on a straight track, beginning from
a dead stop. The distance (in feet) each car has
covered at each time during the first 16 seconds is
shown in the figure below.
a. What is the average speed of each car during

this 16-second interval?
b. Find an interval beginning at during

which the average speed of car D was
approximately the same as the average speed
of car C from to 

c. Use secant lines and slopes to justify the
statement “car D traveled at a higher average
speed than car C from to ”

28. The figure below shows the profits earned by a
certain company during the last quarter of three
consecutive years.
a. Explain why the average rate of change of

profits from October 1 to December 31 was the
same in all three years.

b. During what month in what year was the
average rate of change of profits the greatest?

29. The graph in the figure shows the chipmunk
population in a certain wilderness area. The
population increases as the chipmunks reproduce,
but then decreases sharply as predators move into
the area.

400,000

300,000

200,000

100,000

Oct. 1 Nov. 1

1991

1992

1993

Dec. 1

Pr
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it

1200

1000

800

400

600

200
D
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nc
e

2 4 6 8 10 12

D

C

14 16 18
Time

Car C

Car D

t � 10.t � 4

 t � 10.t � 2

t � 4
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13.
from 

14.

from 

In Exercises 15–22, compute the difference quotient of
the function.

15. 16.

17. 18.

19.

20. 21.

22.

23. Water is draining from a large tank. After t minutes
there are gallons of water in
the tank.
a. Use the results of Exercise 19 to find the average

rate at which the water runs out in the interval
from 10 to 10.1 minutes.

b. Do the same for the interval from 10 to 10.01
minutes.

c. Estimate the rate at which the water runs out
after exactly 10 minutes.

24. Use the results of Exercise 20 to find the average
rate of change of the volume of a cube whose side
has length x as x changes from
a. 4 to 4.1. b. 4 to 4.01. c. 4 to 4.001.
d. Estimate the rate of change of the volume at

the instant when 

25. Use the results of Exercise 21 to find the average
rate of change of the area of a circle of radius r as
r changes from
a. 3 to 3.5. b. 3 to 3.2. c. 3 to 3.1.
d. Estimate the rate of change at the instant when

e. How is your answer in part d related to the
circumference of a circle of radius 3?

26. Under certain conditions, the volume V of a
quantity of air is related to the pressure p (which
is measured in kilopascals) by the equation 

Use the results of Exercise 22 to estimate 

the rate at which the volume is changing at the
instant when the pressure is 50 kilopascals.

V �
5
p .

r � 3.

x � 4.

160,000 � 8000t � t2

V 1p2 �
5
p

A 1r2 � pr 2V 1x2 � x3

f 1t2 � 160,000 � 8000t � t2

f 1x2 � x2 � 3x � 1f 1x2 � x2 � 3

f 1x2 � 7x � 2f 1x2 � x � 5

x � 3 to x � 6

f 1x2 �
x2 � 3
2x � 4

x � 1 to x � 2
f 1x2 � 2x 3 � 2x 2 � 6x � 5
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2000

1000

50 100
Days

150 200
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on
30. Lucy has a viral flu. How bad she feels depends

primarily on how fast her temperature is rising at
that time. The figure shows her temperature
during the first day of the flu.
a. At what average rate does her temperature rise

during the entire day?
b. During what 2-hour period during the day

does she feel worst?
c. Find two time intervals, one in the morning

and one in the afternoon, during which she
feels about the same (that is, during which her
temperature is rising at the same average rate).

98°

99°

100°

101°

102°

103°

2 4 6 8 10 12 14 16 18 20 22 24
Hours

Te
m
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a. During what approximate time period
(beginning on day 0) is the average growth rate
of the chipmunk population positive?

b. During what approximate time period,
beginning on day 0, is the average growth rate
of the chipmunk population 0?

c. What is the average growth rate of the
chipmunk population from day 50 to day 100?
What does this number mean?

d. What is the average growth rate from day 45 to
day 50? from day 50 to day 55? What is the
approximate average growth rate from day 49
to day 51?
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Vertical Line Test: A graph in a coordinate plane represents a func-
tion if and only if no vertical line intersects the graph more than
once.

A quadratic function can be written in any of the following forms:
Transformation form: 

•

•

•

Polynomial form: 

•

•

•

x-Intercept form: 

•

• x-intercepts s and t

• y-intercept ast

The graph of is the graph of f shifted upward c units.g1x2 � f 1x2 � c

vertex  as � t
2 ,   f as � t

2 bb
f(x) � a(x � s)(x � t)

y-intercept  c

x-intercepts    �b ± 2b2 � 4ac
2a

vertex  a�b
2a, f a�b

2abb
f(x) � ax2 � bx � c

y-intercept  ah2 � k

x-intercepts  h ±
A

�k
a

vertex  1h, k2
f(x) � a(x � h)2 � k
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The graph of is the graph of f shifted downward 
c units.
The graph of is the graph of f shifted c units to 
the left.
The graph of is the graph of f shifted c units to 
the right.
The graph of is the graph of f reflected across the 
x-axis.
The graph of is the graph of f reflected across the 
y-axis.
The graph of is the graph of f stretched or com-
pressed vertically by a factor of c.
The graph of is the graph of f stretched or com-

pressed horizontally by a factor of .

Horizontal Line Test: A function is one-to-one if and only if no hor-
izontal line intersects the graph more than once.

A one-to-one function f and its inverse have these properties.

•
•

The average rate of change of a function f as x changes from a to b
is the number

The average rate of change of a function f as x changes from x to
is given by the difference quotient of the function,

f 1x � h2 � f 1x2
h

x � h

f 1b2 � f 1a2
b � a

1 f � f �12 1x2 � x

1 f �1 � f 2 1x2 � x

f �1

1
c

g1x2 � f 1c � x2
g1x2 � c � f 1x2
g1x2 � f 1�x2
g1x2 � �f 1x2
g1x2 � f 1x � c2
g1x2 � f 1x � c2
g1x2 � f 1x2 � c

1. Let f be the function given by the rule Complete the table
below.

f 1x2 � 7 � 2x.

Review Exercises

Section 3.1

x �2 �1 0 1 2 t b � 1 x � h

f(x)

2. If then 

3. If then f ax
2b �   ?  f 1x2 � 2x3 � x � 1,

h1t � 22 �   ?  h1x2 � x2 � 3x,
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Section 3.2

4. What is the domain of the function 

5. What is the domain of the function 

6. What is the domain of the function 

7. The cost of renting a limousine for 24 hours is given by

where x is the number of miles driven.
a. What is the cost if the limo is driven 20 miles? 30 miles?
b. If the cost is $218.25, how many miles were driven?

8. Let denote the greatest integer function and evaluate

a. b.

c. d.

9. If then find and .

Use the graph of the function f in the figure to answer Exercises 10–13.

10. What is the domain of f ?

11. What is the range of f ?

12.

13. f 1�12 � f 112 �   ?  

f 1�32 �   ?  

1

1

y

f
x

2 3

2

−2

−3

3

4 5 6−5 −3−4 −2 −1
−1

f a�3
2bf 102, f 1�12, f a1

2b ,f 1x2 � x � 0 x 0 � 3x 4 ,
3�7 4 � 37 4 �   ?  318.7 4 � 3�15.7 4 �   ?  

31755 4 �   ?  c�5
2d �   ?  

3x 4

C 1x2 � e150 if 0 6 x � 25
1.75x � 150 if x 7 25

h1r2 � 2r � 4 � 2r � 2?

g1t2 �
2t � 2
t � 3  ?

f 1x2 � 2�x � 2?
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a. What is the domain of the function?
b. What is the approximate range of the function?
c. Over what one-year interval is the rate of change the largest?

In Exercises 15–18, determine the local maxima and minima of the function and
the intervals on which the function is increasing and decreasing. Estimate the
intervals on which it is concave up and concave down, and the inflection points.

15.

16.

17.

18.

19. State whether the graphs below represent functions of x. Explain your
reasoning.

a. b.

f 1x2 � 0.5x4 � 2x3 � 6x2 � 16x � 2

g1 x2 � x3 � 8x2 � 4x � 3

f 1x2 � 2x3 � 5x2 � 4x � 3

g1x2 � 2x2 � x � 1

y

x

y

x

e

20. Draw the graph of a function f that satisfies the given conditions. The
function does not need to be given by an algebraic rule.
• domain of • range of 
• •

21. Sketch the graph of the function 

In Exercises 22 and 23, sketch the graph of the curve given by the parametric
equations.

22. 23.
y � 2t � 1  1�3 � t � 32y � t2 � 1  1�3 � t � 22
x � t2 � 4x � t3 � 3t2 � 1

f 1x2 �  
x2 if x � 0
x � 1 if 0 6 x 6 4
2x if x � 4

f 112 7 2f 1�22 � 0
f � 3�2, 5 4f � 3�3, 4 4

1500

1200

900

600

M
ill

io
ns

1990 1991 1992 1993 1994 1995 19960

14. The function whose graph is shown gives the amount of money (in
millions of dollars) spent on tickets for major concerts in selected years.
[Source: Pollstar]



In Exercises 24–29, find the vertex, y-intercept, and x-intercepts (if any) of the
quadratic function. Sketch the graph, with these points labeled.

24. 25.

26. 27.

28. 29.

30. Write the function in polynomial and x-intercept form.

31. Write the function in transformation and x-intercept form.

32. Write the function in transformation and
polynomial form.

In Exercises 33–38, graph each function with its parent function on the same
graph.

33. 34. 35.

36. 37. 38.

In Exercises 39–42, list the transformations, in the order they should be performed
on the graph of to produce a graph of the function f.

39. 40.

41. 42.

43. The figure shows the graph of a function f. If g is the function
then which of these statements is true?

a. The graph of g touches, but does not cross, the x-axis.
b. The graph of g touches, but does not cross, the y-axis.
c. The graph of g crosses the y-axis at 
d. The graph of g crosses the y-axis at the origin.
e. The graph of g crosses the x-axis at x � �3.

y � 4.

g1x2 � f 1x � 22,

f 1x2 � 1x � 222f 1x2 � �31x � 722 � 2

f 1x2 � �1x � 422 � 5f 1x2 � 0.25x2 � 2

g(x) � x2,

g 1x2 � 23 2xf 1x2 � x 2 � 3h1x2 � 3�x 4
g1x2 � 1.5 0x 0h1x2 �

1
x � 2f 1x2 � �2x

f 1x2 � �21x � 32 1x � 12
f 1x2 � x2 � 3x � 4

f 1x2 � 1x � 122 � 1

h1x2 � 1x � 2.42 1x � 1.72g1x2 � �21x � 12 1x � 22
f 1x2 � �x2 � 2x � 7h1x2 � 2x2 � 4x � 3

g1x2 � 1x � 422 � 1f 1x2 � 31x � 422 � 5

Chapter Review 229

Section 3.3

Section 3.4

x

2�2

2

y

�2
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45. U.S. Express Mail rates in 2002 are shown in the following table. Sketch the
graph of the function e, whose rule is cost of sending a package
weighing x pounds by Express Mail.

e1x2 �

Section 3.4.A In Exercises 46–48, determine algebraically whether the graph of the given equa-
tion is symmetric with respect to the x-axis, the y-axis, or the origin.

46. 47. 48.

In Exercises 49–51, determine whether the given function is even, odd, or nei-
ther.

49. 50. 51.

52. Plot the points and on coordinate axes.
a. Suppose the points lie on the graph of an even function f. Plot the

points 
b. Suppose the points lie on the graph of an odd function g. Plot the points
12, g122 2, 11, g112 2, 10, g102 2, 1�3, g1�32 2, and 1�4, g1�42 2.

12, f 122 2, 11, f 112 2, 10, f 102 2, 1�3, f 1�32 2, and 1�4, f 1�42 2.
14, 121�2, 12, 1�1, 32, 10, 12, 13, 22,

h1x2 � 3x5 � x1x4 � x22f 1x2 � 0 x 0  x � 1g1x2 � 9 � x2

x2 � y2 � 6y � �5x2 � y2 � 25y � 7x2 � 2x

Express Mail
Letter Rate—Post Office to

Addressee Service

Up to 8 ounces $13.65
Over 8 ounces to 2 pounds 17.85

Up to 3 pounds 21.05
Up to 4 pounds 24.20

Up to 5 pounds 27.30
Up to 6 pounds 30.40

Up to 7 pounds 33.45

44. The graph of a function f is shown in the figure. On the same coordinate
plane, carefully draw the graphs of the functions g and h whose rules are:

g1x2 � �f 1x2    and    h1x2 � 1 � f 1x2

x

y

1

1



53. If and find each value.
a. b. c.

54. If and find the rule of each function and 

state its domain.

a. b. c. d.

55. If then 

In Exercises 56–59, if and , find each value.

56. 57. 58. 59.

In Exercises 60 and 61, let f(x) � x2 � x � 6 and g(x) � |x|. Describe the rela-
tionship between the graph of f(x) and the composite function in terms of
transformations.

60. 61.

62. If find the domain of the composite function 

63. Find two functions f and g such that neither is the identity function and

64. The radius of an oil spill (in meters) is 50 times the square root of the time
t (in hours).
a. Write the rule of a function f that gives the radius of the spill at time t.
b. Write the rule of a function g that gives the area of the spill at time t.
c. What are the radius and area of the spill after 9 hours?
d. When will the spill have an area of 100,000 square meters?

65. Find the first eight terms of the orbit of under the function
.

66. Describe the set of fixed points of the function .

67. The graph of a function f is shown in the figure. Sketch the graph of the
inverse of f.

f1x2 � 3x 4
f 1x2 � 11 � x22

x � 2

1 f � g2 1x2 � 12x � 122
f � g.

f 1x2 �
1

1 � x
 and g1x2 � 2x,

g1 f 2f 1g2

1g � f 2 1x � 12g1 f 1�22 21g � f 2 1221 f � g2 112
g (x) � x3 � 3f (x) �

1
x � 1  

g1x � 12 � g1x � 12 �   ?  g1x2 � x2 � 1

a f
gb 1x21 fg2 1x21 f � g2 1x21 f � g2 1x2

g 1x2 � 2x2 � 5,f 1x2 �
1

x � 1

1 fg2 1021 f � g2 1221 f � g2 1�12
g1x2 � x3 � 1,f 1x2 � 3x � 2

Chapter Review 231

Section 3.5

Section 3.6

Section 3.5.A

x

f

y



232 Chapter Review

Section 3.7

In Exercises 68–73, find the inverse relation of each function. If the inverse is
a function, write its rule in function notation.

68. 69.

70. 71.

72. 73.

In Exercises 74–76, determine whether or not the given function is one-to-one.
Give reasons for your answer. If so, graph the inverse function.

74. 75.

76.

In Exercises 77–80, use composition to verify that f and g are inverses.

77.

78.

79.

80.

81. Find the average rate of change of the function as x

changes from
a. to 1 b. 0 to 2

82. Find the average rate of change of the function as x
changes from
a. �3 to 0 b. c.

83. If find the average rate of change of the
composite function as x changes from 3 to 5.

84. If find the average rate of change of the
composite function as x changes from to 1.

In Exercises 85–88, find the difference quotient of the function and simplify.

85. 86.

87. 88. f 1x2 � x2 � xg1x2 � x2 � 1

g1x2 � 4x � 1f 1x2 � 3x � 4

�1f � g
f 1x2 � x2 � 1 and g1x2 � x � 2,

f � g
f 1x2 � 2x � 1 and g1x2 � 3x � 2,

�3 to 5�3 to 3.5

f 1x2 � 2x2 � x � 1

�1

g1x2 �
x3 � x � 1

x � 2

f 1x2 �
x � 1
x � 1     g1x2 �

x � 1
x � 1

f 1x2 �
2x � 1
x � 3     g1x2 �

3x � 1
x � 2

f 1x2 � x3 � 1    g1x2 � 23 x � 1

f 1x2 � 4x � 6    g1x2 � 0.25x � 1.5

f 1x2 � 0.2x3 � 4x2 � 6x � 15

f 1x2 �
1
xf 1x2 � 0.02x3 � 0.04x2 � 0.6x � 4

f 1x2 � 25 x3 � 1f 1x2 � 25 � x � 7

f 1x2 � 2x � 1f 1x2 � 0 x 0
f 1x2 � 1 � x2f 1x2 � x3



89. The graph of the function g in the figure consists of straight line segments.
Find an interval over which the average rate of change of g is
a. 0 b. c. 0.5
d. Explain why the average rate of change of g is the same from to 

as it is from to 0.�2.5
�1�3

�3
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90. The graph in the figure below shows the population of fruit flies during a
50-day experiment in a controlled atmosphere.
a. During what 5-day period is the average rate of population growth the

slowest?
b. During what 10-day period is the average rate of population growth the

fastest?
c. Find an interval beginning at the 30th day during which the average

rate of population growth is the same as the average rate from day 10 to
day 20.

91. The profit (in hundreds of dollars) from selling x tons of an industrial
chemical is given by What is the average rate of
change in profit when the number of tons of the chemical sold increases
from
a. 4 to 8 tons? b. 4 to 5 tons? c. 4 to 4.1 tons?

92. On the planet Mars, the distance traveled by a falling rock (ignoring
atmospheric resistance) in t seconds is feet. How far must a rock fall
in order to have an average speed of 25 feet per second over that time
interval?

6.1t2

P1x2 � 0.2x2 � 0.5x � 1.
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Instantaneous Rates of Change

Rates of change are a major theme in differential calculus—not just the
average rate of change discussed in Section 3.7, but the instantaneous
rate of change of a function. Instantaneous rate of change is the rate of
change at a particular instant, which is like a policeman finding the speed
of a car at a particular moment by using radar. Even without calculus,
however, quite accurate approximations of instantaneous rates of change
can be obtained by using average rates appropriately.

The equation of the position (in feet) above the ground of a falling object
after t seconds is given by the equation

where is the initial height in feet and is the initial velocity in feet per
second. The object must be moving straight upward or straight down-
ward.

Example 1 Instantaneous Velocity

A ball is thrown straight up from a rooftop with an initial height of 160
feet and an initial velocity of 48 feet per second. The ball misses the rooftop
on its way down and falls to the ground. Find the instantaneous velocity
of the ball at seconds.

Solution

The height of the ball is given by the equation

The exact speed of the ball at can be approximated by finding the
average speed over very small time intervals, say 2 to 2.01 or even shorter
intervals. Over a very short time span, such as a hundredth of a second,
the ball cannot change speed very much, so these average speeds should
be a reasonable approximation of its speed at the instant 

The difference quotient of the function s, which represents the average
velocity of the function s, is

 � �16t 

2 � 32th � 16h 

2 � 48t � 48h � 160 � 16t 

2 � 48t � 160
h

 �
1�161t 

2 � 2th � h 

22 � 481t � h2 � 1602 � 1�16t 

2 � 48t � 1602
h

 �
1�16 1t � h2  

2 � 48 1t � h2 � 1602 � 1�16t 

2 � 48t � 1602
h

 ¢s
¢t

�
s 1t � h2 � s 1t2

h

t � 2.

t � 2

s1t2 � �16t 

2 � 48t � 160.

t � 2

v0s0

s � �16t 

2 � v0t � s0,

is often used to
denote change in the value 

of a quantity. which is 

read “change in s divided
by change in t,” represents
the ratio of the change in
position to the change in
time, which is velocity.

¢s
¢t

,

¢NOTE
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General expression of average velocity

When the expression for average velocity is

The values of the average velocity at times close to are shown in the
following table.

t � 2

�32122 � 16h � 48 � �16 � 16h.

t � 2,

 � �32t � 16h � 48

 � �32th � 16h2 � 48h
h

As the value of h gets very small, the values of the average velocity
approach the value of the instantaneous velocity. Since these values
approach the instantaneous velocity at is feet per second.

■

In the table in Example 1, notice that when h is small, the term con-
tributes very little to the average rate of change. Therefore, the
instantaneous velocity is the remaining term of the difference quotient at

namely In a similar fashion, the general expression of the dif-
ference quotient, becomes

Instantaneous rate of change expression

when h is very small. Instantaneous rate of change can be found by using
for different values of t.

Slope of the Tangent Line
In Example 1, the instantaneous rate of change was found by calculating
the average rate of change over smaller and smaller intervals. This tech-
nique can also be represented on a graph. The average rate of change over
an interval is the slope of the secant line that contains the points 
and If h is very small, the slope of the secant line
approaches the slope of the tangent line, a line that touches the graph at
only one point. The slope of the tangent line to a curve at a point is equal
to the instantaneous rate of change of the function at that point.

1x � h, f 1x � h2 2. 1x, f 1x2 2

�32t � 48

�32t � 48

�32t � 16h � 48,
�16.t � 2,

�16h

�16t � 2�16,

Average Velocity
Change in Time at 

2 to h

2 to 2.1 0.1

2 to 2.01 0.01

2 to 2.001 0.001

2 to 2.0001 0.0001

2 to 2.00001 0.00001 �16.00016

�16.0016

�16.016

�16.16

�17.6

�16 �  16h2 � h
t � 2
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The graph in Figure 3.C-1 shows secant lines that contain the fixed point
and the points and for the function in

Example 1. As the second point approaches the fixed point, the secant
lines approach the tangent line, and the slopes of the secant lines approach
the slope of the tangent line. The slope of the tangent line, shown in red,
is the instantaneous rate of change of the function at the point The
tangent line can be used to determine when the instantaneous rate of
change is 0, that is, when the object changes direction.

Example 2 Instantaneous Rate of Change Equal Zero

When is the instantaneous rate of change of the ball in Example 1 equal
to zero? What is the maximum height reached by the ball?

Solution

The expression for instantaneous rate of change for 
was found to be Set this expression equal to zero and

solve for t.

Therefore, 1.5 seconds after the ball is thrown upward, its rate of change
is zero. That is, the ball stops moving upward 1.5 seconds after being
thrown, it will be at its highest at that time. Maximum height is given by
s(1.5).

The graph of s and the tangent line to the curve at are shown in
Figure 3.C-2. Notice that the tangent line is horizontal when 

■

Writing the Equation of a Tangent Line
The equation of the tangent line to a curve at a point can be found by
using the instantaneous rate of change at that point and the point-slope
form of a line.

Example 3 Equation of a Tangent Line

Write the equation of the tangent line to the function given in Example 1
when 

Solution

When the position of the ball is 
therefore, the point on the graph is From Example 1, the instan-
taneous rate of change when is So, the slope of the tangent line
is �16.

�16.t � 2
12, 1922.s122 � �161222 � 48122 � 160 � 192,t � 2,

t � 2.

t � 1.5.
t � 1.5

 � 196 feet.
 � �36 � 72 � 160
 � �1612.252 � 4811.52 � 160

 s11.52 � �1611.522 � 4811.52 � 160

 t �
48
32 � 1.5 seconds

 �32t � 48 � 0

�32t � 48.� 160
s1t2 � �16t˛

2 � 48t

x � 2.

15, f 152 213, f 132 2, 14, f 142 2,12, f 122 2
s

t
0

200

50

100

150

3 4 521

Figure 3.C-1

0

300

0 5

Figure 3.C-2
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By using the point-slope form of a line with and (2, 192), the
equation of the tangent line is 

Point-slope form

Tangent line at 

The graph of s and the tangent line at is shown in figure 3.C-3.
■

Numerical Derivatives
Most graphing calculators will give you the value of the instantaneous
rate of change of functions at particular input values. The instantaneous
rate of change at a particular input value is usually called a numerical
derivative and is denoted as nDeriv, nDer, d/dx, dY/dX, or On TI cal-
culators, numerical derivatives are found in the MATH or CALC menu.
On a Casio, numerical derivatives are displayed when using the TRACE,
Graph-to-Table, and Table & Graph features if the Derivative item is On
in the SET UP screen for graphs. Check your calculator’s manual for the
syntax.

0.

t � 2

12, 1922  y � �16x � 224
 y � 192 � �16x � 32
  y � 192 � �161x � 22
 y � y1  � m1x � x12

m � �16

Exercises

1. Write an equation for the height of a ball after 
t seconds that is thrown straight up from a bridge
at an initial height of 75 ft with an initial velocity
of 20 ft/sec. Find the instantaneous velocity of the
ball at seconds.

2. Find when the instantaneous velocity of the ball
in Exercise 1 is 0 feet per second, and interpret the
result.

3. Write an equation for the height of a ball after 
t seconds that is dropped from a tower at an
initial height of 300 ft. Find the instantaneous
velocity of the ball at seconds. [Hint: When
an object is dropped, and not thrown upward or
downward, the initial velocity is 0.]

In Exercises 4–7, find the instantaneous rate of change
of the function at the given value.

4. at 

5. at t � 3f 1t2 �
1
t

t � 5f 1t2 � t 

2 � 4t � 7

t � 3

t � 2

6. at 

7. at 

8. Find the instantaneous rate of change of
at and use it to find

the equation of the tangent line. Graph and
the tangent line on the same graph.

9. The surface area of a sphere of radius r is given
by the formula Find the
instantaneous rate of change of the surface area at

and interpret the result.

10. The profit, in dollars, of a manufacturer selling
digital phones is given by the equation

where x is the
number of phones sold. Find the instantaneous
rate of change at What are the units of
the rate of change? What does the instantaneous
rate of change at tell you about the profit
of the manufacturer?

x � 1000

x � 1000.

P1x2 � �0.05x 

2 � 200x � 30,000

r � 1

S1r2 � 4 pr 

2.

f 1t2
t � 4f 1t2 � �4t 

2 � 16t � 12

u � af 1u2 � u 

2

x � 1f 1x2 � x 

3 � 1

0

300

0 5

Figure 3.C-3



238

Beauty between order and chaos!

Everyday life abounds in apparently random phenomena: changing weather, traffic
clusters on the freeway, lightning paths, ocean turbulence, and many others. Chaos
theory is an area of mathematics that analyzes such chaotic behavior. The Mandelbrot
set, which is shown above, is a fascinating mathematical object derived from the
complex numbers. Its beautiful boundary illustrates chaotic behavior. See Excursion
4.5.A.

Polynomial and
Rational Functions

C H A P T E R

4
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4.1 Polynomial Functions

4.2 Real Zeros

4.3 Graphs of Polynomial Functions

4.3.A Excursion: Polynomial Models

4.4 Rational Functions

4.5 Complex Numbers

4.5.A Excursion: The Mandelbrot Set

4.6 The Fundamental Theorem of Algebra

Chapter Outline

Interdependence of Sections
4.3

4.1 4.2 4.4

4.5 4.6

Polynomial functions arise naturally in many applications. Many com-

plicated functions can be approximated by polynomial functions or

their quotients, rational functions.

4.1 Polynomial Functions

A polynomial is an algebraic expression that can be written in the form

where n is a nonnegative integer, x is a variable, and each of 
is a constant, called a coefficient. The coefficient is called the constant
term. Note the characteristics of a polynomial.

• all exponents are whole numbers
• no variable is contained in a denominator
• no variable is under a radical

Any letter may be used as the variable in a polynomial. Examples of poly-
nomials include the following.

12w � 6.7y15 � y10 � 7x3 � 6x2 �
1
2

a0

a0, a1, p , an

anxn � an�1x
n�1 � p � a3x

3 � a2x
2 � a1x � a0

Objectives

• Define a polynomial

• Divide polynomials

• Apply the Remainder
Theorem, the Factor
Theorem, and the
connections between
remainders and factors

• Determine the maximum
number of zeros of a
polynomial

> >
>

> >

Chapter Review

can do calculus Optimization Applications



Constant and Zero Polynomials
A polynomial that consists of only a constant term, such as the polyno-
mial 12, is called a constant polynomial. The zero polynomial is the
constant polynomial 0.

Degree of a Polynomial
The exponent of the highest power of x that appears with nonzero coeffi-
cient is the degree of the polynomial, and the nonzero coefficient of this
highest power of the variable is the leading coefficient.

Leading Constant
Polynomial Degree coefficient term

7 6 10
3 1 0

12 0 12 12
8 1

The degree of the zero polynomial is not defined because in that case no
power of x occurs with a nonzero coefficient.

�40x9 � 2x6 � 3x7 � x8 � 2x � 4

x3
6x7 � 4x3 � 5x2 � 7x � 10
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A polynomial function is a function whose rule is given by a
polynomial

where are real numbers with and n
is a nonnegative integer.

an � 0,an, an�1 , p , a1, a0

f(x) � anxn � an�1x
n�1 � p � a1x � a0

Definition of a
Polynomial

Function

The term
polynomial may refer to a
polynomial expression or a
polynomial function. The
context should clarify the
meaning.

Review addition,
subtraction, and
multiplication of
polynomials in the Algebra
Review Appendix, if
needed.

NOTE
Polynomial functions of degree less than 5 are often referred to by spe-
cial names.

• First-degree polynomial functions are called linear functions.

• Second-degree polynomial functions are called quadratic functions.

• Third-degree polynomial functions are called cubic functions.

• Fourth-degree polynomial functions are called quartic functions.

Polynomial Division

Long division of polynomials is similar to long division of real numbers,
as shown in Example 1.

Example 1 Polynomial Division

Divide by

Solution

Expand the dividend to accommodate the missing term, and write0x3,

x � 2.3x4 � 8x2 � 11x � 1
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CAUTION

Synthetic division can
be used only when the
divisor is x � c.

Step 1 In the first row, list the 2 from the
divisor and the coefficients of the
dividend in order of decreasing
powers of x, inserting 0 for missing
powers of x.

Step 2 Skip a line, draw a line, and draw a
partial box under the line beneath
the last coefficient in the first row.
Bring the first coefficient of the div-
idend below the line.

> >

Divisor Dividend

2 3 0 1�11�8

d Remainder

>

2 3 0 1�11�8

3

the problem as division.

Divide the first term of the divisor, x, into the first term of the dividend, 

and put the result, on the top line. Then multiply times 

the entire divisor, put the result on the third line, and subtract.

Next, divide the first term of the divisor, x, into the leading term of the 

difference, and put the result, on the top line. Then mul-

tiply times the entire divisor, put the result on the fifth line, and 
subtract.

Repeat the process until the remainder has a smaller degree than the divi-
sor. Because the degree of the divisor in this case is 1, the process will
stop when the subtraction results in a constant.

■

Synthetic Division
When the divisor is a first-degree polynomial such as there
is a convenient shorthand method of division called synthetic division.
The problem from Example 1 is reconsidered below, where it is used to
illustrate the procedure used in synthetic division.

x � 2 or x � 5,

     3x3 � 6x2 � 4x � 3 
x � 2�3x4 � 0x3 � 8x2 � 11x � 1
    3x4 � 6x3

      6x3 �  8x2 � 11x � 1
      6x3 � 12x2

         4x2 � 11x � 1
         4x2 �  8x
           �3x � 1
           �3x � 6
              �5

d Quotient
d DividendDivisor S

6x2

6x3

x � 6x2,6x3,

     3x3 
x � 2�3x4 � 0x3 � 8x2 � 11x � 1
    3x4 � 6x3

      6x3 � 8x2 � 11x � 1

3x33x4

x � 3x3,3x4,

d  Dividendx � 2�3x4 � 0x3 � 8x2 � 11x � 1Divisor S

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩



Step 3 Multiply the divisor constant, 2, and
the number below the line, 3. Place
the product, 6, under the dividend’s
next coefficient.

Step 4 Add the numbers in that column
and write the sum below the col-
umn under the line.

Step 5 Multiply the divisor and the last
entry of the last row. Place the prod-
uct under the dividend’s next
coefficient.

Step 6 Add the numbers in that column
and write the sum below the col-
umn under the line.

Step 7 Repeat steps 5 and 6 until a number
appears in the box under the last
column.
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The last number in the third row is the remainder. The other numbers in
the third row are the coefficients of the quotient, arranged in order of
decreasing powers of x. Because a fourth-degree polynomial was divided
by a first-degree polynomial, the quotient is a third-degree polynomial.
Therefore, the quotient is and the remainder is 

Example 2 Synthetic Division

Divide by and check the result.

Solution

To divide by write the divisor as
and perform synthetic division.

1 5 6 4 29
0 3

1 2 0 7 8

The last row shows that the quotient is and the remain-
der is 8.

■

Checking Polynomial Division

Recall how to check a long division problem. When 4509 is divided by
31, the quotient is 145 and the remainder is 14. To check the division, mul-
tiply the quotient by the divisor and add the remainder,

4509 � 145 � 31 � 14

x4 � 2x3 � x � 7

�1
�21�6�3

�1�3

x � 1�32 x � 3,x5 � 5x4 � 6x3 � x2 � 4x � 29

x � 3x5 � 5x4 � 6x3 � x2 � 4x � 29

�5.3x3 � 6x2 � 4x � 3

> >

>

> >

2 3 0 1
6

3

�11�8

2 3 0 1
6

3 6

�11�8

2 3 0 1
6 12

3 6

�11�8

>

2 3 0 1
6 12

3 6 4

�11�8

2 3 0 1
6 12 8

3 6 4 �5�3
�6

�11�8



Checking polynomial division uses the same process.

Check the division in Example 2.

 � x5 � 5x4 � 6x3 � x2 � 4x � 29
 1x4 � 2x3 � x � 72 1x � 32 � 8 � 1x5 � 5x4 � 6x3 � x2 � 4x � 212 � 8

Dividend �  Divisor � Quotient � Remainder
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If a polynomial is divided by a nonzero polynomial 
then there is a quotient polynomial and a remainder
polynomial such that

where either or has degree less than the degree
of the divisor, h(x).

r (x)r(x) � 0

 f(x) � h(x) � q(x) � r(x)

 Dividend � Divisor � Quotient � Remainder

r(x)
q(x)

h(x),f(x)
The Division

Algorithm

> > > >

If the remainder is 0 when one polynomial is divided by
another polynomial, the divisor and the quotient are factors
of the dividend.

Remainders 
and Factors

The Division Algorithm can be used to determine if one polynomial is a
factor of another polynomial.

Example 3 Factors Determined by Division

Determine if is a factor of 

Solution

Divide by and see if the remainder is 0.

The remainder is 0, and the Division Algorithm confirms the factorization.

 � 12x2 � 12 13x � 22
 6x3 � 4x2 � 3x � 2 � 12x2 � 12 13x � 22 � 0

 Dividend � Divisor � Quotient � Remainder

        3x � 2
2x2 � 1�6x3 � 4x2 � 3x � 2
     6x3    � 3x  
      �4x2    �2
      �4x2      �2
            0

2x2 � 1,6x3 � 4x2 � 3x � 2

6x3 � 4x2 � 3x � 2.2x2 � 1



Therefore, is a factor of and the other fac-
tor is the quotient, 

■

Remainders

When a polynomial is divided by a first-degree polynomial, such as
or the remainder is a constant. For example, when

is divided by 

the quotient is and the remainder is 2.

Notice that 

That is, the number is the same as the remainder when is divided
by as stated in the Remainder Theorem.x � 3,

f 1x2f 132
� 102 1112 � 2 � 2.

f 132 � 13 � 32 132 � 3 � 12 � 2

x3 � 2x2 � 4x � 5 � 1x � 32 1x2 � x � 12 � 2

x2 � x � 1

x � 3,f 1x2 � x3 � 2x2 � 4x � 5

x � 5,x � 3
f 1x2

13x � 22. 6x3 � 4x2 � 3x � 2,12x2 � 12
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If a polynomial is divided by then the remainder
is f(c).

x � c,f(x)
Remainder

Theorem

Example 4 The Remainder When Dividing by 

Find the remainder when is divided by 

Solution

Let and apply the Remainder Theorem with 

Therefore, the remainder when is divided by is 9.
■■

Example 5 The Remainder When Dividing by 

Find the remainder when is divided by 

Solution

The divisor, is not in the form so the Remainder Theorem
must be applied carefully. Rewrite the divisor as and find 

 � �5
 � 48 � 32 � 22 � 1
 � 31162 � 8142 � 111�22 � 1

 f 1�22 � 31�224 � 81�222 � 111�22 � 1

f 1�22.x � 1�22,x � a,x � 2,

x � 2.3x4 � 8x2 � 11x � 1

x � k

x � 1x79 � 3x24 � 5

f 112 � 179 � 311224 � 5 � 1 � 3 � 5 � 9

c � 1.f 1x2 � x79 � 3x24 � 5

x � 1.x79 � 3x24 � 5

x � c



By the Remainder Theorem, when is divided by
, the remainder is which can be verified by division.

■

Zeros and Factors

Recall that if is a polynomial, then solutions of the equation 
are called zeros of the function. A zero that is a real number is called a
real zero. The connection between zeros of a polynomial function and fac-
tors of the polynomial is given below.

f 1x2 � 0f 1x2

�5,x � 2
3x4 � 8x2 � 11x � 1
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A polynomial function has a linear factor if and
only if

f(a) � 0.

x � af(x)
Factor 

Theorem

The Factor Theorem states

and

You can see why the Factor Theorem is true by noting that the remain-
der when is divided by is according to the Remainder
Theorem. Therefore, by the Division Algorithm

Thus, when so that is a factor. Con-
versely, when is a factor, the remainder must be 0.

Example 6 The Factor Theorem

Show that is a factor of by using the Factor The-
orem. Find such that 

Solution

Let and find 

By the Factor Theorem, is a factor of because

Dividing by yields a quotient of and
can be written in factored form.f 1x2 x2 � x � 1,x � 3x3 � 4x2 � 2x � 3

f 132 � 0.
x3 � 4x2 � 2x � 3x � 3

 � 0
 � 27 � 36 � 6 � 3
 � 27 � 4192 � 2132 � 3

 f 132 � 33 � 41322 � 2132 � 3

f 132.f 1x2 � x3 � 4x2 � 2x � 3

1x � 32q1x2 � x3 � 4x2 � 2x � 3.q 1x2 x3 � 4x2 � 2x � 3x � 3

f 1a2x � a
x � af 1x2 � 1x � a2q1x2,f 1a2 � 0,

f 1x2 � 1x � a2q1x2 � f 1a2.
f 1a2x � af 1x2

If x � a is a factor of f(x), then a is a solution of f(x) � 0.

If a is a solution of f(x) � 0, then x � a is a factor of f(x).



The product can be verified by multiplication.
■

Fundamental Polynomial Connections

Section 2.1 described the connection among the x-intercepts of the graph
of the zeros of the function f, and the solutions of This
connection can be extended to include linear factors of when is
a polynomial.

f 1x2f 1x2,f 1x2 � 0.y � f 1x2,

 x3 � 4x2 � 2x � 3 � 1x � 32 1x2 � x � 12
 Dividend � Divisor � Quotient
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Let be a polynomial. If r is a real number that satisfies
any of the following statements, then r satisfies all the
statements.

• r is a zero of the function f

• r is an x-intercept of the graph of the function f

• is a solution, or root, of the equation 

• is a factor of the polynomial 

There is a one-to-one correspondence between the linear
factors of that have real coefficients and the x-intercepts
of the graph of f.

f(x)

f(x)x � r

f(x) � 0x � r

f(x)
Zeros, 

x-Intercepts,
Solutions, and

Factors 
of Polynomials

The box above states that a zero, an x-intercept, a solution, and the value
of r in a linear factor of the form are all the same for a polynomial.
Additionally, the x-intercepts correspond to the linear factors of of
the form where r is a real number.

Example 7 Fundamental Polynomial Connections

For find the following:

a. the x-intercepts of the graph of f
b. the zeros of f
c. the solutions to 
d. the linear factors with real coefficients of 

Solution

Graph in a standard viewing window, as
shown in Figure 4.1-1.

a. Using the zero finder, find the x-intercepts.

�3, 23 � 0.6667, and 12
5 � 2.4

f 1x2 � 15x3 � x2 � 114x � 72

15x3 � x2 � 114x � 72
15x3 � x2 � 114x � 72 � 0

f 1x2 � 15x3 � x2 � 114x � 72,

x � r,
f 1x2x � r

Figure 4.1-1

�10

�10

10

10



b. The zeros of f are 

c. The solutions of are 

and which can be verified by 

substitution.

d. The linear factors of are 

and 

The product is not the original polynomial.

There is a constant, a, such that

The leading coefficient of the original polynomial, 15, must be the lead-
ing coefficient of the product of the factors. So, 

■

Example 8 A Polynomial with Specific Zeros

Find three polynomials of different degrees that have 1, 2, 3, and as
zeros.

Solution

A polynomial that has 1, 2, 3, and as zeros must have 
and as factors. Many polynomials satisfy these

conditions, such as

Notice that g has degree 4, h had degree 5, and k has degree 8.
■

The Number of Zeros of a Polynomial
If a polynomial has four real zeros, say a, b, c, and d, then by the same
argument used in Example 8, must have

1x � a2, 1x � b2, 1x � c2, and 1x � d2
f 1x2f 1x2

 k1x2 � 21x � 4221x � 12 1x � 22 1x � 32 1x � 52 1x2 � x � 12
 h1x2 � 81x � 12 1x � 22 1x � 3221x � 52
 g1x2 � 1x � 12 1x � 22 1x � 32 1x � 52

x � 1�52 � x � 5x � 3,
x � 2,x � 1,�5

�5

 � 1x � 32 13x � 22 15x � 122
 � 1x � 32 � 3 ax �

2
3b � 5 ax �

12
5 b

 � 3 � 51x � 32ax �
2
3b ax �

12
5 b

 15x3 � x2 � 114x � 72 � 151x � 32ax �
2
3b ax �

12
5 b

a � 15.

a1x � 32ax �
2
3b ax �

12
5 b � 15x3 � x2 � 114x � 72.

1x � 32ax �
2
3bax �

12
5 b

ax �
12
5 b .

ax �
2
3b ,1x � 1�32 2,15x3 � x2 � 114x � 72

x �
12
5 � 2.4,x �

2
3 � 0.6667,

x � �3,15x3 � x2 � 114x � 72 � 0

�3, 23 � 0.6667, and 12
5 � 2.4.
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as linear factors. Because its leading term is 
has degree 4. Since must have all four factors, its degree must

be at least 4. In particular, this means that no polynomial of degree 3 can
have four or more zeros. A similar argument holds in the general case.

f 1x21x � d2 1x � c21x � a2 1x � b2x4,
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A polynomial of degree n has at most n distinct real zeros.
Number of

Zeros

Exercises 4.1

In Exercises 1–8, determine whether the given alge-
braic expression is a polynomial. If it is, list its leading
coefficient, constant term, and degree.

1. 2. �7 3.

4. 5.

6. 7.

8. (where k is a fixed positive integer)

In Exercises 9–16, use synthetic division to find the
quotient and remainder.

9.

10.

11.

12.

13.

14. 13x4 � 2x3 � 7x � 42 � 1x � 32
15x4 � 3x2 � 4x � 62 � 1x � 72
13x3 � 2x2 � 82 � 1x � 52
12x4 � 5x3 � 2x � 82 � 1x � 32
14x3 � 3x2 � x � 72 � 1x � 22
13x4 � 8x3 � 9x � 52 � 1x � 22

1x � 12k

7
x2 �

5
x

� 154x2 � 32x � 5

Ax � 23 B Ax � 23 B7x � 2x � 1

1x � 12 1x2 � 121 � x3

15.

16.

In Exercises 17–22, state the quotient and remainder
when the first polynomial is divided by the second.
Check your division by calculating 
(Divisor)(Quotient) Remainder

17.

18.

19.

20.

21.

22.

In Exercises 23–26, determine whether the first poly-
nomial is a factor of the second.

23.

24. x2 � 9;     x5 � x4 � 81x � 81

x2 � 3x � 1;  x3 � 2x2 � 5x � 6

x5 � 1;  x � 1

5x4 � 5x2 � 5;  x2 � x � 1

3x4 � 3x3 � 11x2 � 6x � 1;  x3 � x2 � 2

x5 � 2x4 � 6x3 � x2 � 5x � 1;  x3 � 1

x5 � x3 � x � 5;  x � 2

3x4 � 2x2 � 6x � 1;  x � 1

�

1x6 � x5 � x4 � x3 � x2 � x � 12 � 1x � 32
1x4 � 6x3 � 4x2 � 2x � 72 � 1x � 22

Example 9 Maximum Number of Distinct Real Zeros

State the maximum number of distinct real zeros of f.

Solution

The degree of f is 4. Therefore, the maximum number of distinct real zeros
of f is 4.

■

f 1x2 � 18x4 � 51x3 � 187x2 � 56x � 80



25.

26.

In Exercises 27–30, determine which of the given num-
bers are zeros of the given polynomial.

27.

28.

29.

30.

In Exercises 31–40, find the remainder when is
divided by without using division.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

In Exercises 41–46, use the Factor Theorem to deter-
mine whether is a factor of 

41.

42.

43.

44.

45.

46.

In Exercises 47–50, use the Factor Theorem and a cal-
culator to factor the polynomial, as in Example 7.

h1x2 � x � 2;  f 1x2 � x3 � x2 � 4x � 4

h1x2 � x � 1;  f 1x2 � 14x99 � 65x56 � 51

h1x2 � x � 1;  f 1x2 � x3 � 4x2 � 3x � 8

h1x2 � x � 2;  f 1x2 � x3 � 3x2 � 4x � 12

h1x2 � x �
1
2;  f 1x2 � 2x4 � x3 � x �

3
4

h1x2 � x � 1;  f 1x2 � x5 � 1

f(x).h(x)

g 1x2 � x � 10f 1x2 � x5 � 10x4 � 20x3 � 5x � 95;

f 1x2 � 2x5 � 3x4 � 2x3 � 8x � 8;  g 1x2 � x � 20

f 1x2 � x3 � 8x2 � 29x � 44;  g 1x2 � x � 11

f 1x2 � 2x5 � 3x4 � x3 � 2x2 � x � 8; g 1x2 � x � 10

g 1x2 � x � 1
f 1x2 � 10x75 � 8x65 � 6x45 � 4x32 � 2x15 � 5;

f 1x2 � x3 � 2x2 � 5x � 4;  g1x2 � x � 2

f 1x2 � x5 � 3x2 � 2x � 1;  g1x2 � x � 2

f 1x2 � 3x4 � 6x3 � 2x � 1;  g1x2 � x � 1

f 1x2 � x6 � 10;  g1x2 � x � 2

f 1x2 � x10 � x8;  g1x2 � x � 1

g (x),
f(x)

23, �23, 1, �1;  k 1x2 � 8x3 � 12x2 � 6x � 9

h1x2 � x3 � x2 � 8x � 8222, 22, �22, 1, �1;

1, 12, 2, �1
2, 3;  f 1x2 � 6x2 � x � 1

2, 3, 0, �1;  g 1x2 � x4 � 6x3 � x2 � 30x

x2 � 5x � 7;  x3 � 3x2 � 3x � 9

x2 � 3x � 1;  x4 � 3x3 � 2x2 � 3x � 1
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47.

48.

49.

50.

In Exercises 51– 54, each graph is of a polynomial func-
tion of degree 5 whose leading coefficient is 1,
but the graph is not drawn to scale. Use the Factor The-
orem to find the polynomial. Hint: What are the zeros
of ? What does the Factor Theorem tell you?

51. 

52. 

53. 

54. 

x

y

−3 −2 −1 1 2 3

x

y

−3 −2 −1 1 2 3

x

y

−3 −2 −1 1 2 3

x

y

−3 −2 −1 1 2 3

f(x)

f(x)

f 1x2 � x5 � 5x4 � 5x3 � 25x2 � 6x � 30

h1x2 � 4x4 � 4x3 � 35x2 � 36x � 9

g1x2 � x3 � 5x2 � 5x � 6

f 1x2 � 6x3 � 7x2 � 89x � 140



In Exercises 55–58, find a polynomial with the given
degree n, the given zeros, and no other zeros.

55. zeros, 1, 7, 56. zeros, 1, 

57. zeros 1, 2, 58. zero 2

59. Find a polynomial function f of degree 3 such that
and the zeros of are 0, 5, and 8.

60. Find a polynomial function g of degree 4 such
that the zeros of g are 0, , 2, and

In Exercises 61–64, find a number k satisfying the
given condition.

61. is a factor of 

62. is a factor of 

63. is a factor of 

64. is a factor of 

65. Use the Factor Theorem to show that for every
real number c, is not a factor of x4 � x2 � 1.x � c

x3 � kx2 � 3x � 7k.x � 2

k2 x4 � 2kx2 � 1.x � 1

x4 � 5x3 � kx2 � 18x � 18.x � 3

x3 � 3x2 � kx � 2.x � 2

g 132 � 288.
�3,�1

f 1x2f 1102 � 17

n � 5;pn � 6;

�1n � 3;�4n � 3; 

66. Let c be a real number and n a positive integer.
a. Show that is a factor of 
b. If n is even, show that is a factor of

[Remember: 

67. a. If c is a real number and n an odd positive
integer, give an example to show that 
may not be a factor of 

b. If c and n are as in part a, show that is a
factor of 

68. Critical Thinking For what value of k is the
difference quotient of equal
to 

69. Critical Thinking For what value of k is the
difference quotient of equal to

70. Critical Thinking When is divided by
the remainder is 4. Find c.

71. Critical Thinking If is a factor of
what is d?2x3 � dx2 � 11 � d22x � 5,

x � d

x � 2,
x3 � cx � 4

2x � 5 � h?
f 1x2 � x2 � kx

7x � 2 � 3.5h?
g 1x2 � kx2 � 2x � 1

xn � cn.
x � c

xn � cn.
x � c

x � c � x � 1�c2.xn � cn.
x � c

xn � cn.x � c
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4.2 Real Zeros

Finding the real zeros of a polynomial is the same as solving the
related polynomial equation, The zero of a first-degree polyno-
mial, such as can always be found by solving the equation

Similarly, the zeros of any second-degree polynomial can be
found by using the quadratic formula, as discussed in Section 2.2.
Although the zeros of higher degree polynomials can always be approx-
imated graphically as in Section 2.1, it is better to find exact values, if
possible.

Rational Zeros

When a polynomial has integer coefficients, all of its rational zeros (zeros
that are rational numbers) can be found exactly by using the following
test.

5x � 3 � 0.
5x � 3,

f 1x2 � 0.
f 1x2Objectives

• Find all rational zeros of a
polynomial function

• Use the Factor Theorem

• Factor a polynomial
completely

• Find lower and upper
bounds of zeros



The test states that every rational zero of a polynomial function with
integer coefficients must meet the conditions that

• the numerator is a factor of the constant term, and
• the denominator is a factor of the leading coefficient.

By finding all the numbers that satisfy these conditions, a list of possible
rational zeros is produced. The polynomial must be evaluated at each
number in the list to see if the number actually is a zero. Using a calcu-
lator can considerably shorten this testing process, as shown in the next
example.

Example 1 The Rational Zeros of a Polynomial

Find the rational zeros of 

Solution

If has a rational zero then by the Rational Zero Test r must be a 

factor of the constant term, 6. Therefore, r must be one of the integers
Similarly, s must be a factor of the leading coefficient,

2. Therefore, s must be one of the integers or Consequently, the 

only possibilities for are 

Eliminating duplications leaves a list of the only possible rational zeros.

Graph in a viewing window that includes all of these numbers on
the x-axis, such as and A complete graph is not
necessary because only the x-intercepts are of interest.

The graph in Figure 4.2-1a shows that the only numbers in the list that 

could possibly be zeros are , and so these are the only ones 

that need to be tested. The table feature can be used to evaluate atf 1x2
1
2,�

1
2,�3

�7 � y � 7.�7 � x � 7
f 1x2

1, �1, 2, �2, 3, �3, 6, �6, 12, �1
2, 32, �3

2

±1
±1, ±2

±1, ±3
±1, ±6

±1, ±1
±2, ±2

±2, ±3
±2, ±6

±2.r
s ,

±2.±1
±1, ±2, ±3, or ±6.

r
s ,f 1x2

f 1x2 � 2x4 � x3 � 17x2 � 4x � 6.
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If a rational number (written in lowest terms) is a zero of 

the polynomial function

where the coefficients are integers with and
then

• r is a factor of the constant term and

• s is a factor of the leading coefficient an.

a0

a0 � 0,
an � 0an, p , a1

f(x) � anxn � p � a1x � a0

r
s

The Rational
Zero Test

Figure 4.2-1a

�7

�7

7

7



these three numbers, as shown in Figure 4.2-1b, where the function is
entered in the editor and the independent variable is set to Ask.Y �
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Figure 4.2-1b

The table shows that and are the rational zeros of f and is not 

a zero. Therefore, the two other zeros shown in Figure 4.2-1a cannot be
rational numbers, that is, the two other zeros must be irrational.

■

Zeros and the Factor Theorem

Once some zeros of a polynomial have been found, the Factor Theorem
can be used to factor the polynomial, which may lead to additional zeros.

Example 2 Finding All Real Zeros of a Polynomial

Find all the real zeros of the function given in Example 1.

Solution

The graph of f, shown in Figure 4.2-1a, shows that there are four 

x-intercepts, and therefore, four real zeros. The rational zeros, and 

were found in Example 1. By the Factor Theorem, and 

are factors of The other factors can be found by using syn-

thetic division twice. First, factor out of 

Then factor out of 2x3 � 5x2 � 2x � 2.x �
1
2

f 1x2 � 1x � 32 12x3 � 5x2 � 2x � 22

f 1x2.x � 3

f 1x2.x �
1
2

x � 1�32 � x � 3

1
2,�3

f 1x2 � 2x4 � x3 � 17x2 � 4x � 6

�
1
2

1
2�3

Technology 
Tip

The table setup screen
is labeled TBLSET on 

the TI and RANG in the
Casio TABLE menu.

2 1 6
15 6

2 2 0�2�5
�6�6

�4�17�3

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩



Therefore, 

The two remaining zeros of f are the solutions of which
can be found by using the quadratic formula.

Therefore, has two rational zeros, and and two irrational zeros,

and 

■

Irreducible and Completely Factored Polynomials

A polynomial that cannot be written as the product of polynomials of
lesser degree is said to be irreducible. When a polynomial is written as
the product of irreducible factors with real coefficients, it is said to be
completely factored over the set of real numbers. All linear polynomi-
als are irreducible, and some quadratic polynomials are irreducible over
the set of real numbers.

Example 2 shows that and  are zeros of 

By the Factor Theorem and are factors. 

You can verify that

Therefore, the original polynomial can be written as

Notice that the Factor Theorem applies to irrational zeros as well as to 

rational zeros. That is, because is a zero, is a 

factor.

x � a2 � 212
2 b2 � 212

2

 � 2 1x � 32ax �
1
2b cx � a2 � 212

2 b d cx � a2 � 212
2 b d .

 f 1x2 � 2x4 � x3 � 17x2 � 4x � 6

2x2 � 4x � 4 � 2 cx � a2 � 212
2 b d cx � a2 � 212

2 b d .

x � a2 � 212
2 bx � a2 � 212

2 b
2x2 � 4x � 4.2 � 212

2
2 � 212

2

2 � 212
2 .2 � 212

2

1
2,�3f 1x2

x �
�1�22 ± 21�222 � 4112 1�22

2112 �
2 ± 212

2

x2 � 2x � 2 � 0,

� 21x � 32ax �
1
2b1x2 � 2x � 22

2x4 � x3 � 17x2 � 4x � 6 � 1x � 32ax �
1
2b12x2 � 4x � 42

f 1x2 � 1x � 32ax �
1
2b12x2 � 4x � 42

1
2 2  �5  �2    2

  1   �2   �2
 2  �4  �4    0
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� �

Recall from

algebra that can 

be simplified as follows: 

.� 1 ± 23

2 ± 212
2 �

2 ± 223
2

2 ± 212
2

NOTE



Example 3 Factoring a Polynomial Completely

Factor 

Solution

Begin by finding as many rational zeros as possible. By the Rational Zero 

Test, every rational zero is of the form where or and 

or Thus, the possible rational zeros are

The graph of f shows that the only possible zeros are and 3. It is
easily verified that both numbers are zeros of . Consequently,

and are factors of by the Factor Theorem.

Division shows other factors.

The other zeros of f are the zeros of 

Because every zero of is also a zero of and the only rational
zeros of f are and 3, check if either is a zero of g by using substitution.

So 3 is a zero of g, but is not. By the Factor Theorem, is a factor
of Division shows that

Because has no real zeros, it cannot be factored further. So is
completely factored in the last statement above.

■

Bounds

In some cases, special techniques may be needed to guarantee that all
zeros of a polynomial are located.

Example 4 Finding All Real Zeros of a Polynomial

Show that all the real zeros of lie between
and 3, and find all the real zeros of 

Solution

First show that g has no zero larger than 3, as follows. Use synthetic divi-
sion to divide by x � 3.g 1x2

g 1x2.�1
g1x2 � x5 � 2x4 � x3 � 3x � 1

f 1x22x2 � 1

 � 1x � 12 1x � 32 1x � 32 12x2 � 12
 f 1x2 � 1x � 12 1x � 32 12x3 � 6x2 � x � 32

g 1x2. x � 3�1

 g132 � 21323 � 61322 � 132 � 3 � 0
 g1�12 � 21�123 � 61�122 � 1�12 � 3 � �12

�1
f 1x2,g 1x2

g1x2 � 2x3 � 6x2 � x � 3.

 � 1x � 12 1x � 32 12x3 � 6x2 � x � 32
 2x5 � 10x4 � 7x3 � 13x2 � 3x � 9 � 1x � 12 12x4 � 12x3 � 19x2 � 6x � 92

f 1x2x � 3x � 1�12 � x � 1
f1x2 �1

±1, ±3, ±9, ± 1
2, ± 3

2, ± 9
2

±2.s � ±1

±9r � ±1, ±3,r
s ,

f 1x2 � 2x5 � 10x4 � 7x3 � 13x2 � 3x � 9 completely.
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Figure 4.2-2

�10 10

�10

10



Thus, the quotient is and the remainder is 64.
Applying the Division Algorithm,

When the factor is positive and , the
quotient, is also positive because all its coefficients are positive. The
remainder, 64, is also positive. Therefore, is positive whenever 
In particular, is never 0 when and so there are no zeros of g
greater than 3.

A similar procedure shows that g has no zero less than . Divide 
by and rewrite by applying the Division Algorithm.

When the factor is negative. When x is negative, all odd
powers of x are negative and all even powers are positive. Consequently,
the quotient, is positive when because
all odd powers are multiplied by negative coefficients. The positive quo-
tient multiplied by the negative factor produces a negative product.
The remainder, is also negative. Hence, is negative whenever

and there are no real zeros of g less than Therefore, all the
real zeros of lie between and 3.

Finally, find all the real zeros of The only
possible rational zeros are and it is easy to verify that neither is actu-
ally a zero. The graph of g in Figure 4.2-3 shows that there are exactly
three real zeros between and 3. Because all real zeros of g lie between

and 3, g has only these three real zeros. They can be approximated by
using a calculator’s zero finder.

■

Upper Bound and Lower Bound
Suppose is a polynomial and m and n are real numbers with 
If all the real zeros of are between m and n, m is called a lower bound
and n is called an upper bound for the real zeros of Example 4 shows
that is a lower bound and 3 is an upper bound for the real zeros of

If you know lower and upper bounds for the real zeros of a polynomial,
you can usually determine the number of real zeros the polynomial has,
as shown in Example 4. The technique used in Example 4 to test possible
lower and upper bounds works in the general case.

g1x2 � x5 � 2x4 � x3 � 3x � 1.
�1

f 1x2.f 1x2 m 6 n.f 1x2

x � �0.3361  x � 1.4268  and  x � 2.1012

�1
�1

±1,
g1x2 � x5 � 2x4 � x3 � 3x � 1.

�1g 1x2 �1.x 6 �1,
g 1x2�4,

x � 1

x 6 �1x4 � 3x3 � 2x2 � 2x � 5,

x � 1x 6 �1,

 � 1x � 12 1x4 � 3x3 � 2x2 � 2x � 52 � 4
 g1x2 � x5 � 2x4 � x3 � 3x � 1

g 1x2x � 1�12 � x � 1
g 1x2�1

x 7 3,g 1x2 x 7 3.g 1x2
x4 � x3 � 2x2 � 6x � 21x � 3x 7 3,

 � 1x � 32 1x4 � x3 � 2x2 � 6x � 212 � 64
 g1x2 � x5 � 2x4 � x3 � 3x � 1

x4 � x3 � 2x2 � 6x � 21

3   1  �2  �1   0   3   1
3    3   6  18  63

1    1   2   6  21  64
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Figure 4.2-3

�4
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Example 5 Finding All Real Zeros of a Polynomial

Find all real zeros of 

Solution

By the Rational Zero Test, the only possible rational zeros are but nei-
ther is a zero of f. Hence, the real zeros are irrational. Figure 4.2-4 shows
four x-intercepts between and 2, but because f has degree 6, there may
be two more zeros that are not shown. Use the Bounds Test to see if all
the zeros are between and 2.

To see if 2 is an upper bound, divide by 

All nonnegative

Because the divisor and every term in the last row are positive, 2 is an
upper bound for the real zeros of f.

Now divide by to see if is a lower bound.

Alternating signs

Because the divisor number is negative and the signs in the last row of
the synthetic division alternate, is a lower bound.

Therefore, all real zeros of f are between and 2, and all zeros of f are
shown in Figure 4.2-4. Using a zero finder, there are four zeros.

■

The examples in this section illustrate the following guidelines for
finding all the real zeros of a polynomial.

x � �1.5837  x � �0.6180  x � 0.2220  and  x � 1.6180

�2

�2

�2    1   0   0    1  �7   �3   1
�2   4  �8   14  �14   34

1  �2   4  �7    7   �17    35

�2x � 1�22f 1x2

2   1   0   0   1  �7   �3   1
2   4   8   18   22   38

  1   2    4   9   11   19   39

x � 2.f 1x2
�2

�2

±1,

f 1x2 � x6 � x3 � 7x2 � 3x � 1.
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Figure 4.2-4

�10

�10

10

10

Let f(x) be a polynomial with positive leading coefficient.

• If and every number in the last row in the synthetic
division of by is nonnegative, then d is an
upper bound for the real zeros of f.

• If and the numbers in the last row of the synthetic
division of by are alternately positive and
negative, with 0 considered as either, then c is a lower
bound for the real zeros of f.

x � cf(x)
c 66 0

x � df(x)
d 77 0

Bounds 
Test

�
�



Shortcuts and variations are always possible. For instance, if the graph of
a cubic polynomial shows three x-intercepts, then it has three real zeros,
which is the maximum number of zeros, and there is no point in finding
bounds of the zeros. In order to find as many exact zeros as possible in
Guideline 4 above, check to see if the rational zeros of f are also zeros of
g. Factor accordingly, as in Example 3.

Example 6 Finding All Real Zeros of a Polynomial

Find all real zeros of

Solution

The graph of f shown in Figure 4.2-5 indicates 4 possible real zeros. By
the Rational Zero Test, the only possible rational zeros are:

It can be verified that both 1 and 2 are zeros of f. The graph also suggests
that all the real zeros lie between and 6. The Bounds Test shows that
this is indeed the case.

Negative Divisor

Alternating signs

Positive Divisor

All nonnegative

Therefore, all the real zeros of f are between and 6, and the four 
x-intercepts shown in Figure 4.2-5 are the only real zeros of f: two are
rational zeros, 1 and 2, and two are irrational, and 
as determined by using a zero finder.

■

x � 2.7913,x � �1.7913

�2

6  1  �6   9  7  �28    33     �36      20
6   0   54   366   2028   12,366  73,980

 1    0   9    61    338   2061   12,330   74,000

�2  1  �6   9   7  �28   33  �36   20
�2  16  �50   86  �116  166 �260

1  �8  25  �43    58  �83  130 �240

�2

±1, ±2, ±4, ±5, ±10, and ±20.

f 1x2 � x7 � 6x6 � 9x5 � 7x4 � 28x3 � 33x2 � 36x � 20.

g 1x2
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1. Use the Rational Zero Test to find all the rational zeros of f.
[Examples 1, 3, and 6]

2. Write as the product of linear factors, one for each
rational zero, and another factor [Examples 2 and 3]

3. If has degree 2, find its zeros by factoring or by using
the quadratic formula. [Example 2]

4. If has degree 3 or greater, use the Bounds Test, if
possible, to find lower and upper bounds for the zeros of
g. Approximate the remaining zeros graphically. [Examples
4 and 5]

g(x)

g(x)

g (x).
f(x)

Finding 
Real Zeros 

of 
Polynomials

Figure 4.2-5

�5

5

�5 5
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Exercises 4.2

When asked to find the zeros of a polynomial, find
exact zeros whenever possible and approximate the
other zeros.

In Exercises 1 –12, find all the rational zeros of the
polynomial.

1. 2.

3. 4.

5. Hint: The Rational Zero
Test can only be used on polynomials with
nonzero constant terms. Factor as a product
of a power of x and a polynomial g(x) with
nonzero constant term. Then use the Rational
Zero Test on 

6.

7. Hint: The Rational Zero 

Test can only be used on polynomials with integer
coefficients. Note that and have the
same zeros. (Why?)

8.

9.

10.

11.

12.

In Exercises 13–18, factor the polynomial as a product
of linear factors and a factor such that is either
a constant or a polynomial that has no rational zeros.

13. 14.

15.

16.

17.

18.

In Exercises 19–22, use the Bounds Test to find lower
and upper bounds for the real zeros of the polynomial.

x5 � 4x3 � x2 � 6x

x5 � 4x4 � 8x3 � 14x2 � 15x � 6

x5 � 2x4 � 2x3 � 3x � 2

x6 � 2x5 � 3x4 � 6x3

6x3 � 5x2 � 3x � 12x3 � 4x2 � x � 2

g(x)g(x)

0.05x3 � 0.45x2 � 0.4x � 1

0.1x3 � 1.9x � 3

1
3 x7 �

1
2 x6 �

1
6 x5 �

1
6 x4

1
3  x4 � x3 � x2 �

13
3  x � 2

2
3 x4 �

1
2 x3 �

5
4 x2 � x �

1
6

12f 1x2f 1x2

1
12x3 �

1
12x2 �

2
3x � 1

2x6 � 3x5 � 7x4 � 6x3

g 1x2.

f 1x2
2x5 � 5x4 � 11x3 � 4x2

3x3 � 8x2 � x � 20x3 � 5x2 � x � 5

x3 � x2 � 3x � 3x3 � 3x2 � x � 3

19. 20.

21. Hint: The
Bounds Test applies only to polynomials with a
positive leading coefficient. The polynomial 
has the same zeros as . Why?

22.

In Exercises 23–36, find all real zeros of the polyno-
mial.

23. 24.

25. 26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37. a. Show that is an irrational number. Hint:
is a zero of Does this polynomial

have any rational zeros?
b. Show that is irrational.

38. Graph in the
standard viewing window.
a. How many zeros does appear to have?

Without changing the viewing window, explain
why must have an additional zero. Hint:
Each zero corresponds to a factor of What
does the rest of the factorization consist of?

b. Find all the zeros of 

39. According to the FBI, the number of people
murdered each year per 100,000 population can 
be approximated by the polynomial function

where corresponds to
1987.

x � 08.1104 10 � x � 102,
f 1x2 � 0.0011x4 � 0.0233x3 � 0.1144x2 � 0.0126x �

f 1x2.
f 1x2.

f 1x2
f 1x2

f 1x2 � 0.001x3 � 0.199x2 � 0.23x � 6

23

x2 � 2.22
22

3x7 � 8x6 � 13x5 � 36x4 � 10x3 � 21x2 � 41x � 10

x4 � 48x3 � 101x2 � 49x � 50

x5 � 8x4 � 20x3 � 9x2 � 27x � 27

3x4 � 2x3 � 4x2 � 4x � 1

x5 � 3x4 � 4x3 � 11x2 � 3x � 2

x6 � 4x5 � 5x4 � 9x2 � 36x � 45

x5 � x3 � x

2x5 � x4 � 10x3 � 5x2 � 12x � 6

3x5 � 2x4 � 7x3 � 2x2

x4 � x3 � 19x2 � 32x � 12

z3 � z2 � 2z � 26x3 � 11x2 � 6x � 1

t4 � t3 � 2t2 � 4t � 82x3 � 5x2 � x � 2

�0.002x3 � 5x2 � 8x � 3

�f 1x2
f 1x2

�x5 � 5x4 � 9x3 � 18x2 � 68x � 176

x3 � 15x2 � 16x � 12x3 � 2x2 � 7x � 20



a. What was the murder rate in 1990?
b. In what year was the rate 8 people per 100,000?
c. In what year was the rate the highest?

40. During the first 150 hours of an experiment, the
growth rate of a bacteria population at time t
hours is 
bacteria per hour.
a. What is the growth rate at 50 hours? at 100

hours?
b. What is the growth rate at 145 hours? What

does this mean?
c. At what time is the growth rate 0?
d. At what time is the growth rate bacteria

per hour?
e. Approximately at what time does the highest

growth rate occur?

41. An open-top reinforced box is to be made from a
12-by-36-inch piece of cardboard by cutting along
the marked lines, discarding the shaded pieces,
and folding as shown in the figure. If the box
must be less than 2.5 inches high, what size
squares should be cut from the corners in order
for the box to have a volume of 448 cubic inches?

�50

g 1t2 � �0.0003t3 � 0.04t2 � 0.3t � 0.2

Section 4.2 Real Zeros 259

42. A box with a lid is to be made from a 48-by-24-
inch piece of cardboard by cutting and folding, as
shown in the figure. If the box must be at least 6
inches high, what size squares should be cut from
the two corners in order for the box to have a
volume of 1000 cubic inches?

x x x x
x x

12

36

cut along fold along

x x x
x x

24

48

43. In a sealed chamber where the temperature varies,
the instantaneous rate of change of temperature
with respect to time over an 11-day period is
given by where
time is measured in days and temperature in
degrees Fahrenheit (so that rate of change is in
degrees per day).
a. At what rate is the temperature changing at the

beginning of the period ? at the end of
the period ?

b. When is the temperature increasing at a rate of
per day?

c. When is the temperature decreasing at a rate of
per day?

d. When is the temperature decreasing at the
fastest rate?

44. Critical Thinking 
a. If c is a zero of

show that is also a zero.

b. Do part a with replaced by 

c. Let

If c is a zero of f, what conditions must the 

coefficients satisfy so that is also a zero?1
cai

f 1x2 � a12x
12 � a11x

11 � p � a2x
2 � a1x � a0.

g1x2 � 2x6 � 3x5 � 4x4 � 5x3 � 4x2 � 3x � 2

g 1x2.f 1x2
1
c

f 1x2 � 5x4 � 4x3 � 3x2 � 4x � 5,

3°F

4°F

1t � 112
1t � 02

F 1t2 � 0.0035t4 � 0.4t2 � 0.2t � 6,
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4.3 Graphs of Polynomial Functions

The graph of a first-degree polynomial function is a straight line, as dis-
cussed in Section 1.4. The graph of a second-degree, or quadratic,
polynomial function is a parabola, as discussed in Section 3.3. The empha-
sis in this section is on higher degree polynomial functions.

Basic Polynomial Shapes

The simplest polynomial functions are those of the form where
a is a constant and n is a nonnegative integer. The graphs of polynomial
functions of the form with are of two basic types. The
different types are determined by whether n is even or odd.

Polynomial Functions of Odd Degree

When the degree of a polynomial function in the form is odd,
its graph has the basic form shown is Figures 4.3-1a and 4.3-1b. Notice
that the graph shown in Figure 4.3-1b has the same shape as the graph
shown in Figure 4.3-1a, but it is the reflection of the Figure 4.3-1a across
either the x-axis or the y-axis.

n oddf(x) � axn,

f 1x2 � axn,

n � 2,f 1x2 � axn,

f 1x2 � axn,

Objectives

• Recognize the shape of
basic polynomial functions

• Describe the graph of a
polynomial function

• Identify properties of
general polynomial
functions: Continuity, End
Behavior, Intercepts, Local
Extrema, Points of Inflection

• Identify complete graphs of
polynomial functions

Figure 4.3-1a

a 7 0

y

x

Figure 4.3-1b

a 6 0

900,000

210
�40,000

Graphing Exploration

Graph each of the following functions of odd degree in the window
with and , and compare each shape with
those shown in Figure 4.3-1a and 4.3-1b.

• •

• • k 1x2 � �2x7g 1x2 � 0.01x5

h1x2 � �x3f 1x2 � 2x3

�30 � y � 30�5 � x � 5
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Polynomial Functions of Even Degree

When the degree of a polynomial function in the form is even,
its graph has the form shown in Figures 4.3-2a or 4.3-2b. Again, the graph
of when a is negative, is the reflection of Figure 4.3-2a across
the x-axis.

n evenf(x) � axn,

f 1x2 � axn,

f 1x2 � axn

Figure 4.3-2a

a 7 0

y

x

Figure 4.3-2b

a 6 0

y

x

Properties of General Polynomial Functions

The graphs of other polynomial functions can vary considerably in shape.
Understanding the properties that follow should assist you in interpret-
ing graphs correctly and in determining when a graph of a polynomial
function is complete.

Continuity
Every graph of a polynomial function is continuous, that is, it is an un-
broken curve, with no jumps, gaps, or holes. Furthermore, graphs of
polynomial functions have no sharp corners. Thus, neither of the graphs
shown in Figure 4.3-3 represents a polynomial function. Note: some cal-
culator graphs of polynomial functions may appear to have sharp corners;
however, zooming in on the area in question will show a smooth curve.

Graphing Exploration

Graph each of the following functions of even degree in the window
with and , and compare each shape with
those shown in Figure 4.3-2a or 4.3-2b.

• •

• • k 1x2 � �3x4g 1x2 � 6x6

h1x2 � �2x2f 1x2 � 2x4

�30 � y � 30�5 � x � 5



End Behavior
The shape of a polynomial graph at the far left and far right of the coor-
dinate plane, that is, when is large, is called the end behavior of the
graph. End behavior of graphs of functions of the form have
common characteristics when n is odd and when n is even. The Graph-
ing Exploration below asks you to find a generalization about the end
behavior of polynomial functions of odd degree.

f 1x2 � axn
0x 0
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Figure 4.3-3

Sharp
corner

Sharp
corner

Gap

Jump
Hole

The reason that the answer to the last question is “yes” can be understood
by observing which term contributes the most to the output value 
when x is large, as shown in the following chart.

Values of Specific Terms of 

x 70 100

600 300

10,000 2,500 4,900 10,000

686,000 2,000,000

690,480 2,009,400�247,200�1,989,400f(x) � 2x3 � x2 � 6x

�250,000�2,000,000g(x) � 2x3

x2

�600�420�6x

�50�100

f(x) � 2x3 � x2 � 6x

f 1x2

Graphing Exploration

Consider the function and the function deter-
mined by its leading term 

• In a standard viewing window, graph f and g. Describe how the
graphs look different and how they look the same.

• In the viewing window and 
graph f and g. Do the graphs look almost the same?

• In the viewing window

and 

graph f and g. Do the graphs look virtually identical?

y � 1,000,000,�1,000,000 ��100 � x � 100

�10,000 � y � 10,000,�20 � x � 20

g 1x2 � 2x3.
f 1x2 � 2x3 � x2 � 6x
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The chart shows that when is large, the terms and are insignif-
icant compared with and they play a very minor role in determining
the end behavior of Hence, the values of and are relatively
close for large values of x.

g 1x2f 1x2f 1x2.2x3,
�6xx20x 0

When is large, the graph of a polynomial function closely
resembles the graph of its highest degree term.

When a polynomial function has odd degree, one end of its
graph shoots upward and the other end downward.

When a polynomial function has even degree, both ends of its
graph shoot upward or both ends shoot downward.

00  x 00End Behavior 
of Polynomial

Functions

Following are some illustrations of the facts listed in the preceding box.
In Figures 4.3-4a–d, the graph of a polynomial function is shown on the
left and the graph of its leading term is shown on the right. The end behav-
ior of the graph of the polynomial is the same as the end behavior of the
graph of the leading term. Note the degree of each set of graphs and
whether the leading coefficient is positive or negative.

y

x

−4 −2
0

2

4

2 4

y

x

−4 −2
0

2

4

2 4

y

x

−4 −2
0

2

4

−2

2 4

y

x

−4 −2
0

2

4

−2

2 4

g 1x2 � 2x4f 1x2 � 2x4 � 5x2 � 2

g 1x2 � �3x6f 1x2 � �3x6 � 5x2 � 2

Figure 4.3-4b

Figure 4.3-4a



Intercepts
Consider a polynomial function written in polynomial form.

• The y-intercept of the graph of f is the constant term, 
• The x-intercepts of the graph of f are the real zeros of f.

The graph of every polynomial function has exactly one y-intercept, and
because a polynomial of degree n has at most n distinct zeros, the num-
ber of x-intercepts is limited.

a0.

f 1x2 � anxn � an�1x
n�1 � p � a1x � a0
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y

x

−4 −2
0

2
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2 4

y

x

−4 −2
0
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2 4

y

x

−4 −2
0

2

4

−2

−4

2 4

y

x

−4 −2
0

2

4

−2

−4

2 4

Figure 4.3-4d

Figure 4.3-4c

The graph of a polynomial function of degree n

• has one y-intercept, which is equal to the constant term.

• has at most n x-intercepts.

Intercepts

g 1x2 � 0.4x3f 1x2 � 0.4x3 � x2 � 2x � 3

g 1x2 � �0.6x5f 1x2 � �0.6x5 � 4x2 � x � 4
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That is, the number of x-intercepts can be no greater than the degree of
the polynomial function.

Multiplicity
There is another connection between zeros and graphs. If is a fac-
tor that occurs m times in the complete factorization of a polynomial
expression, then r is called a zero with multiplicity m of the related poly-
nomial function.

For example, and 1 are zeros of The
multiplicity of each zero is shown in the following chart.

f 1x2 � 1x � 3221x � 12 1x � 123.�3, �1

x � r

Figure 4.3-5

y

x

−4 −2
0

10

20

30

−10

2

Let c be a zero of multiplicity k of a polynomial f.

• If k is odd, the graph of f crosses the x-axis at c.

• If k is even, the graph of f touches, but does not cross, the
x-axis at c.

Multiplicity 
and Graphs

Example 1 Multiplicity of Zeros

Find all zeros of State the multiplicity of
each zero, and state whether the graph of f touches or crosses the x-axis
at each corresponding x-intercept.

Solution

The following chart lists the zeros of f, the multiplicity of each, and
whether the graph touches or crosses the x-axis at the corresponding 
x-intercept.

f 1x2 � 1x � 1221x � 22 1x � 323.

Zero Multiplicity x-axis

2 touches

2 1 crosses

3 3 crosses

�1

Zero 1

Multiplicity 2 1 3

�1�3

The graph of f, shown in Figure 4.3-6, verifies that the graph touches but
does not cross the x-axis at and crosses the x-axis at 2 and 3.

■
�1

Figure 4.3-6

x

y

2 4−2
0

20

40

60

Observe in Figure 4.3-5 that the graph of f does not cross the x-axis at 
a zero of even multiplicity, but does cross the x-axis at and 1, zeros of
odd multiplicity.

�1
�3,



Local Extrema
The term local extremum (plural, extrema) refers to either a local maxi-
mum or a local minimum, that is, a point where the graph has a peak or
a valley. Local extrema occur when the output values change from increas-
ing to decreasing, or vice versa, as discussed in Section 3.2.
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The two polynomials graphed in the Exploration are illustrations of the
following fact.

A polynomial function of degree n has at most local
extrema.

n � 1
Number of

Local Extrema

That is, that total number of peaks and valleys on the graph is at most
one less than the degree of the function.

Points of Inflection
Recall from Section 3.2 that an inflection point occurs where the concav-
ity of a graph of a function changes. The number of inflection points on
the graph of a polynomial is governed by the degree of the function.

• The graph of a polynomial function of degree n, with
has at most points of inflection.

• The graph of a polynomial function of odd degree, with
, has at least one point of inflection.n 7 2

n � 2n �� 2,

Number of Points
of Inflection

Graphing Exploration

• Graph in the
standard viewing window. What is the total number of local
extrema on the graph? What is the degree of f ?

• Graph in the standard viewing
window. What is the total number of local extrema on the graph?
What is the degree of ?g 1x2

g 1x2 � x4 � 3x3 � 2x2 � 4x � 5

f 1x2 � 0.5x5 � 1.5x4 � 2.5x3 � 7.5x2 � 2x � 5

Thus, the graph of a quadratic function, which has degree 2, has no points
of inflection because it can have at most The graph of
a cubic has exactly one point of inflection because it has at least 1 and at
most 3 � 2 � 1.

n � 2 � 2 � 2 � 0.
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Complete Graphs of Polynomial Function

By using the facts discussed in this section, you can often determine
whether or not the graph of a polynomial function is complete, that is,
shows all the important features.

Example 2 A Complete Graph of a Polynomial

Find a complete graph of 

Solution

Because the y-intercept is graph f in the window with 
and as shown in Figure 4.3-7.

The three peaks and valleys shown are the only local extrema because a
fourth-degree polynomial graph has at most three local extrema.

There cannot be more x-intercepts than the two shown because if the
graph turned toward the x-axis farther to the right or farther to the left,
there would be an additional peak, which is impossible.

Finally, the end behavior of the graph resembles the graph of the
highest degree term.

Figure 4.3-7 includes all the important features of the graph and is there-
fore complete.

■

Example 3 A Complete Graph of a Polynomial

Find a complete graph of 

Solution

The graph of f, shown in Figure 4.3-8a on the next page, is similar to the
graph of its leading term but it does not appear to have any local
extrema. However, if you use the trace feature on the flat portion of the
graph to the right of the y-axis, you should see that the y-coordinates
increase, then decrease, and then increase again.

Zoom in on the portion of the graph between 0 and 1, as shown in Fig-
ure 4.3-8b. Observe that the graph actually has two local extrema, one
peak and one valley, which is the maximum possible number of local
extrema for a cubic function. Figures 4.3-8a and 4.3-8b together provide
a complete graph of f.

y � x3,

f 1x2 � x3 � 1.8x2 � x � 2.

y � x4,

�100 � y � 100,
�10 � x � 10�80,

f 1x2 � x4 � 10x3 � 21x2 � 40x � 80.

Figure 4.3-7

�100

100

�10 10

Technology 
Tip

Points of inflection may
be found by using 

INFLC in the TI-86/89
GRAPH MATH menu.

No polynomial graph of a function of degree contains
horizontal line segments like those shown in Figure 4.3-8a. Always
investigate such segments by using trace or zoom-in to determine any
hidden behavior.

n 7 1NOTE



■

Example 4 A Complete Graph of a Polynomial

Determine if the graph shown in Figure 4.3-9a is a complete graph of

Solution

The graph shown in Figure 4.3-9a cannot be a complete graph because,
when is large, the graph of f must resemble the graph of 
whose left end goes downward.

So the graph of f must turn downward and cross the x-axis somewhere
to the left of the origin. Therefore, the graph must have one more peak,
where the graph turns downward, and must have another x-intercept.

One additional peak and the ones shown in Figure 4.3-9a make a total of
four, the maximum possible for a polynomial of degree 5. Similarly, the
additional x-intercept makes a total of 5 x-intercepts. Because f has degree
5, there are no other x-intercepts.

A viewing window that includes the local maximum and the x-intercept
shown in Figure 4.3-9b will not display the local extrema and x-intercepts
shown in Figure 4.3-9a. Consequently, a complete graph of f requires both
Figure 4.3-9a and Figure 4.3-9b to illustrate the important features of the
graph.

■

g1x2 � 0.01x5,0 x 0

f 1x2 � 0.01x5 � x4 � x3 � 6x2 � 5x � 4.
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Figure 4.3-8a

�6

�6 6

6

Figure 4.3-8b

2

2.2

0 1

Figure 4.3-9a

�10

10

�10 10

Figure 4.3-9b

�5,000,000

10,000,000

�115 50

The graphs shown in Examples 2–4 were known to be complete because
they included the maximum possible number of local extrema. Many
graphs, however, may have fewer than the maximum number of possi-
ble peaks and valleys. In such cases, use any available information and
try several viewing windows to obtain the most complete graph.
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Exercises 4.3

In Exercises 1–6, decide whether the given graph could
possibly be the graph of a polynomial function.

1.

2.

3.

4.

x

y

x

y

x

y

x

y

5.

6.

In Exercises 7–12, determine whether the given graph
could possibly be the graph of a polynomial function
of degree 3, degree 4, or degree 5.

7.

8.

9.

x

y

x

y

x

y

x

y

x

y



10.

11.

12.

In Exercises 13 and 14, find a viewing window in
which the graph of the given polynomial function f
appears to have the same general shape as the graph
of its leading term.

13.

14.

In Exercises 15–18, the graph of a polynomial function
is shown. List each zero of the polynomial and state
whether its multiplicity is even or odd.

15. 10

5−5

−6

f 1x2 � x3 � 5x2 � 4x � 2

f 1x2 � x4 � 6x3 � 9x2 � 3

x

y

x

y

x

y
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16.

17.

18.

In Exercises 19–24, use your knowledge of polynomial
graphs, not a calculator, to match the given function
with one of graphs a–f.

a.

b.

x

y

x

y

20

5−5

−4

10

5−5

−5

4

5−5

−14
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c.

d.

e.

f.

19. 20.

21. 22.

23.

24.

In Exercises 25–28, graph the function in the standard
viewing window and explain why that graph cannot
possibly be complete.

25.

26.

27. h 1x2 � 0.005x4 � x2 � 5

g 1x2 � 0.01x4 � 0.1x3 � 0.8x2 � 0.7x � 9

f 1x2 � 0.01x3 � 0.2x2 � 0.4x � 7

g 1x2 � �2x2 � 3x � 1

f 1x2 � �x4 � 6x3 � 9x2 � 2

f 1x2 � x4 � 5x2 � 4g 1x2 � x3 � 4x

g 1x2 � x2 � 4x � 7f 1x2 � 2x � 3

x

y

x

y

x

y

x

y 28.

In Exercises 29–34, find a single viewing window that
shows a complete graph of the function.

29.

30.

31.

32.

33.

34.

In Exercises 35–40, find a complete graph of the func-
tion and list the viewing window(s) that show(s) this
graph.

35.

36.

37.

38.

39.

40.

41. a. Explain why the graph of a cubic polynomial
function has either two local extrema or none
at all. Hint: If it had only one, what would the
graph look like when is very large?

b. Explain why the general shape of the graph of
a cubic polynomial function must be one of the
following.

0x 0

f 1x2 � 0.3x5 � 2x4 � 7x3 � 2x2

g 1x2 � 2x3 � 0.33x2 � 0.006x � 5

823x2 � 25x � 2750
f 1x2 � 0.25x6 � 0.25x5 � 35x4 � 7x3 �

g 1x2 � 0.03x3 � 1.5x2 � 200x � 5

g 1x2 � x4 � 48x3 � 101x2 � 49x � 50

f 1x2 � 0.1x5 � 3x4 � 4x3 � 11x2 � 3x � 2

g 1x2 � x5 � 8x4 � 20x3 � 9x2 � 27x � 7

f 1x2 � 2x5 � 3.5x4 � 10x3 � 5x2 � 12x � 6

f 1x2 � x4 � 10x3 � 35x2 � 50x � 24

g 1x2 � �x4 � 3x3 � 24x2 � 80x � 15

g 1x2 � x3 � 3x2 � 4x � 5

f 1x2 � x3 � 8x2 � 5x � 14

f 1x2 � 0.001x5 � 0.01x4 � 0.2x3 � x2 � x � 5

a. b. c. d.

42. The figure shows an incomplete graph of an even
polynomial function f of fourth degree. (Even
functions were defined in Excursion 3.4.A.)
a. Find the zeros of f.
b. Explain why

where a, b, c, d are the zeros of f.

f 1x2 � k 1x � a2 1x � b2 1x � c2 1x � d2



c. Experiment with your calculator to find the
value of k that produces the graph in the
figure.

d. Find all local extrema of f.
e. List the approximate intervals on which f is

increasing and those on which it is decreasing.
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45. The figure below is a partial view of the graph of
a cubic polynomial whose leading coefficient is
negative. Which of the patterns shown in Exercise
41 does this graph have?

43. A complete graph of a polynomial function g is
shown below.
a. Is the degree of even or odd?
b. Is the leading coefficient of positive or

negative?
c. What are the real zeros of 
d. What is the smallest possible degree of g 1x2?

g 1x2?
g 1x2

g 1x2

20

10−10

−10

44. Do Exercise 43 for the polynomial function g
whose complete graph is shown here.

x

y

−4 −2 2
−5

5

10

15

−10

−15

4 6

46. The figure below is a partial view of the graph of
a fourth-degree polynomial. Sketch the general
shape of the graph and state whether the leading
coefficient is positive or negative.

In Exercises 47–56, sketch a complete graph of the
function. Label each x-intercept and the coordinates of
each local extremum; find intercepts and coordinates
exactly when possible, otherwise approximate them.

47. 48.

49.

50.

51.

52.

53.

54.

55.

56.

57. Critical Thinking
a. Graph in
the viewing window with and

and verify that the graph appears to
coincide with the horizontal line betweeny � 4
0 � y � 6

�3 � x � 3
g 1x2 � 0.01x3 � 0.06x2 � 0.12x � 3.92

f 1x2 � 32x6 � 48x4 � 18x2 � 1

h 1x2 � 8x4 � 22.8x3 � 50.6x2 � 94.8x � 138.6

g 1x2 � 0.25x4 � x2 � 0.5

f 1x2 � x5 � 3x3 � x � 1

h 1x2 � 2x3 � x2 � 4x � 2

g 1x2 � 3x3 � 18.5x2 � 4.5x � 45

f 1x2 � 0.25x4 �
2x3

3

h 1x2 � 0.25x4 � 2x3 � 4x2

g 1x2 � 4x �
4x3

3f 1x2 � x3 � 3x2 � 4

x

y

−2−3 −1 1
−4

4

8

−8

−12

2 3
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and In other words, it appears that
every x with is a solution of the
equation

Explain why this is impossible. Conclude that the
actual graph is not horizontal between and

b. Use the trace feature to verify that the graph is
actually rising from left to right between 
and Find a viewing window that shows
this.

c. Show that it is not possible for the graph of a
polynomial to contain a horizontal
segment. Hint: A horizontal line segment is
part of the horizontal line for some
constant k. Adapt the argument in part a,
which is the case 

58. Critical Thinking
a. Let be a polynomial of odd degree.
Explain why must have at least one real zero.
Hint: Why must the graph of f cross the x-axis,
and what does this mean?
b. Let be a polynomial of even degree, with a

negative leading coefficient and a positive
g 1x2

f 1x2
f 1x2

k � 4.

y � k

f 1x2

x � 3.
x � 1

x � 3.
x � 1

0.01x3 � 0.06x2 � 0.12x � 3.92 � 4.

1 � x � 3
x � 3.x � 1 constant term. Explain why must have at

least one positive and at least one negative
zero.

59. Critical Thinking The graph of

has x-intercepts at each of its zeros, that is, at
2, and 10. It is also true

that has a relative minimum at 
a. Draw the x-axis and mark the zeros of 

Then use the fact that has degree 6 (Why?)
to sketch the general shape of the graph, as
was done for cubics in Exercise 41.

b. Now graph in the standard viewing
window. Does the graph resemble your sketch?
Does it even show all the x-intercepts between

and 10?
c. Graph in the viewing window with

and Does this
window include all the x-intercepts, as it
should?

d. List viewing windows that give a complete
graph of f 1x2.

�10 � y � 10.�19 � x � 11
f 1x2

�10

f 1x2

f 1x2
f 1x2.

x � 2.f 1x2
±120 � ±4.472,x � �18,

f 1x2 � 1x � 182 1x2 � 202 1x � 2221x � 102

g 1x2

4.3.A Excursion: Polynomial Models

Linear regression was used in Section 1.5 to construct a linear function
that modeled a set of data points. When the scatter plot of the data points
looks more like a higher degree polynomial graph than a straight line,
similar least squares regression procedures are available on most calcu-
lators for constructing quadratic, cubic, and quartic polynomial functions
to model the data.

Example 1 A Polynomial Model

The following data, which is based on statistics from the Department of
Health and Human Services, gives the cumulative number of reported
cases of AIDS in the United States from 1982 through 2000. Find a quad-
ratic, a cubic, and a quartic regression equation and determine which
equation best models the data.

Objectives

• Fit a polynomial model to
data
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Figure 4.3.A-1a

900,000

210

�40,000

Figure 4.3.A-1b

900,000

210
�40,000

Year Cases Year Cases Year Cases

1982 1563 1991 232,383 1996 595,559
1984 10,845 1992 278,189 1997 652,439
1986 41,662 1993 380,601 1998 698,527
1988 105,489 1994 457,789 1999 743,418
1990 188,872 1995 528,421 2000 784,518

Solution

Let correspond to 1980 and plot the data points (2, 1563), (4, 10845),
etc., to obtain the scatter plot shown in Figure 4.3.A-1a. The points are
not in a straight line, but could be part of a polynomial graph of degree
2 or more.

x � 0

Technology 
Tip

Quadratic, cubic, and
quartic regression are 

denoted by QuadReg,
CubicReg, QuartReg in the
CALC submenus of the 
TI STAT menu and by 

in the CALC REG
submenu of the Casio
STAT menu.

x4x3,
x2,

Graphing Exploration

Graph the functions f, g, and h in the window with and
In this window, can you distinguish the graphs of

f and g? Assuming no medical breakthroughs or changes in the cur-
rent social situation, does the graph of f seem to be a plausible model
for the next few years? What about the graph of g?

0 � y � 1,800,000.
0 � x � 27

Using the same procedure as for linear regression, find a quadratic, a
cubic, and a quartic regression equation for the data. See the Technology
Tip in the margin on this page for the specific calculator procedure needed.
The polynomial functions shown below have rounded coefficients, but
the graph in Figure 4.3.A-1b shows the data points along with the quad-
ratic regression equation and was produced using full coefficients.

Quadratic

Cubic

Quartic

The graphs of f, g, and h are virtually identical in the viewing window
shown. Although any one of f, g, or h provides a reasonable model for the
given data, knowledge of polynomial graphs suggests that the cubic and
quartic models, should not be used for predicting future results. As x gets
larger, the graphs of g and h will resemble respectively those of
and , which turn downward. However, the cumulative num-
ber of cases cannot decrease because even when there are no new cases,
the cumulative total stays the same.

y � �20.3x4
y � �219.2x3

 h1x2 � �20.29x4 � 681.94x3 � 4318.57x2 � 15,550.81x � 17,877.25
 g1x2 � �219.18x3 � 9111.66x2 � 59,991.75x � 103,255.32
 f 1x2 � 1758.0x2 � 9893.3x � 59,024.3

■
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Example 2 Estimating Data Values

The population of San Francisco in selected years is given in the table.

Figure 4.3.A-2a

�5

0

60

900,000

Year 1950 1960 1970 1980 1990 2000

Population 775,357 740,316 715,674 678,974 723,959 776,733

Let correspond to 1950. Find a polynomial regression model that is
a reasonably good fit and estimate the population of San Francisco in 1995
and in 2004.

Solution

The scatter plot of the data shown in Figure 4.3.A-2a suggests a parabola.
However, the data points do not climb quite so steeply in the later years,
so a higher-degree polynomial graph might fit the data better. The quad-
ratic, cubic, and quartic regression models are shown below.

Quadratic

Cubic

Quartic h1x2 � �0.11x4 � 13.20x3 � 387.24x2 � 168.65x � 774,230.65
 g1x2 � 2.48x3 � 58.10x2 � 3230.49x � 776,067.76
 f 1x2 � 128.14x2 � 6632.39x � 783,517.18

x � 0

The quartic appears to be the best fitting function. Use h to estimate the
population in 1995 and 2004 by finding h(45) and h(54).

That is, the estimated population of San Francisco in 1995 was approxi-
mately 745,844 and the estimated population of San Francisco in 2004 was
approximately 803,155.

■

In Example 2, a model may not be accurate when applied outside the
range of points used to construct it. For instance, 
suggesting that the population of San Francisco in 1776 was about
5,817,115.

f 1�1742 � 5,817,115,

h1452 � 745,843.98  and  h1542 � 803,155.18

�5

0

Quadratic

60

900,000

�5

0

Cubic

60

900,000

�5

0

Quartic

60

900,000

Figure 4.3.A-2b

[Source: U.S. Census Bureau]
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The following table lists the minimum number of data points
required for polynomial regression. In each case, the minimum number
of data points required is the number of coefficients in the polynomial
function modeling the data. If you have exactly the required minimum
number of data points, no two of them can have the same first
coordinate.

When using the minimum number of data points, the polynomial regres-
sion function will pass through all the data points and will fit exactly.
When using more than the minimum number of data points required, the
fit will generally be approximate rather than exact.

NOTE

Model Minimum number of data points

Quadratic Regression 3

Cubic Regression 4

Quartic Regression 5

Exercises 4.3.A

In Exercises 1–4, a scatter plot of data is shown. State
the type of polynomial model that seems most appro-
priate for the data (linear, quadratic, cubic, or quartic).
If none of them is likely to provide a reasonable
model, say so.

1.

2.

3.

x

y

x

y

x

y

4.

5. The table, which is based on the United States FBI
Uniform Crime Report, shows the rate of property
crimes per 100,000 population.

Year Crimes Year Crimes
1982 5032.5 1994 4660.0
1984 4492.1 1996 4450.1
1986 4862.6 1997 4318.7
1988 5027.1 1998 4051.8
1990 5088.5 1999 3743.6
1992 4902.7 2000 3617.9

a. Use cubic regression to find a polynomial
function that models this data, with 
corresponding to 1980.

b. According to this model, what was the
property crime rate in 1987 and 1995?

x � 0

x

y
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c. The actual crime rate was about 3698 in 2001.
What does the model predict?

d. Is this model a reasonable one?

6. The table, which is based on the U.S. National
Center for Educational Statistics, shows actual and
projected enrollment (in millions) in public high
schools in selected years.

Year Enrollment Year Enrollment
1975 14.3 1995 12.5
1980 13.2 2000 13.5
1985 12.4 2005 14.4
1990 11.3 2010 14.1

a. Use quartic regression to find a polynomial
function that models this data, with 
corresponding to 1975.

b. According to this model, what was the
enrollment in 1998 and 1999?

c. According to the model, in what year between
1975 and 2000 was enrollment at its lowest
level?

d. Does this estimate appear to be accurate?

7. The table shows the air temperature at various
times during a spring day in Gainesville, Florida.

Time Temp Time Temp 
6 a.m. 52 1 p.m. 82
7 a.m. 56 2 p.m. 86
8 a.m. 61 3 p.m. 85
9 a.m. 67 4 p.m. 83

10 a.m. 72 5 p.m. 78
11 a.m. 77 6 p.m. 72
noon 80

a. Sketch a scatter plot of the data, with 
corresponding to midnight.

b. Find a quadratic polynomial model for the
data.

c. What is the predicted temperature for noon?
for 9 a.m.? for 2 p.m.?

x � 0

(F°)(F�)

x � 0

Year Enrollment Year Enrollment
1970 389.2 1986 411.3
1974 362.2 1990 533.9
1977 376.7 1995 606.3
1980 379.4 1998 656.6
1983 386.2

8. The table, which is based on data from the
Association of Departments of Foreign Languages,
shows the fall enrollment (in thousands) in college
level Spanish classes.

Median Median
Year Income Year Income

1985 $36,568 1993 $36,019

1987 38,220 1995 037,251

1989 38,836 1997 038,411

1991 36,850 1999 040,816

[Source: U.S. Census Bureau]

a. Sketch a scatter plot of the data, with 
corresponding to 1970.

b. Find a cubic polynomial model for this data.

Use the following table for Exercises 9–10. It shows the
median income of U.S. households in 1999 dollars.

x � 0

9. a. Sketch a scatter plot of the data from 1985 to
1999, with corresponding to 1985.

b. Decide whether a quadratic or quartic model
seems more appropriate.

c. Find an appropriate polynomial model.

x � 0



a. Sketch a scatter plot of the data with 
corresponding to 1980.

b. Find a quartic model for the data.
c. Use the model to estimate the public debt per

person in 1996. How does your estimate
compare with the actual figure of $19,805?

12. The table shows the total advertising
expenditures, in billions of dollars, in selected
years.

Year Expenditures Year Expenditures

1990 $129.59 1996 $175.23

1992 132.65 1998 201.59

1994 151.68 2000 236.33

[Source: Statistical abstract of the United States 2001]

a. Sketch a scatter plot of the data with 
corresponding to 1990.

b. Find a quadratic model for the data.
c. Use the model to estimate expenditures in 1995

and 2002.
d. If this model remains accurate, when will

expenditures reach $350 billion?

x � 0

x � 0
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4.4 Rational Functions

Recall that a polynomial is an algebraic expression that can be written as

where n is a nonnegative integer.

A rational function is a function whose rule is the quotient of two poly-
nomials, such as

k 1x2 �
2x3 � 5x � 2
x2 � 7x � 6

t1x2 �
4x � 3
2x � 1f 1x2 �

1
x

anxn � an�1x
n�1 � p � a2x

2 � a1x � a0

Objectives

• Find the domain of a
rational function

• Find intercepts, vertical
asymptotes, and horizontal
asymptotes

• Identify holes

• Describe end behavior

• Sketch complete graphs

d. Use the model to predict the median income in
2002.

e. Does this model seem reasonable after 2002?

10. a. Sketch a scatter plot of the data from 1989 to
1999, with corresponding to 1989.

b. Find both a cubic and a quartic model for this
data.

c. Is there any significant difference between the
models from 1989 to 1999? What about from
1999 to 2005?

d. According to these models, when will the
median income reach $45,000?

11. The table shows the U.S. public debt per person,
in dollars, in selected years.

x � 0

Year Debt Year Debt

1981 $4,338 1993 $17,105

1983 5,870 1995 18,930

1985 7,598 1997 20,026

1987 9,615 1999 20,746

1989 11,545 2001 20,353

1991 14,436

[Source: U.S. Department of Treasury, Bureau of
Public Debt]
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The domain of a rational function is the set of all real
numbers that are not zeros of its denominator.

Domain of
Rational

Functions

Example 1 The Domain of a Rational Function

Find the domain of each rational function.

a. b.

Solution

a. The domain of is the set of all real numbers except 

because the denominator is 0 when making the fraction
undefined.

b. The domain of is the set of all real numbers 

except the solutions of Because factors
into the solutions to are and

Therefore, the domain of g is the set of all real numbers
except and 

■

Properties of Rational Graphs

Because calculators often do a poor job of graphing rational functions, the
emphasis in this section is on the algebraic analysis of rational functions.
Such analysis should enable you to interpret misleading screen images. 

Intercepts
As with any function, the y-intercept of the graph of a rational function f
occurs at provided that f is defined at The x-intercepts of the
graph of a rational function occur when its numerator is 0 and its denom-
inator is nonzero.

x � 0.f 102,

x � 3.x � �2
x � 3.

x � �2x2 � x � 6 � 01x � 22 1x � 32, x2 � x � 6x2 � x � 6 � 0.

g1x2 �
x2 � 3x � 1
x2 � x � 6

x � 0,

x � 0,f 1x2 �
1
x2

g1x2 �
x2 � 3x � 1
x2 � x � 6

f 1x2 �
1
x2

Although a polynomial function is defined for every real number x, a
rational function is defined only when its denominator is nonzero.

If f has a y-intercept, it occurs at 

The x-intercepts of the graph of a rational function occur at
the numbers that 

• are zeros of the numerator

• are not zeros of the denominator

f(0).
Intercepts of 

Rational
Functions
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Locating the intercepts can help you determine if you correctly entered
the parentheses when graphing a rational function on a graphing calcu-
lator.

Example 2 Intercepts of a Rational Graph

Find the intercepts of 

Solution

The y-intercept is 

The x-intercepts are solutions of that are not solutions of
Solutions of can be found by factoring.

Neither nor 2 is a solution of so both are x-intercepts of the
graph of f, as shown in Figure 4.4-1.

■

Continuity
There are breaks in the graph of a rational function wherever the func-
tion is not defined, that is, at the zeros of the denominator. Except for
breaks, the graph is a continuous unbroken curve. Additionally, the graph
has no sharp corners.

Vertical Asymptotes
Unlike polynomial functions, a rational function has breaks in its graph
at all points where the function is not defined. Vertical asymptotes occur
at every number that is a zero of the denominator but not of the numer-
ator. The key to understanding the behavior of a rational function near
these asymptotes is a fact from arithmetic.

x � 1 � 0,�1

x � �1  or  x � 2.
 1x � 12 1x � 22 � 0

 x2 � x � 2 � 0

x2 � x � 2 � 0x � 1 � 0.
x2 � x � 2 � 0

f 102 �
02 � 0 � 2

0 � 1 �
�2
�1 � 2.

f 1x2 �
x2 � x � 2

x � 1 .

If c is a number far from 0, then is a number close to 0.

If c is close to 0, then is far from 0.

In less precise, but more suggestive terms

and 1
little

� big1
big

� little

1
c

1
c

The Big-Little
Concept

Figure 4.4-1

y

x

84
0

8

16

−4

−8

−16

−8

(−1, 0)
(0, 2)

(2, 0)
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For example, 5000 is big and is little. Similarly, is little and

is big. Note that even though is negative, it is far 

from zero and therefore is large in absolute value. The role played by the
Big-Little Concept when graphing rational functions is illustrated in
Example 3.

Example 3 A Rational Function Near a Vertical Asymptote

Without using a calculator, describe the graph of near 

Then sketch the graph for values near 

Solution

The function is not defined at because the denominator is 0 there.
When x is greater than 2 but very close to 2,

• The numerator, is very close to 
• The denominator, is a positive number very close to

By the Big-Little Concept,

This fact can be confirmed by a table of values for near when
etc., as shown in Figure 4.4-2a. In graphical terms,

the points with x-coordinates slightly greater than 2 have very large 
y-coordinates, so the graph shoots upward just to the right of 
That is,

f increases without bound as x approaches 2 from the right.

A similar analysis when x is less than 2 but very close to 2 shows that the
numerator, is very close to 3 and the denominator is negative and
very close to 0. Using the Big-Little Concept, the quotient is a negative
number far from 0. As x approaches 2 from values less than 2, the quo-
tient becomes a larger and larger negative number. Therefore, the graph
of f shoots downward just to left of That is,

The portion of the graph of f near is shown in Figure 4.4–2b.
■

The dashed vertical line in Figure 4.4-2b is included for easier visualiza-
tion, but it is not part of the graph. Such a line is called a vertical asymptote
of the graph. The graph approaches a vertical asymptote very closely, but
never touches or crosses it because the function is not defined at that value
of x.

x � 2

f decreases without bound as x approaches 2 from the left.

x � 2.

x � 1,

x � 2.

x � 2.01, 2.001, 2.0001,
x � 2f 1x2

f 1x2 �
x � 1

2x � 4 �
3

little
� 3 �

1
little

� 31big2 � very big

2122 � 4 � 0.
2x � 4,

2 � 1 � 3.x � 1,

x � 2

x � 2.x � 2.

f 1x2 �
x � 1

2x � 4

�10001

 
�1

1000 
� �1000

�1
1000

1
5000

Figure 4.4-2a

Figure 4.4-2b

x

y

0 1 2 3 4

5

−5

−10

10
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All rational functions have vertical asymptotes at values that are zeros of
their denominators but not zeros of their numerators.

A rational function has a vertical asymptote at , provided

• c is a zero of the denominator

• c is not a zero of the numerator

x � c
Vertical

Asymptotes

Near a vertical asymptote, the graph of a rational fraction may look like
the graph in Figure 4.4-2b, or like one of the graphs in Figure 4.4-3.

xc x xc c

vertical asymptotes at 

Figure 4.4-3

x � c

Holes
When a number c is a zero of both the numerator and denominator of a
rational function, the function might have a vertical asymptote at 
or it might behave differently.

You have often cancelled factors to reduce fractions.

But the functions

are not the same, because when 

For any number other than 2, the two functions have the same values,
and hence, the same graphs. The graph of is a straight line
that includes the point (2, 4), as shown in Figure 4.4-4a. The graph of p(x)
is the same straight line, but with the point (2, 4) omitted. That is, there
is a hole in the graph of p at because p is not defined there. The
graph of p is shown in Figure 4.4-4b.

x � 2

q1x2 � x � 2

 q1x2 � 2 � 2 � 4.

 p122 �
22 � 4
2 � 2 �

0
0, which is not defined, but

x � 2

 p1x2 �
x2 � 4
x � 2     and    q1x2 � x � 2

x2 � 4
x � 2 �

1x � 22 1x � 22
x � 2 � x � 2

x � c,

Figure 4.4-4a

x

y

−2 −1 1 2 3

−2

4

2

Figure 4.4-4b

x

y

−2 1 2 3

−2

4

2
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Figure 4.4-5

y

x

84
0

3

9

6

−3

−6

−9

−8 −4

The graph of shown in Figure 4.4-5, is the same as the graph

of At neither function is defined. There is a vertical asymp-

tote rather than a hole at Note that the vertical asymptote occurs
at which is a zero of multiplicity 2 in the numerator, but of larger
multiplicity 3 in the denominator.

x � 0,
x � 0.

x � 0f 1x2 �
1
x .

g1x2 �
x2

x3 ,

Let be a rational function and let d denote a zero 

of both g and h.

• If the multiplicity of d as a zero of g is greater than or
equal to its multiplicity as a zero of h, then the graph of f
has a hole at 

• Otherwise, the graph has a vertical asymptote at x � d.

x � d.

f(x) �
g(x)
h(x)

Holes

Accurate Rational Function Graphs
Getting an accurate graph of a rational function on a calculator often
depends on choosing an appropriate viewing window. For example, the

following are graphs of in different viewing windows.f 1x2 �
x � 1
2x � 4

Figure 4.4-6a

�10

10

10�10

Figure 4.4-6b

�8 12

�6

6

Technology 
Tip

To avoid erroneous ver-
tical lines, use a 

window with a vertical
asymptote in the center 
of the screen. In Figure
4.4-6b, the asymptote at

is halfway between
and 12. See the Tech-

nology Appendix for
further information.

�8
x � 2

The vertical segment shown in Figure 4.4-6a is not a vertical asymptote.
It is a result of the calculator evaluating f just to the left of and just
to the right of but not at and then erroneously connecting
these points with a near vertical segment that looks like an asymptote. In
the accurate graph shown in Figure 4.4-6b, the calculator attempted to
plot a point with and when it found that was not defined,
skipped a pixel and did not join the points on either side of the one
skipped.

f 122x � 2

x � 2,x � 2,
x � 2
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A calculator graph may also fail to show holes in graphs that should have
them. Even if a window is chosen so that the graph skips a pixel where
the hole should be, the hole may be difficult to see.

End Behavior
As with polynomials, the behavior of a rational function when is large
is called its end behavior. Known facts about the end behavior of poly-
nomial functions make it easy to determine the end behavior of rational
functions in which the degree of the numerator is less than or equal to
the degree of the denominator.

Example 4 End Behavior of Rational Functions

List the vertical asymptotes and describe the end behavior of the follow-
ing functions. Then sketch each graph.

a. b. c.

Solution

a. The zero of the denominator of is and it is not a 

zero of the numerator. So the vertical asymptote occurs at 

When is large, a polynomial function behaves like its highest
degree term, as shown in Section 4.3. The highest degree term of the
numerator of f is 3x and the highest degree term of the denominator 
is Therefore, when is large, the function reduces to 

approximately 

Thus, when is large, the graph of f gets very close to the 

horizontal line which is called a horizontal asymptote of 

the graph. The dashed lines in Figure 4.4-7 indicate the vertical and
horizontal asymptotes of the graph.

b. The zeros of the denominator of are and neither is 

a zero of the numerator. So the graph has vertical asymptotes at
and at 

When is large,

and is very close to 0 by the Big-Little Concept. Therefore, the 

graph of g approaches the horizontal line (the x-axis) when 
is large and this line is a horizontal asymptote of the graph, as

shown in Figure 4.4-8.
0 x 0 y � 0

1
x

g1x2 �
x

x2 � 4
� x

x2 �
1
x

0 x 0
x � 2.x � �2

±2g 1x2 �
x

x2 � 4

y � �
3
2,

0 x 0
f 1x2 �

3x � 6
5 � 2x �

3x � 6
�2x � 5 � 3x

�2x � �
3
2

�
3
2.

0 x 0�2x.

0 x 0
x �

5
2.

5
2f 1x2 �

3x � 6
5 � 2x

h1x2 �
2x3 � x
x3 � 1

g1x2 �
x

x2 � 4
f 1x2 �

3x � 6
5 � 2x

0 x 0

Figure 4.4-7

y

84
0

4

8

−4
−4

−8

−8

x

Technology 
Tip

When the vertical
asymptotes of a 

rational function occur at
numbers such as

etc., a decimal window
normally produces an
accurate graph because 
the calculator actually
evaluates the function at
the asymptotes, finds that
it is undefined, and skips 
a pixel.

�2.1, �2, �1.9, p ,2.9, 3,
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c. The only real zero of the denominator of is 

which is not a zero of the numerator. So, the graph has a vertical
asymptote at 

When is large,

Therefore, the graph of h has a horizontal asymptote at , as
shown in Figure 4.4-9.

■

The function in Example 4b illustrates a useful fact. When the degree of
the numerator is less than the degree of the denominator of a rational
function, the x-axis is the horizontal asymptote of the graph.

When the numerator and denominator have the same degree, as in Exam-
ples 4a and 4c, the horizontal asymptote is determined by the leading
coefficients of the numerator and denominator:

Function Horizontal asymptote

Other Asymptotes

When the degree of the numerator of a rational function is greater than
the degree of its denominator, the graph will not have a horizontal asymp-
tote. To determine the end behavior in this case, the Division Algorithm
must be used.

Example 5 A Slant Asymptote

Describe the end behavior of the graph of f 1x2 �
x2 � x � 2

x � 5 .

y �
2
1 � 2h1x2 �

2x3 � x
x3 � 1

y � �
3
2f 1x2 �

3x � 6
�2x � 5

y � 2

h1x2 �
2x3 � x
x3 � 1

� 2x3

x3 �
2
1 � 2

0 x 0
x � �1.

x � �1,h1x2 �
2x3 � x
x3 � 1

y

4

2

0

4

−2

−4

−4

x

2−2

Figure 4.4-8

CAUTION

Unlike a vertical
asymptote that is never
crossed by a graph, a
graph may cross a 
horizontal or oblique
asymptote at some val-
ues of 0 x 0 .

Figure 4.4-9

y

x

0 4

2

4

−4−8
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Solution

Use synthetic or long division to divide the denominator into the numer-
ator, and rewrite the rational expression by using the Division Algorithm.

When is large, is also large, and by the Big-Little Concept 

is very close to 0. Therefore, and the graph of f approaches
the line as gets large (see Figure 4.4-10). The line 
is called a slant or oblique asymptote of the graph. Note that is the
quotient without the remainder in the division of the numerator by the
denominator.

■

Example 6 A Parabolic Asymptote

Describe the end behavior of the graph of 

Solution

Divide the denominator into the numerator and rewrite the function.

When is large, so is and by the Big-Little Concept is very 

close to 0. Therefore, for large values of The graph
of f approaches the parabola as shown in Figure 4.4-11.
The curve is called a parabolic asymptote. Note that

is the quotient in the division.
■

x2 � 4x � 5
y � x2 � 4x � 5

y � x2 � 4x � 5,
0 x 0 .f 1x2 � x2 � 4x � 5

6
x � 1x � 10 x 0

f 1x2 �
x3 � 3x2 � x � 1

x � 1 � 1x2 � 4x � 52 �
6

x � 1

Quotient �
Remainder

Divisor

f 1x2 �
x3 � 3x2 � x � 1

x � 1 .

x � 4
y � x � 40 x 0y � x � 4

f 1x2 � x � 4,

18
x � 5x � 50 x 0

 � 1x � 42 �
18

x � 5

 �
1x � 52 1x � 42

x � 5 �
18

x � 5

 �
1x � 52 1x � 42 � 18

x � 5

 f 1x2 �
x2 � x � 2

x � 5

 x2 � x � 2 � 1x � 52 1x � 42 � 18
 Dividend � Divisor Quotient � Remainder

Figure 4.4-10

y

x

4515 30
0

20

40

−30 −15

−20

−40

−45

Figure 4.4-11

y

x

126 18

30

0

60

90

−6−12

−30

−18
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Notice that when the degree of the numerator and the denominator are
the same, the horizontal asymptote is the horizontal line determined by
the quotient of the leading coefficients of the numerator and denom-
inator.

Graphs of Rational Functions

The facts presented in this section can be used in conjunction with a cal-
culator to find accurate, complete graphs of rational functions.

Let be a rational function whose numerator 

has degree n and whose denominator has degree k.

• If then the x-axis is a horizontal asymptote.

• If then the line is a horizontal asymptote.

• If then the quotient polynomial when the
numerator is divided by the denominator is the asymptote
that describes the end behavior of the graph.

n 77 k,

y �
a
cn � k,

n 66 k,

f(x) �
axn � %
cxk � %

End Behavior 
of Rational
Functions

Example 7 A Complete Graph of a Rational Function

Find a complete graph of 

Solution

The graph of f is shown in Figure 4.4-12a. It is hard to determine whether
or not the graph is complete, so analyze the function algebraically.

f 1x2 �
x � 1

x2 � x � 6
.

1. Analyze the function algebraically to determine its vertical
asymptotes, holes, and intercepts.

2. Determine the end behavior of the graph.

If the degree of the numerator is less than or equal to the
degree of the denominator, find the horizontal asymptote
by using the facts in the box above.

Otherwise, divide the numerator by the denominator. The
quotient is the nonvertical asymptote of the graph.

3. Use the preceding information to select an appropriate
viewing window, or windows, to interpret the calculator’s
version of the graph, and display a complete graph of the
function.

Graphing
Rational

Functions

Figure 4.4-12a

10

10−10

−10



288 Chapter 4 Polynomial and Rational Functions

Begin by writing the function in factored form. Then read off the relevant
information.

Vertical Asymptotes: and  zeros of the denominator 
but not the numerator

Intercepts:

y-intercept:

x-intercept: zero of numerator but
not of denominator

Horizontal Asymptote: degree of numerator is less 
than degree of denominator

Interpreting the above information suggests that a complete graph of f
looks similar to Figure 4.4-12b.

y � 0

x � 1

f 102 �
0 � 1

02 � 0 � 6
�

1
6

x � 3x � �2

f 1x2 �
x � 1

x2 � x � 6
�

x � 11x � 22 1x � 32

■

Example 8 A Complete Graph of a Rational Function

Find a complete graph of 

Solution

The denominator is easily factored. To factor the numerator, note that the
only possible rational zeros of are and 
by the Rational Zeros Test. Verify that and 3 actually are zeros and
use the Factor Theorem to write the numerator in factored form. Then
reduce the fraction.

�2, 1
±6±1, ±2, ±3,x3 � 2x2 � 5x � 6

f 1x2 �
x3 � 2x2 � 5x � 6

x2 � 3x � 2
.

Figure 4.4-12b

x

y

2

4

6

−2

−4

−1−2 1 2 3 4
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Holes:

where 

Therefore, the graph of f is the same as the graph of

except there is a hole when Because

the hole occurs at 

Intercepts:

y-intercept:

x-intercepts: The x-intercepts of f are the same as the 
x-intercepts of g. Solving 
yields 

Vertical Asymptote: The vertical asymptote is 

End Behavior: Dividing the numerator by the denominator pro-
duces a quotient of Therefore, the slant
asymptote that describes the end behavior of the
function is the line 

The graph of f is shown in Figure 4.4-13.

y � x � 5.

x � 5.

x � �1.

x � 1 or x � 3.
1x � 12 1x � 32 � 0

g102 �
10 � 12 10 � 32

0 � 1 �
1�12 1�32

1 � 3

1�2, �152.
g1�22 �

1�2 � 12 1�2 � 32
�2 � 1 �

1�32 1�52
�1 � �15,

x � �2.

g1x2 �
1x � 12 1x � 32

x � 1 �
x2 � 4x � 3

x � 1

x � �2.�
1x � 12 1x � 32

x � 1 , 

f 1x2 �
x3 � 2x2 � 5x � 6

x2 � 3x � 2
�
1x � 22 1x � 12 1x � 32
1x � 22 1x � 12  

Figure 4.4-13

84
0

8

16

−4

−8

−8

x

y

■
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Exercises 4.4

In Exercises 1–6, find the domain of the function.

1. 2.

3. 4.

5.

6.

In Exercises 7–12, use algebra to determine the loca-
tion of the vertical asymptotes and holes in the graph
of the function.

7. 8.

9. 10.

11. 12.

In Exercises 13–22, find the horizontal or other asymp-
tote of the graph of the function when is large, and
find a viewing window in which the ends of the graph
are within 0.1 of this asymptote.

13. 14.

15. 16.

17.

18. 19.

20.

21.

22. f 1x2 �
x3 � 3x2 � 4x � 1

x2 � x

h1x2 �
x3 � 3x2 � 4x � 1

x � 4

g1x2 �
x3 � 4x2 � 6x � 5

x � 2

f 1x2 �
x3 � 1
x2 � 4

h1x2 �
8x5 � 6x3 � 2x � 1

0.5x5 � x4 � 3x2 � x

g1x2 �
5x3 � 8x2 � 4

2x3 � 2x

f 1x2 �
4x2 � 5

2x3 � 3x2 � x
h1x2 �

5 � x
x � 2

g1x2 �
3x2 � x

2x2 � 2x � 4
f 1x2 �

3x � 2
x � 3

0 0x 0 0

h1x2 �
x � 3

x2 � x � 6
f 1x2 �

x2 � 4x � 4
1x � 22 1x � 223

g1x2 �
x

x3 � 5x
f 1x2 �

x
x3 � 2x2 � x

g1x2 �
x � 5

x3 � 7x2 � 2x
f 1x2 �

x2 � 4
x2 � 5x � 6

h1x2 �
x5 � 5

x4 � 12x3 � 60x2 � 50x � 125

f 1x2 �
x5 � 2x3 � 7

x3 � x2 � 2x � 2

g 1x2 �
x3 � x2 � x � 1

x5 � 36x
h1x2 �

6x � 5
x2 � 6x � 4

g 1x2 �
x3 � x � 1

2x2 � 5x � 3
f 1x2 �

�3x
2x � 5

In Exercises 23–50, analyze the function algebraically:
list its vertical asymptotes, holes, and horizontal
asymptote. Then sketch a complete graph of the func-
tion.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35.

36. 37.

38. 39.

40.

41.

42. 43.

44. 45.

46. 47.

48. 49.

50. f 1x2 �
x4 � 1

x2

q 1x2 �
x3 � 1
x � 2p 1x2 �

x3 � 8
x � 1

f 1x2 �
x3 � 2
x � 1K 1x2 �

3x2 � 12x � 15
3x � 6

Q 1x2 �
4x2 � 4x � 3

2x � 5k 1x2 �
x2 � x � 2

x

f 1x2 �
x2 � x � 6

x � 2p 1x2 �
x3 � 3x2

x4 � 4x2

p 1x2 �
1x � 32 1x � 32

1x � 52 1x � 42 1x � 32

F 1x2 �
x2 � x

x2 � 2x � 4

q 1x2 �
x2 � 2x

x2 � 4x � 5
k 1x2 �

x2 � 1
x2 � 1

f 1x2 �
�4x2 � 1

x2f 1x2 �
x2 � 1

x3 � 2x2 � x

h 1x2 �
1x2 � 6x � 52 1x � 52
1x � 5231x � 12

g 1x2 �
x � 2
x2 � 1

f 1x2 �
x � 3

x2 � x � 2

g 1x2 �
x

2x2 � 5x � 3
f 1x2 �

1
x1x � 122

g 1x2 �
3x � 2
x � 3f 1x2 �

2 � x
x � 3

p 1x2 �
x � 2

xf 1x2 �
3x

x � 1

g 1x2 �
�4

2 � xk 1x2 �
�3

2x � 5

q 1x2 �
�7

x � 6f 1x2 �
1

x � 5
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In Exercises 51–60, find a viewing window or windows
that show(s) a complete graph of the function using
asymptotes, intercepts, end behavior, and holes. Be
alert for hidden behavior.

51.

52. 53.

54.

55. 56.

57. 58.

59.

60.

In Exercises 61–66, find a viewing window or windows
that show(s) a complete graph of the function—if pos-
sible, with no erroneous vertical line segments. Be
alert for hidden behavior.

61. 62.

63.

64.

65.

66.

67. a. Graph in the viewing window with 

and 
b. Without using a calculator, describe how the 

graph of can be obtained from the 

graph of Hint:
c. Without using a calculator, describe how the

graphs of each of the following functions can
be obtained from the graph of f 1x2.

g1x2 � 2 f 1x2f 1x2.
g 1x2 �

2
x

�6 � y � 6.�6 � x � 6

f 1x2 �
1
x

h1x2 �
2x3 � 7x2 � 4
x2 � 2x � 3

g 1x2 �
2x4 � 7x3 � 7x2 � 2x

x3 � x � 50

f 1x2 �
3x3 � 11x � 1

x2 � 4

h1x2 �
x3 � 2x2 � x � 2

x2 � 1

g 1x2 �
2x3 � 1
x2 � 1

f 1x2 �
2x2 � 5x � 2

2x � 7

h 1x2 �
x2 � 9

x3 � 2x2 � 23x � 60

g 1x2 �
x � 4

2x3 � 5x2 � 4x � 12

f 1x2 �
2x2 � 1

3x3 � 2x � 1
h 1x2 �

3x2 � x � 4
2x2 � 5x

g 1x2 �
x4 � 2x3

x5 � 25x3f 1x2 �
2x4 � 3x2 � 1

3x4 � x2 � x � 1

f 1x2 �
x3 � x � 1

x4 � 2x3 � 2x2 � x � 1

h 1x2 �
2x2 � x � 6
x3 � x2 � 6x

g 1x2 �
x2 � x � 6

x3 � 19x � 30

f 1x2 �
x3 � 4x2 � 5x
1x2 � 42 1x2 � 92

d. Without using a calculator, describe how the 

graph of can be obtained 

from the graph of 

e. Show that the function of part d is a
rational function by rewriting its rule as the
quotient of two first-degree polynomials.

f. If r, s, and t are constants, describe how the 

graph of can be obtained from 

the graph of 

g. Show that the function of part f is a
rational function by rewriting its rule as the
quotient of two first-degree polynomials.

68. The graph of has a 

vertical asymptote. Find a viewing window that
demonstrates this fact.

69. a. Find the difference quotient of 

and express it as a single fraction in lowest
terms.

b. Use the difference quotient in part a to
determine the average rate of change of as
x changes from 2 to 2.1, from 2 to 2.01, and
from 2 to 2.001. Estimate the instantaneous rate
of change of at 

c. Use the different quotient in part a to
determine the average rate of change of as
x changes from 3 to 3.1, from 3 to 3.01, and
from 3 to 3.001. Estimate the instantaneous rate
of change of at 

d. How are the estimated instantaneous rates of
change of at and related to the 

values of at and 

70. Do Exercise 69 for the functions and 

71. a. When what rational function has the 

same graph as Hint: Use the 

definition of absolute value.
b. When what rational function has the 

same graph as See the hint for 

part a.

f 1x2 �
x � 10 x 0 � 2

 ?

x 6 0,

f 1x2 �
x � 10 x 0 � 2

 ?

x � 0,

g1x2 �
�2
x3 .

f 1x2 �
1
x2

x � 3?x � 2g1x2 �
�1
x2

x � 3x � 2f 1x2
x � 3.f 1x2

f 1x2
x � 2.f 1x2

f 1x2

f 1x2 �
1
x

f 1x2 �
2x3 � 2x2 �  x � 1
3x3 � 3x2 � 2x � 1

q1x2
f 1x2 �

1
x .

q1x2 �
r

x � s � t

p1x2
f 1x2 �

1
x .

p1x2 �
2

x � 3 � 4

h 1x2 �
1
x � 4  k 1x2 �

1
x � 3   t 1x2 �

1
x � 2
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c. Use parts a and b to explain why the graph of 

has two vertical asymptotes.

What are they? Confirm your answer by
graphing the function.

72. The percentage c of a drug in a person’s
bloodstream t hours after its injection is 

approximated by 

a. Approximately what percentage of the drug is
in the person’s bloodstream after four and a
half hours?

b. Graph the function c in an appropriate window
for this situation.

c. What is the horizontal asymptote of the graph?
What does it tell you about the amount of the
drug in the bloodstream?

d. At what time is the percentage the highest?
What is the percentage at that time?

73. A box with a square base and a volume of 1000
cubic inches is to be constructed. The material for
the top and bottom of the box costs $3 per 100
square inches and the material for the sides costs
$1.25 per 100 square inches.
a. If x is the length of a side of the base, express

the cost of constructing the box as a function of
x.

b. If the side of the base must be at least 6 inches
long, for what value of x will the cost of the
box be $20?

74. A truck traveling at a constant speed on a
reasonably straight, level road burns fuel at the
rate of gallons per mile, where x is the speed
of the truck in miles per hour and is given by 

a. If fuel costs $1.40 per gallon, find the rule of
the cost function that expresses the cost of
fuel for a 500-mile trip as a function of the
speed. Hint: 500 gallons of fuel are
needed to go 500 miles. (Why?)

b. What driving speed will make the cost of fuel
for the trip $250?

c. What driving speed will minimize the cost of
fuel for the trip?

75. Pure alcohol is being added to 50 gallons of a
coolant mixture that is 40% alcohol.
a. Find the rule of the concentration function 

that expresses the percentage of alcohol in the
resulting mixture as a function of the number x
of gallons of pure alcohol that are added. Hint:
The final mixture contains gallons.50 � x

c1x2

� g1x2
c1x2

g 1x2 �
800 � x2

200x .

g1x2
g1x2

c 1t2 �
5t

4t2 � 5
.

f 1x2 �
x � 10 x 0 � 2

(Why?) So is the amount of alcohol in the
final mixture divided by the total amount

How much alcohol is in the original 
50-gallon mixture? How much is in the final
mixture?

b. How many gallons of pure alcohol should be
added to produce a mixture that is at least 60%
alcohol and no more than 80% alcohol?

c. Determine algebraically the exact amount of
pure alcohol that must be added to produce a
mixture that is 70% alcohol.

76. A rectangular garden with an area of 250 square
meters is to be located next to a building and
fenced on three sides, with the building acting as
a fence on the fourth side.
a. If the side of the garden parallel to the building

has length x meters, express the amount of
fencing needed as a function of x.

b. For what values of x will less than 60 meters of
fencing be needed?

77. A certain company has fixed costs of $40,000 and
variable costs of $2.60 per unit.
a. Let x be the number of units produced. Find

the rule of the average cost function. (The
average cost is the cost of the units divided by
the number of units.)

b. Graph the average cost function in a window
with and 

c. Find the horizontal asymptote of the average
cost function. Explain what the asymptote
means in this situation, that is, how low can
the average cost possibly be?

78. Radioactive waste is stored in a cylindrical tank,
whose exterior has radius r and height h as shown
in the figure. The sides, top, and bottom of the
tank are one foot thick and the tank has a volume
of 150 cubic feet including top, bottom, and walls.

0 � y � 20.0 � x � 100,000

50 � x.

c1x2

h

r

a. Express the interior height (that is, the
height of the storage area) as a function of h.

b. Express the interior height as a function of r.
c. Express the volume of the interior as a function

of r.
d. Explain why r must be greater than 1.

h1
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79. The relationship between the fixed focal length F
of a camera, the distance u from the object being
photographed to the lens, and the distance v from 

the lens to the film is given by 1
F

�
1
u �

1
v .

a. If the focal length is 50 mm, express v as a
function of u.

b. What is the horizontal asymptote of the graph
of the function in part a?

c. Graph the function in part a when 
50 mm mm.6 u 6 35,000

u F
v

d. When you focus the camera on an object, the
distance between the lens and the film is
changed. If the distance from the lens to the
camera changes by less than 0.1 millimeter, the
object will remain in focus. Explain why you
have more latitude in focusing on distant
objects than on very close ones.

80. The formula for the gravitational acceleration in
units of meters per second squared of an object
relative to the earth is

where r is the distance in meters above the earth’s
surface.
a. What is the gravitational acceleration at the

earth’s surface?
b. Graph the function g(r) for 
c. Can you ever escape the pull of gravity? Does

the graph have any r-intercepts?

r � 0.

g1r2 �
3.987 � 1014

16.378 � 106 � r22

4.5 Complex Numbers

If restricted to nonnegative numbers, you cannot solve the equation
Enlarging the number system to include negative integers

makes it possible to find the solution to this equation. By enlarging the
number system to include rational numbers, it is possible to solve equa-
tions that have no integer solution, such as Similarly, the equation

has no rational solution, but and are real num-
ber solutions. The idea of enlarging a number system to include solutions
to equations that cannot be solved in a particular number system is a nat-
ural one.

Complex Numbers

Equations such as and have no solutions in the real num-
ber system because and are not real numbers. In order to
solve such equations, that is, to find the square roots of negative num-
bers, the number system must be enlarged again. There is a number
system, called the complex number system, with the desired properties.

2�42�1
x2 � �4x2 � �1

x � �12x � 12x2 � 2
3x � 7.

x � 5 � 0.
Objectives

• Write complex numbers in
standard form

• Perform arithmetic
operations on complex
numbers

• Find the conjugate of a
complex number

• Simplify square roots of
negative numbers

• Find all solutions of
polynomial equations
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1. The complex number system contains all real numbers.

2. Addition, subtraction, multiplication, and division of
complex numbers obey the same rules of arithmetic that
hold in the real number system, with one exception:

the exponent laws hold for integer exponents, but not
necessarily for fractional ones (see p. 297).

3. The complex number system contains a number, denoted
i, such that

4. Every complex number can be written in the standard
form

where a and b are real numbers.

5. if and only if and b � d.a � ca � bi � c � di

a � bi,

i 2 � �1.

Properties of the
Complex

Number System

Numbers of the form bi, where b is a real number, are called imaginary
numbers. Sums of real and imaginary numbers, numbers of the form

are called complex numbers. For example,

are all complex numbers.

Just as every integer is a rational number because it can be written as a
fraction with denominator of 1, every real number a is a complex num-
ber because it can be written as Similarly, every imaginary number
bi is a complex number because it can be written as 

Example 1 Equating Two Complex Numbers

Find x and y if 

Solution

Property 5 of the Complex Number System states that two complex num-
bers and are equal exactly when and So,

and

Direct substitution verifies the solution.

■
 �6 � 3i � �6 � 3i

 2 1�32 � 3i � �6 � 4a�3
4b i

y � �
3
4x � �3

�3 � 4y2x � �6

b � d.a � cc � dia � bi

2x � 3i � �6 � 4yi.

0 � bi.
a � 0i.

5 � 2i  7 � 4i  18 �
3
2 i  3 � 12i

a � bi,

The
mathematicians who
invented the complex
numbers in the seventeenth
century were very uneasy
about a number i such that

Consequently, they
called numbers of the form
bi, where b is a real number

and imaginary
numbers.

The existence of imaginary
numbers is as real as any of
the familiar numbers that
are called real numbers, 

such as or �22.3, 23

i � 2�1,

i2 � �1.

NOTE
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Arithmetic of Complex Numbers

Because the usual laws of arithmetic hold, it is easy to add, subtract, and
multiply complex numbers. As the following examples demonstrate,

all symbols can be treated as if they were real numbers, 
provided that is replaced by 

Example 2 Adding, Subtracting, and Multiplying 
Complex Numbers 

Perform the indicated operation and write the result in the form 

a. b.

c. d.

Solution

a.

b.

c.

d.

■

The familiar multiplication patterns and exponent laws for integer expo-
nents hold in the complex number system.

Example 3 Products and Powers of Complex Numbers 

Perform the indicated operation and write the result in the form 

a. b.

Solution

a.

b.
■

Powers of i
Observe that

Definition of i

 i5 � i4 � i � 1 � i � i
 i4 � i2 � i2 � 1�12 1�12 � 1
 i3 � i2 � i � �1 � i � �i
 i2 � �1
 i1 � i

14 � i22 � 42 � 2142 1i2 � i2 � 16 � 8i � i2 � 16 � 8i � 1 � 15 � 8i

13 � 2i2 13 � 2i2 � 32 � 12i22 � 9 � 4i2 � 9 � 41�12 � 9 � 4 � 13

14 � i2213 � 2i2 13 � 2i2
a � bi.

 � 6 � 5i � 41�12 � 6 � 4 � 5i � 10 � 5i
12 � i2 13 � 4i2 � 213 � 4i2 � i13 � 4i2 � 6 � 8i � 3i � 4i2

4ia2 �
1
2 ib � 4i 122 � 4ia1

2 ib � 8i � 2i2 � 8i � 21�12 � �2 � 8i

14 � 3i2 � 18 � 6i2 � 4 � 3i � 8 � 6i � 14 � 82 � 13 � 62i � �4 � 9i

11 � i2 � 13 � 7i2 � 1 � i � 3 � 7i � 11 � 32 � 11 � 72i � 4 � 6i

12 � i2 13 � 4i24ia2 �
1
2 ib

14 � 3i2 � 18 � 6i211 � i2 � 13 � 7i2
a � bi.

�1.i2

Hereafter, in the
complex numbers 
and it is assumed
that a, b, c, and d are real
numbers.

Unless directed otherwise,
express answers in the
standard form a � bi.

c � di,
a � bi

NOTE
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The powers of i form a cycle. Any power of i must be one of four values:
or 1. To find higher powers of i, such as divide n by 4 and

match the remainder to one of the powers listed above.

Example 4 Powers of i

Find 

Solution

The remainder when 54 is divided by 4 is 2, so 
■

Complex Conjugates
The conjugate of the complex number is the number and
the conjugate of is For example, the conjugate of is

and the conjugate of is The numbers
and are called conjugate pairs. Because for

each real number a, every real number is its own conjugate.

The product of conjugate pairs is a real number, as shown below.

Let be a complex number. Then the product of and its con-
jugate is

Because and are nonnegative real numbers, so is 

Quotients of Complex Numbers
The procedure used to find the quotient of two complex numbers uses
the fact that the product of conjugate pairs is a real number.

Example 5 Quotients of Two Complex Numbers

Express the quotient in standard form.

Solution

To find the quotient multiply both the numerator and denomi-

nator by the conjugate of the denominator, 

■

 �
3 � 6i � 4i � 81�12

1 � 41�12 �
3 � 8 � 6i � 4i

1 � 4 �
11 � 2i

5 �
11
5 �

2
5 i

 �
13 � 4i2 11 � 2i2
11 � 2i2 11 � 2i2 �

311 � 2i2 � 4i 11 � 2i2
12 � 12i22 �

3 � 6i � 4i � 8i2

1 � 4i 2

 3 � 4i
1 � 2i �

3 � 4i
1 � 2i �

1 � 2i
1 � 2i

1 � 2i.

3 � 4i
1 � 2i  ,

3 � 4i
1 � 2i

a2 � b2.b2a2

1a � bi2 1a � bi2 � a2 � 1bi22 � a2 � b2i2 � a2 � b21�12 � a2 � b2

a � bi
a � bia � bi

a � 0i � a � 0i3 � 4i3 � 4i
0 � 3i � 3i.�3i � 0 � 3i3 � 4i,

3 � 4ia � bi.a � bi
a � bi,a � bi

i54 � i2 � �1.

i54.

in,i, �1, �i,

The result of
Example 4 can also be seen
by rewriting using
exponent rules.

 � �1.

 � 1131�12
 � 1i4213i2

 � i4�13 i2

i54 � i52 � i2

i54

NOTE
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Square Roots of Negative Numbers
Because is defined to be i. Similarly, because

is defined to be 5i. In general,2�25

15i22 � 52i2 � 251�12 � �25,

i2 � �1, 2�1

Let b be a positive real number.

is defined to be 

because Ai2b B 2 � i2 A2b B 2 � �1 � b � �b

i2b2�b

Square Roots 
of Negative

Numbers

Example 6 Square Roots of Negative Numbers

Write each of the following as a complex number.

a. b. c.

Solution

a. by definition

b.

c.

■
 � 41 � 11i

 � 35 � 11i � 61�12
 � 35 � 21i � 10i � 6i2

 � 17 � 2i2 15 � 3i2
 A7 � 2�4 B A5 � 2�9 B � A7 � i24 B A5 � i29 B
1 � 2�7

3 �
1 � i27

3 �
1
3 �

27
3 i

2�3 � i23

A7 � 2�4 B A5 � 2�9 B1 � 2�7
32�3

Technology 
Tip

Most calculators that
do complex number 

arithmetic will return a
complex number when
asked for the square root
of a negative number.
Make sure the MODE is
set to “rectangular” or
“ ”a � bi.

CAUTION

The property —or equivalently in exponential 
notation —which is valid for positive real numbers,
does not hold when both c and d are negative. To avoid difficulty,

always write square roots of negative numbers in terms of i
before doing any simplification.

For example,

Therefore, 2�20 �2�5 � �220 � 5.

�2100 � �10.2�20 � 2�5 � i220 � i25 � i2 220 � 5 �

1cd212 � c
1
2  d

1
2

2cd � 2c � 2d

When i is
multiplied by a radical, it is

customary to write 

instead of to make
clear that i is not under the
radical.

2b i

i2b

NOTE
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Because every negative real number has two square roots in the complex
number system, complex solutions can be found for equations that have
no real solutions. For example, the solutions of are

Every quadratic equation with real coefficients has solutions in the
complex number system.

Example 7 Complex Solutions to a Quadratic Equation

Find all solutions to 

Solution

Apply the quadratic formula.

Because is not a real number, this equation has no real number
solutions. However, is an imaginary number, namely, 
Thus, the equation has solutions in the complex number system.

Note that the two solutions, and are complex

conjugates.

■

Example 8 Zeros of Unity

Find all solutions of 

Solution

Rewrite the equation as and use the difference of cubes pat-
tern to factor the left side.

Quadratic formula

�
�1 ± i23

2  � �1
2 ± 23

2  i

�
�1 ± 2�3

2

x � 1    or    x �
�1 ± 212 � 4 � 1 � 1

2 � 1

x � 1 � 0    or   x2 � x � 1 � 0
 1x � 12 1x2 � x � 12 � 0

 x3 � 1 � 0
 x3 � 1

x3 � 1 � 0

x3 � 1.

�
1
4 �

223
4  i,�

1
4 �

223
4  i

x �
�1 ± 2�23

4 �
�1 ± i223

4 � �
1
4 ± 223

4 i

2�23 � i223.2�23
2�23

x �
�1 ± 212 � 4 � 2 � 3

2 � 2 �
�1 ± 2�23

4

2x2 � x � 3 � 0.

x � ±2�25 � ±5i

x2 � �25

See the Algebra
Review Appendix to review
factoring the difference of
two cubes.

NOTE
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Therefore, the equation has one real solution, and two non-

real complex solutions, and Each of the 

solutions is said to be a cube root of one or a cube root of unity. Observe
that the two nonreal cube roots of unity are complex conjugates.

■

Examples 7 and 8 illustrated the following useful fact.

x � �
1
2 �

23
2  i.x � �

1
2 �

23
2  i

x � 1,x3 � 1

If is a solution of a polynomial equation with real
coefficients, then its conjugate, is also a solution of
the equation.

a � bi,
a � bi

Conjugate
Solutions

Calculator Exploration

The following exploration demonstrates how matrices can be used
for complex number arithmetic.

1. The complex number is expressed in matrix notation as the 

matrix For example, is written as 

a. Write and in matrix form and enter them
in your calculator as [A], [B], [C].

b. We know that Verify that 

is which represents the complex number 

c. Use matrix addition, subtraction, and multiplication to find the
following. Interpret the answers as complex numbers.

d. In Example 5 we saw that Do 

this problem in matrix form by computing . Use the
key for the exponent.

e. Do each of the following calculations and interpret the answer
in terms of complex numbers.

3B 4 3C 4�13B 4 3A 4�1,3A 4 � 3C 4�1,

x�1
3A 4 � 3B 4�1

3 � 4 i
1 � 2i �

11
5 �

2
5 i � 2.2 � 0.4i.

3B 4 3C 43A 4 3B 4 ,3B 4 � 3C 4 ,3A 4 � 3C 4 ,

4 � 6i.

a�4
�6

6
4
b ,3A 4 � 3B 4
13 � 4i 2 � 11 � 2i 2 � 4 � 6i.

1 � i1 � 2i,3 � 4i,

a�3
�6

6
�3
b .�3 � 6ia a

�b
b
a
b .

a � bi
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Exercises 4.5

In Exercises 1–54, perform the indicated operation and
write the result in the form 

1. 2.

3. 4.

5. 6.

7.

8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18. 19. 20.

21. 22. 23. 24.

25. 26. 27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

43. 44.

45. 46. 2�12 2�32�15 � 2�18

2�25 � 2�92�16 � 2�49

�2�12�2�16

2�502�14

2�812�36

6 �
2i

3 � i
i

3 � i
�

3 � i
4 � i

1
2 � i

�
3 � i

2 � 3i
2 � i
1 � i

�
1

1 � 2i

2
12 � 3i2 14 � i2

2 � 3i
i14 � i2

1
12 � i2 12 � i2

1
i14 � 5i2

2 � 3i
i

3
4 � 5i

i
2 � i

1
3i

1
i

1
5 � 2i

1�i22131�i2107

1�i253i33i26i15

a1
2 � iba1

4 � 2ibA23 � i B A23 � i B
11 � i2 12 � i2i12 � 5i22
14 � 3i2 14 � 3i21�3 � 2i2 14 � i2
12 � i2 15 � 2i212 � i2 13 � 5i2

a1
2 �

23
2 ib � a3

4 �
523

2 ib

a22
2 � ib � a23

2 � ib

A23 � i B � A25 � 2i B5
4 � a7

4 � 2ib
13 � 5i2 � 13 � 7i212 � 8i2 � 14 � 2i2
1�5 � 7i2 � 114 � 3i212 � 3i2 � 16 � i2

a � bi.

47. 48.

49.

50.

51. 52.

53. 54.

In Exercises 55–58, find x and y.

55. 56.

57. 58.

In Exercises 59–70, solve the equation and express each
solution in the form 

59. 60.

61. 62.

63. 64.

65. 66.

67. 68.

69. 70.

71. Simplify:  

72. Simplify: 

73. Critical Thinking If is a complex
number, then its conjugate is usually denoted 
that is, Prove that for any complex
number is a real number exactly
when 

74. Critical Thinking The real part of the complex
number is defined to be the real number a.
The imaginary part of is defined to be the
real number b (not bi). See Exercise 73 for notation.

a. Show that the real part of is 

b. Show that the imaginary part of is 

75. Critical Thinking If (with a and b real 

numbers, not both 0), express in standard form.1
z

z � a � bi

z � z
2i

 .z

z � z
2  .z � a � bi

a � bi
a � bi

z � z.
z � a � bi, z

z � a � bi.
z,

z � a � bi

i � i2 � i3 � i4 � i5 � p � i15

i � i2 � i3 � p � i15

x4 � 81 � 0x4 � 1 � 0

x3 � 125 � 0x3 � 8 � 0

3x2 � 4 � �5x2x2 � 3 � 6x

x2 � 1 � 4x2x2 � x � �4

5x2 � 6x � 2 � 0x2 � x � 2 � 0

5x2 � 2x � 1 � 03x2 � 2x � 5 � 0

a � bi.

8 � xi �
1
2 y � 2i3 � 4xi � 2y � 3i

8 � 2yi � 4x � 12i3x � 4i � 6 � 2yi

1 � 2�4
3 � 2�9

1
1 � 2�2

2�3A3 � 2�27 BA2 � 2�5 B A1 � 2�10 B
A5 � 2�3 B A�1 � 2�9 B
A2�25 � 2 B A2�49 � 3 B

�2�64
2�4

2�16
2�36
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Orbits of Complex Numbers

The concepts and processes described in Section 3.5.A apply equally well
to functions with complex number inputs. For instance, the process of
finding the orbit of a complex number under a complex-valued function
is the same as finding the orbit of a real number under a real-valued func-
tion. For example, the orbit of i under was illustrated in Section
4.5, where it was shown that the powers of i form an orbit of period 4.

The orbit of i under is shown graphically in Figure 4.5.A-2.f 1z2 � iz

 f 4 1i2 � i � 1 � i
 f 3 1i2 � i � 1�i2 � �i2 � �1�12 � 1

f 2 1i2 � f 3 f 1i2 4 f 21i2 � i � 1�12 � �i
 f 1i2 � i � i � i2 � �1

 z � i

f 1z2 � iz

4.5.A Excursion: The Mandelbrot Set

Chapter 1 introduced the recursive process of beginning with a value and
adding a specific number repeatedly, and Section 3.5.A discussed iterat-
ing real-valued functions. This section will extend the iterative process to
the set of complex numbers and complex-valued functions and will illus-
trate the Mandelbrot set, which is used to produce many fractal images.
Before reading this section, review Section 3.5.A for terminology and
processes, if needed.

The Complex Plane

Every complex number where a and b are real numbers, corre-
sponds to the point (a, b) in the coordinate plane. Therefore, complex
numbers can be plotted in a coordinate plane, where the horizontal axis
represents the real axis and the vertical axis represents the imaginary axis.
For example, several complex numbers are plotted in Figure 4.5.A-1.

a � bi,

Figure 4.5.A-1

i

Real

4 6
0

4i

6i

−2
−2i

−4i

−6i

−4−6

−3 − 4i

−1 + 2i
2 + 3i

2 − i

5

−4i

The complex
plane is discussed in detail
in Section 10.3.

When dealing with
functions that have the
complex numbers as their
domains, the input variable
is usually denoted as z,
not x.

NOTE

Figure 4.5.A-2

i

0
21

Real

i

2i

−2i

−i

−1−2



Orbits of complex numbers of many functions are very interesting, but
the discussion that follows will be limited to the orbit of 0 under

for different values of c.

Example 1 The Orbit of 0 for 

Describe the orbit of 0 under for the given complex num-
ber c.

a. b.

Solution

a. For 

The orbit of 0 under is as follows.

Use iteration on your calculator to find It suggests that the
orbit of 0 is approaching a number near In fact, it
can be shown that for 

b. For 

The orbit of 0 under is as follows.

Viewing additional iterations, the orbit of 0 when 
appears to oscillate between two values that are close to 
and as illustrated in Figure 4.5.A-3.0.17 � 0.04i

�1.17 � 0.04i
c � �1.2 � 0.05i

 f 15102 � �1.1762 � 0.0296i     f 16102 � 0.1825 � 0.0197i

 f 13102 � �1.1697 � 0.0476i     f 14102 � 0.1660 � 0.0613i

 f 11102 � �1.1725 � 0.0243i     f 12102 � 0.1741 � 0.0070i

 f 9102 � �1.1761 � 0.0515i     f 10102 � 0.1805 � 0.0712i

 f 7102 � �1.1641 � 0.0194i     f 8102 � 0.1547 � 0.0049i

 f 5102 � �1.1860 � 0.0527i     f 6102 � 0.2039 � 0.0751i

 f 3102 � �1.1485 � 0.0168i     f 4102 � 0.1188 � 0.0115i

 f 1102 � �1.2 � 0.05i     f 2102 � 0.2375 � 0.0700i

f 1z2 � z2 � 1.2 � 0.05i

f 1z2 � z2 � 1�1.2 � 0.05i2 � z2 � 1.2 � 0.05i.c � �1.2 � 0.05i,

f n102S �0.2276733451 � 0.1717803749i as n S q

c � �0.25 � 0.25i,
�0.2277 � 0.1718i.
f 15102.

 f 6 102 � f 1�0.220731 � 0.165208i2 � �0.2286 � 0.1771i

 f 5 102 � f 1�0.243896 � 0.173828i2 � �0.2207 � 0.1652i

 f 4 102 � f 1�0.203125 � 0.187500i2 � �0.2439 � 0.1738i

 f 3 102 � f 1�0.25 � 0.125i2 � �0.203125 � 0.187500i

 f 2 102 � 1�0.25 � 0.25i22 � 1�0.25 � 0.25i2 � �0.25 � 0.125i

 f 1 102 � 02 � 0.25 � 0.25i � �0.25 � 0.25i

f 1z2 � z2 � 0.25 � 0.25i

f 1z2 � z2 � 1�0.25 � 0.25i2 � z2 � 0.25 � 0.25i.
c � �0.25 � 0.25i,

c � �1.2 � 0.05ic � �0.25 � 0.25i

f 1z2 � z2 � c

f(z ) � z 2 � c

f 1z2 � z2 � c

302 Chapter 4 Polynomial and Rational Functions

All decimals are
shown rounded to four
decimal places, but
calculations are done using
the decimal capacity of the
calculator.

NOTE

Technology 
Tip

Calculators that handle
complex numbers allow 

you to compute orbits of
easily.

1. Store the complex num-
ber c in memory C.

2. Press 0 STO X ENTER
to store 0 in X.

3. Press STO X
ENTER to produce

4. Pressing ENTER
repeatedly produces
the iterated values.

f 102.
X 2 � C

f 1z2 � z2 � c



Section 4.5.A Excursion: The Mandelbrot Set 303

■

Example 2 The Orbit of 0 for 

Describe the orbit of 0 under for the given complex num-
ber c.

a. b.

Solution

a. The first seven iterations of are shown in Figure
4.5.A-4. If each of these numbers is plotted in the complex plane,
successive iterations get farther and farther from the origin at a very
fast rate. For instance,

The distance formula shows that after only five iterations, the
distance to the origin is about 9509 and after seven iterations, it is
gigantic. In this case, the orbit of 0 is said to approach infinity,
which is sometimes expressed as follows.

If 

b. The iterations through are shown in Figure 4.5.A-5a and
through are shown in Figure 4.5.A-5b. As you can see,

successive iterations stay fairly close to the origin through the 16th
iteration and then quickly move farther and farther away.

Therefore, the orbit of 0 approaches infinity. In other words,

if 
■

f 1z2 � z2 � 10.25 � 0.625i2, then f n102S q as n S q.

 f 22 102 � 12.95 � 10102 � 18.59 � 10102i
 f 21 102 � �254,270 � 175,058i

 f 20 1202 � �167.4 � 522.8i

f 21102f 15102 f 7102f 1102
f 1z2 � z2 � 11 � i2, then f n102S q as n S q.

 f 7102 � 17.81 � 10152 � 16.42 � 10142i
 f 6 102 � 88,454,401 � 3,631,103i
 f 5102 � �9407 � 193i

f 1z2 � z2 � 11 � i2

c � 0.25 � 0.625ic � 1 � i

f 1z2 � z2 � c

f(z ) � z 2 � c

Figure 4.5.A-3

i

0 0.5

Real

0.5

1

−0.5−1−1.5

�0.5

Figure 4.5.A-4

Figure 4.5.A-5a

Figure 4.5.A-5b



The Mandelbrot Set

The Mandelbrot set is defined by whether or not the orbit of 0 under the
function approaches infinity for each complex number c.f 1z2 � z2 � c

304 Chapter 4 Polynomial and Rational Functions

The Mandelbrot set is the set of complex numbers c such that
the orbit of 0 under the function does not
approach infinity.

f(z) � z2 � c

The 
Mandelbrot 

Set

To avoid awkward repetition in the following discussion, the orbit of 0
under the function will be referred to as “the orbit of c.”

Example 1 shows that the orbit of converges and the
orbit of oscillates. Neither orbit approaches infinity, so
both numbers are in the Mandelbrot set. Example 2 shows that the orbits
of and approach infinity, so these numbers are
not in the Mandelbrot set.

Diagram of the Mandelbrot Set

Although the Mandelbrot set is defined analytically, it is usually viewed
geometrically by plotting the numbers in the Mandelbrot set as points 
in the complex plane. The Mandelbrot set is the white region in Figure 

4.5.A-6, in which the tick marks on each axis are unit apart. Note that 

the Mandelbrot set is symmetric with respect to the real axis, but not with
respect to the imaginary axis.

1
2

c � 0.25 � 0.625ic � 1 � i

c � �1.2 � 0.05i
c � �0.25 � 0.25i

f 1z2 � z2 � c

Figure 4.5.A-6
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Figure 4.5.A-6 illustrates the following fact in which the complex num-
bers are considered as points in the complex plane.

If c lies outside the circle of radius 2 with center at the origin, 
then c is not in the Mandelbrot set.

Furthermore, it can be proved that

If c lies inside the circle of radius 2 with center at the origin, 
but some number in its orbit lies outside the circle, then c is not 

in the Mandelbrot set.

Determining whether a particular point c is in the Mandelbrot set can be
quite difficult, particularly if the numbers in its orbit move away from
the origin very slowly. Even after hundreds of iterations, it may not be
clear whether or not the orbit approaches infinity. Because of round-off
errors, a calculator is inadequate for such calculations, and even com-
puters have their limitations.

Border of the Mandelbrot Set

The border of the Mandelbrot set, which consists of the points just out-
side of the set, is shown in various colors in Figure 4.5.A-6. The colors
indicate how quickly the orbit of the point approaches infinity. The col-
ors are determined by the number of iterations n needed for a number in
the orbit of the point to be more than 3 units from the origin, as indicated
in the following table.

Medium Light Light
Red Red Red Yellow Yellow Blue Black

n � 5020 � n � 4913 � n � 1910 � n � 128 � n � 96 � n � 7n � 5

Example 2 shows that is in the red region because the second iter-
ation produces a point more than 3 units from the origin and that

is in the yellow region.

The border of the Mandelbrot set is very jagged and chaotic. The varying
rates at which the orbits of these border points approach infinity produce
some interesting patterns of great complexity. When specific areas are
magnified, you can see shapes that resemble islands, seahorse tails, and
elephant trunks. The most fascinating aspect of the set is that some of
these islands have the same shape as the entire set. Consequently, the
Mandelbrot set is said to be self-similar under magnification.

The following figures show the region near the point under
increasing magnification.

The purple points in Figure 4.5.A-7a indicate the Mandelbrot set. Each
subsequent image is the magnification of the region denoted by the white
square in the previous image. The image shown in Figure 4.5.A-7d is a
copy of the set that is contained within the set, and even though the graphs
shown do not indicate that all of the purple regions are connected, they are.

�0.75 � 0.3i

0.25 � 0.625i

1 � i
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Figure 4.5.A-7a Figure 4.5.A-7b

Figure 4.5.A-7c Figure 4.5.A-7d

Exercises 4.5.A

In Exercises 1–6, compute and where
Then determine the distance from 

to the origin in the complex plane, where the distance
from a point to the origin is given by

1. 2.

3. 4.

5. 6.

In Exercises 7–12, show that c is not in the Mandelbrot
set by finding a number in its orbit that is more than 2
units from the origin. How many iterations are needed
to find the first such number?

c � �0.75 � 0.25ic � �1.2 � 0.5i

c � 1 � 0.5ic � 0.5 � 0.5i

c � 0.5ic � 0.3

2a2 � b2.

a � bi

f 3(0)f(z) � z2 � c.
f 3(0)f 1 (0), f 2(0), 7. 8.

9. 10.

11. 12.

In Exercises 13–18, determine whether or not c is in
the Mandelbrot set.

13. 14.

15. 16.

17. 18. �0.1 � 0.8ic � �0.2 � 0.6i

c � 0.1 � 0.3ic � 1

c � �ic � i

c � 0.4 � 0.6ic � �0.5 � 0.7i

c � 0.2 � 0.8ic � 0.7i

c � �1.1 � 0.4ic � 0.4
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4.6 The Fundamental Theorem of Algebra

The complex numbers were constructed in order to obtain a solution for
the equation that is, a zero of the polynomial Every
quadratic equation with real coefficients has solutions in the complex
number system, as discussed in Section 4.5. A natural question arises:

Does the complex number system need to be enlarged, perhaps many times, to
find zeros of higher degree polynomial functions?

This section explains why the answer is no.

In order to give the full answer, the discussion will not be limited to poly-
nomials with real coefficients but will consider polynomials with complex
coefficients, such as

The discussion of polynomial division in Section 4.1 can easily be
extended to include polynomials with complex coefficients. In fact,

All of the results in Section 4.1 are valid for 
polynomials with complex coefficients.

For example, for it is easy to verify that
i is a zero of f and that is a factor of Both statements can be
checked using the same procedures as before.

Therefore, i is a zero of f.

Therefore, is a factor of and

Because every real number is also a complex number, polynomials with
real coefficients are just special cases of polynomials with complex coef-
ficients. In the rest of this section, “polynomial” means “polynomial with
complex, possibly real, coefficients” unless specified otherwise.

f 1x2 � x2 � 1�1 � i2x � 12 � i2 � 1x � i2 3x � 1�1 � 2i2 4 .
f 1x2x � i

1�1 � 2i2x � 2 � i
1�1 � 2i2x � 2 � i

    0

x2      � ix

x � i 
x � 1�1 � 2i2

�x2 � 1�1 � i2x � 2 � i

 � �1 � i � 1 � 2 � i � 0
 f 1i2 � i2 � 1�1 � i2i � 12 � i2 � i2 � i � i2 � 2 � i

f 1x2.x � i
f 1x2 � x2 � 1�1 � i2x � 12 � i2,

x3 � ix2 � 14 � 3i2x � 1  or  1�3 � 2i2x6 � 3x � 15 � 4i2.

f 1x2 � x2 � 1.x2 � �1,
Objectives

• Use the Fundamental
Theorem of Algebra

• Find complex conjugate
zeros

• Find the number of zeros of
a polynomial

• Give the complete
factorization of polynomial
expressions

The graph of a
polynomial with complex
coefficients cannot be
drawn on a coordinate
plane.

NOTE

Every nonconstant polynomial has a zero in the complex
number system.

Fundamental
Theorem of

Algebra



Although this is a powerful result, neither the Fundamental Theorem nor
its proof provides a practical method for finding a zero of a given poly-
nomial. You may think it strange that you can prove a zero exists without
actually finding one, but such “existence” proofs are quite common in
mathematics.
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That is, every polynomial of degree can be written as the product
of n linear factors. The statement follows from the Fundamental Theorem
and the Factor Theorem. By the Fundamental Theorem, has a com-
plex zero and by the Factor Theorem is a factor, so

If is nonconstant, then it has a complex zero by the Fundamental
Theorem and a factor so that

This process can be continued until the final factor is a constant a, at which
point you have the factorization shown in the preceding box.

Because the n zeros of f may not all be distinct, the number
of distinct zeros may be less than n.

c1, c2, p , cn

f 1x2 � 1x � c12 1x � c22 1h1x2 2.
x � c2

c2g1x2
f 1x2 � 1x � c12g1x2.

x � c1c1 ,
f 1x2

n 7 0

Let be a polynomial of degree with leading
coefficient a. Then there are n, not necessarily distinct,
complex numbers such that 

Furthermore, are the only zeros of f.c1 , c2 p , cn

f(x) � a(x � c1) (x � c2) p (x � cn)

c1 , c2 , p , cn

n 77 0f(x)
Factorization 

over the 
Complex Numbers

Every polynomial of degree has at most n different
zeros in the complex number system.

n 77 0
Number of

Zeros

Suppose f has repeated zeros, meaning that some of the are
the same in the factorization of Recall that a zero c is said to have
multiplicity k if is a factor of but no higher power of 
is a factor. Consequently, if every zero is counted as many times as its multi-
plicity, then the statement in the preceding box implies that

A polynomial of degree n has exactly n complex zeros.

Example 1 Finding a Polynomial Given Its Zeros

Find a polynomial of degree 5 such that and 5 are zeros, 1 is
a zero of multiplicity 3, and f 122 � �24.

1, �2,f 1x2

1x � c2f 1x2,1x � c2 k
f 1x2. c1, c2 , p , cn
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Solution

Because 1 is a zero of multiplicity must be a factor of There
are two other factors corresponding to the zeros and 5.

and 

The product of these factors has degree 5, as does so

where a is the leading coefficient.

Because 

Therefore, 

The graph of f is shown in Figure 4.6-1.
■

Polynomials with Real Coefficients

Recall that the conjugate of the complex number is the number
We usually write a complex number as a single letter, say z, and

indicate its conjugate by sometimes read “z bar.” For instance, if
then Conjugates play a role whenever a quadratic

polynomial with real coefficients has complex zeros.

Example 2 Conjugate Zeros

Find the zeros of 

Solution

The quadratic formula shows that f has two complex zeros.

The complex roots are and its conjugate Notice that
f has no real zeros, as shown in Figure 4.6-2.

■

The preceding example is a special case of a more general theorem.

z � 3 � 2i.z � 3 � 2i

�1�62 ± 21�622 � 4 � 1 � 13
2 � 1 �

6 ± 2�16
2 �

6 ± 4i
2 � 3 ± 2i

f 1x2 � x2 � 6x � 13.

z � 3 � 7i.z � 3 � 7i,
z,

a � bi.
a � bi

� 2x5 � 12x4 � 4x3 � 40x2 � 54x � 20

 f 1x2 � 21x � 1231x � 22 1x � 52
 a � 2

 �12a � �24
 a12 � 12312 � 22 12 � 52 � �24

f 122 � �24,

f 1x2 � a1x � 1231x � 22 1x � 52
f 1x2

x � 5x � 2x � 1�22 �

�2
f 1x2.3, 1x � 123

Figure 4.6-1

y

x
0

642

100

−300

−200

−100

−2−4

(2, −24)

Figure 4.6-2

y

x

84
0

4

8

−4
−4

−8

−8

Complex zeros
are not shown on the graph
of a polynomial.

NOTE

Let be a polynomial with real coefficients. If the complex
number z is a zero of f, then its conjugate is also a zero of f.z

f(x)
Conjugate Zero

Theorem



Example 3 A Polynomial with Specific Zeros

Find a polynomial with real coefficients whose zeros include the num-
bers 2 and 

Solution

Because is a zero, its conjugate, must also be a zero. By the
Factor Theorem, and are factors. Similarly, because
2 is a zero, is a factor. So, consider the polynomial

Obviously, and are zeros of f. Multiplying out the factored
form shows that has real coefficients.

The next-to-last line of the calculation also shows that can be factored
as a product of a linear and a quadratic polynomial, each with real coef-
ficients. The graph of f is shown in Figure 4.6-3.

■

The technique used in Example 3 works because the product,

has real coefficients. The proof of the following result shows why this
must always be the case.

3x � 13 � i2 4 3x � 13 � i2 4 � x2 � 6x � 10,

f 1x2
 � x3 � 8x2 � 22x � 20
 � 1x � 22 1x2 � 6x � 102
 � 1x � 22 1x2 � 3x � ix � 3x � ix � 9 � i22

 f 1x2 � 1x � 22 3x2 � 13 � i2x � 13 � i2x � 13 � i2 13 � i2 4
f 1x2 3 � i2, 3 � i,

f 1x2 � 1x � 22 3x � 13 � i2 4 3x � 13 � i2 4 .
x � 2

x � 13 � i2x � 13 � i2 3 � i,3 � i

3 � i.
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Figure 4.6-3

y

x

84
0

8

16

−4
−8

−16

−8

Every nonconstant polynomial with real coefficients can be
factored as a product of linear and irreducible quadratic
polynomials with real coefficients in such a way that the
quadratic factors, if any, have no real zeros.

Factorization
over the 

Real Numbers

That is, every nonconstant polynomial with real coefficients can be written
as the product of factors in the form or where each
quadratic factor is irreducible over the set of real numbers.

Proof The box on page 308 shows that for any polynomial ,

where are the zeros of f. If some cr is a real number, then the
factor is a linear polynomial with real coefficients. If some cj is a
nonreal complex zero, then its conjugate must also be a zero. Thus, some
ck is the conjugate of say, and with a and b real
numbers. Thus,

ck � a � bi,cj � a � bicj,

x � cr

c1, c2, p , cn

f 1x2 � a1x � c12 1x � c22 p 1x � cn2
f 1x2

ax2 � bx � c,x � k
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Therefore, the factor is a quadratic expression with real
coefficients because a and b are real numbers. Its zeros, and , are non-
real. By taking the real zeros of f one at a time and the nonreal ones in
conjugate pairs in this fashion, the desired factorization of is obtained.

Example 4 Completely Factoring a Polynomial over the 
Real Numbers

Completely factor over the set of real
numbers given that is a zero of f.

Solution

Because is a zero of f, its conjugate, is also a zero of f, and 
has the following quadratic factor.

Dividing by shows that the other factor is which
factors as Therefore,

is the complete factorization of over the real num-
bers. The graph of f is shown in Figure 4.6-4.

■

Complete Factorization of Polynomials

The techniques illustrated in this chapter can be used to completely fac-
tor some polynomials into linear factors.

Example 5 Completely Factoring a Polynomial over the
Complex Numbers

Completely factor over the set of real
numbers and then over the set of complex numbers.

Solution

Because the degree of the polynomial is 4, there are exactly 4 complex
zeros.

Find all rational zeros: The possible rational zeros are factors of 8.

±1, ±2, ±4, ±8

f 1x2 � x4 � 5x3 � 4x2 � 2x � 8

x4 � 2x3 � x2 � 6x�6

f 1x2 � Ax � 23 B Ax � 23 B 1x2 � 2x � 22
Ax � 23 B Ax � 23 B . x2 � 3,x2 � 2x � 2f 1x2

3x � 11 � i2 4 3x � 11 � i2 4 � x2 � 2x � 2

f 1x21 � i,1 � i

1 � i
f 1x2 � x4 � 2x3 � x2 � 6x � 6

f 1x2
ckcj

1x � cj2 1x � ck2
 � x2 � 2ax � 1a2 � b22
 � x2 � ax � bix � ax � bix � a2 � 1bi22
 � x2 � 1a � bi2x � 1a � bi2x � 1a � bi2 1a � bi2

 1x � cj2 1x � ck2 � 3x � 1a � bi2 4 3x � 1a � bi2 4

Figure 4.6-4

y

x

42
0

6

12

−2
−6

−12

−4



Graph and determine which of the pos-
sible zeros are the rational zeros.

f 1x2 � x4 � 5x3 � 4x2 � 2x � 8
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y

x

84
0

10

20

−4

−10

−20

−8

Figure 4.6-5

The graph suggests that and 4 are zeros and you can easily verify that
they are. The graph shows that there are no other real zeros.

Find all rational factors: Two linear factors of and 

Find remaining factors: Use synthetic division twice to find another factor
of 

So, 

Use the quadratic formula to find the two zeros of 

The complex factors are and x � 11 � i2.x � 11 � i2
 � 2 ±2�4

2 �
2 ± 2i

2 � 1 ±  i

 x �
2 ±21�222 � 4112 122

2112

g 1x2 � x2 � 2x � 2.

1x � 12 1x � 42 1x2 � 2x � 22.x4 � 5x3 � 4x2 � 2x � 8 �

f 1x2 � 1x � 42 1x � 12 1x2 � 2x � 22

�1 1 �1 0  2
 �1 2 �2

1 �2 2    0

f 1x2 � 1x � 42 1x3 � x2 � 22

4 1 �5    4 2 �8
4 �4 0    8

1 �1    0 2    0

f 1x2.
x � 4.f 1x2 are x � 1

�1

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩

⎧⎪⎪⎨⎪⎪⎩

⎧ ⎪ ⎨ ⎪ ⎩

⎧⎪⎪⎨⎪⎪⎩
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The complete factorizations of over the set of real numbers and over
the set of complex numbers are shown below.

Both products can be verified by multiplication.
■

An expression that has even degree of 4 or greater may have only com-
plex roots. Zeros and factors of such functions and expressions may be
difficult to find, and the techniques illustrated in this chapter are of little
use. However, functions of odd degree must have at least one real zero,
and the corresponding expression must have at least one real linear fac-
tor. Therefore, a cubic expression can easily be approximately factored by
estimating one zero, which yields the real linear factor, using synthetic
division to determine the quadratic factor, and then using the quadratic
formula to estimate the remaining two zeros.

 � 1x � 12 1x � 42 3x � 11 � i2 4 3x � 11 � i2 4
 x4 � 5x3 � 4x2 � 2x � 8 � 1x � 12 1x � 42 1x2 � 2x � 22

f 1x2

Exercises 4.6

In Exercises 1–6, determine if is a factor of 
without using synthetic or long division.

1.

2.

3.

4.

5.

6.

In Exercises 7–10, list the zeros of the polynomial and
state the multiplicity of each zero.

7.

8.

9.

10.

In Exercises 11 –22, find all the zeros of f in the com-
plex number system; then write as a product of
linear factors.

f(x)

k 1x2 � Ax � 27 B 7Ax � 25 B 512x � 12
h 1x2 � 2x151x � p214 3x � 1p � 12 4 13

g 1x2 � 3ax �
1
6b ax �

1
5b ax �

1
4b

f 1x2 � x54 ax �
4
5b

g 1x2 � x � 1
f 1x2 � 10x75 � 8x65 � 6x45 � 4x32 � 2x15 � 5

f 1x2 � x3 � 2x2 � 5x � 4   g 1x2 � x � 2

f 1x2 � x5 � 3x2 � 2x � 1   g 1x2 � x � 2

f 1x2 � 3x4 � 6x3 � 2x � 1  g 1x2 � x � 1

f 1x2 � x6 � 10  g 1x2 � x � 2

f 1x2 � x10 � x8  g 1x2 � x � 1

f(x)g (x) 11. 12.

13. 14.

15. Hint: Factor first.

16. 17.

18.
Hint: Let and factor first.

19. 20.

21. 22.

In Exercises 23–44, find a polynomial with real
coefficients that satisfies the given conditions. Some
of the problems have many correct answers.

23. degree 3; only zeros are 

24. degree 3; only zeros are 1 and 

25. degree 6; only zeros are 

26. degree 5; only zero is 2

27. degree 3; zeros 

28. degree 3; zeros 

29. zeros include 2 � i and 2 � i

�1, 12, 2;  f 102 � 2

�3, 0, 4;  f 152 � 80

1, 2, p

�1

1, 7, �4

f(x)

f 1x2 � 2x4 � 7x2 � 4f 1x2 � x4 � 3x2 � 10

f 1x2 � x4 � x2 � 6f 1x2 � x4 � 1

u2 � 64u � x3
f 1x2 � x6 � 64

f 1x2 � x3 � 8f 1x2 � x3 � 125

f 1x2 � x3 � 27

f 1x2 � 3x2 � 5x � 2f 1x2 � 3x2 � 2x � 7

f 1x2 � x2 � 4x � 13f 1x2 � x2 � 2x � 5



30. zeros include 

31. zeros include 2 and 

32. zeros include 3 and 

33. zeros include 

34. zeros include 

35. degree 2; zeros 

36. degree 4; zeros 3i and each of multiplicity 2

37. degree 4; only zeros are 

38. degree 5; zeros 2 of multiplicity 3, i, and 

39. degree 6; zeros 0 of multiplicity 3 and 3, 
each of multiplicity 1

40. degree 6; zeros include i of multiplicity 2 and 3

41. degree 2; zeros include 

42. degree 2; zeros include 

43. degree 3; zeros include i and 1; 

44. degree 3; zeros include 

In Exercises 45–48, find a polynomial with complex
coefficients that satisfies the given conditions.

45. degree 2; zeros i and 

46. degree 2; zeros 2i and 

47. degree 3; zeros 3, i, and 

48. degree 4; zeros 

In Exercises 49–56, one zero of the polynomial is given;
find all the zeros.

49. zero 3

50. zero i

51. zero i

52. zero i

53. zero 1 of multiplicity 2x4 � 2x3 � 5x2 � 8x � 4;

x4 � x3 � 5x2 � x � 6;

x4 � 3x3 � 3x2 � 3x � 2;

x3 � x2 � x � 1;

x3 � 2x2 � 2x � 3;

22, �22,  1 � i, and 1 � i

2 � i

1 � i

1 � 2i

2 � 3i and �2; f 122 � �3

f 1�12 � 8

3 � i; f 122 � 3

1 � i;  f 102 � 6

1 � i,
1 � i,

�i

4, 3 � i, and 3 � i

�3i,

1 � 2i and 1 � 2i

1, 2 � i, 3i � 1

�3, 1 � i, 1 � 2i

4i � 1

2 � i

1 � 3i and 1 � 3i
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54. zero 2 of multiplicity 2

55. zero 

56. zero 2i

57. Let and be complex
numbers (a, b, c, d are real numbers). Prove the
given equality by computing each side and
comparing the results.
a. (The left side says: “First find

and then take the conjugate.” The right
side says: “First take the conjugates of z and w
and then add.”)

b.

58. Let and be polynomials of degree n and
assume that there are numbers 

such that
for every i.

Prove that Hint: Show that each ci is 
a zero of If is nonzero,
what is its largest possible degree? To avoid a
contradiction, conclude that 

59. Suppose has real
coefficients and z is a complex zero of f.
a. Use Exercise 57 and the fact that when r

is a real number, to show that

b. Conclude that is also a zero of Note:

60. Let be a polynomial with real coefficients and
z a complex zero of f. Prove that the conjugate is
also a zero of f. Hint: Exercise 59 is the case when

has degree 3; the proof in the general case is
similar.

61. Use the Factorization over the Real Numbers
statement to show that every polynomial with real
coefficients and odd degree must have at least one
real zero.

62. Give an example of a polynomial with
complex, nonreal coefficients and a complex
number z such that z is a zero of f but its
conjugate is not. Therefore, the conclusion of the
Conjugate Roots Theorem may be false if 
doesn’t have real coefficients.

f 1x2

f 1x2

f 1x2
z

f 1x2
f 1z2 � f 1z2 � 0 � 0.

f.z
� az 3

� bz2
� cz � d � f 1z2.f 1z2 � az3 � bz2 � cz � d

r � r,

f 1x2 � ax3 � bx2 � cx � d

f 1x2 � 0.

f 1x2f 1x2 � g1x2 � h1x2.
g1x2 � h 1x2.
g1ci2 � h1ci2

cn�1

c1, c2, ..., cn,n � 1
h 1x2g 1x2

z � w � z � w

z � w
z � w � z � w

w � c � diz � a � bi

x4 � 5x3 � 10x2 � 20x � 24;

2 � ix4 � 4x3 � 6x2 � 4x � 5;

x4 � 6x3 � 29x2 � 76x � 68;
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Important Facts 
and Formulas

When f is a polynomial and r is a real number that satisfies any of
the following statements, then r satisfies all the statements.

• r is a zero of the polynomial function 
• r is an x-intercept of the graph of f
• r is a solution, or root, of the equation 
• is a factor of the polynomial expression 
• There is a one-to-one correspondence between the linear

factors of that have real coefficients and the x-intercepts
of the graph of f.

A polynomial of degree n has at most n distinct real zeros.

All rational zeros of a polynomial have the form where r is a fac-

tor of the constant term and s is a factor of the leading coefficient.

The end behavior of the graph of a polynomial function is similar
to the end behavior of the graph of the highest degree term of the
polynomial.

Zeros of even multiplicity touch but do not cross the x-axis. Zeros
of odd multiplicity cross the x-axis.

The number of local extrema of the graph of a polynomial function
is at most one less than the degree of a polynomial.

r
s ,

f 1x2
f 1x2x � r

f 1x2 � 0

y � f 1x2
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Review Exercises

Section 4.1

The number of points of inflection of the graph of a polynomial
function is at most two less than the degree of the polynomial.

The graph of a rational function has a vertical asymptote at every
number that is a zero of the denominator and not a zero of the
numerator.

The x-intercepts of the graph of a rational function occur at the
numbers that are zeros of the numerator but are not zeros of the
denominator.

Every complex number can be written in the standard form 

If is a zero of a polynomial with real coefficients, then its con-
jugate is also a zero.

A polynomial of degree n has exactly n complex zeros counting mul-
tiplicities.

Every polynomial expression with real coefficients can be factored
into linear and irreducible quadratic factors with real coefficients.

Every polynomial expression can be factored into linear factors with
complex coefficients.

a � bi
a � bi

i2 � �1 and i � 2�1

a � bi.

1. Which of the following are polynomials?

a. b. c.

d. e. f.

g. h.

2. What is the remainder when is divided by 

3. What is the remainder when is divided by

4. Is a factor of Justify your answer.

5. Use synthetic division to show that is a factor of
and find the other factor.

6. Find a polynomial f of degree 3 such that and 

7. Find the zero(s) of 

8. Find the zeros of 

9. Factor the polynomial Hint: 2 is a zero.

10. Find all real zeros of x6 � 4x3 � 4.

x3 � 8x2 � 9x � 6.

3x2 � 2x � 5.

2 ax
5 � 7b � 3x �

x � 2
5 � 4.

f 102 � 5.f 1�12 � 0,  f 112 � 0,

x6 � 5x5 � 8x4 � x3 � 17x2 � 16x � 4,
x � 2

f 1x2 � 14x87 � 65x56 � 51?x � 1

x � 1?
x112 � 2x8 � 9x5 � 4x4 � x � 5

x2 � 1?x4 � 3x3 � 1

0 x 02x � 2x2

22 � 2x2p3 � x23 x4

x3 �
1
22

x �
1
x23 � x2

Section 4.2
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11. Find all real zeros of Hint: Try 

12. Find all real zeros of 

13. Find the rational zeros of 

14. Consider the polynomial 
a. List the only possible rational zeros.
b. Find one rational zero.
c. Find all the zeros of the polynomial.

15. a. Find all rational zeros of 
b. Find two consecutive integers such that an irrational zero of

lies between them.

16. How many distinct real zeros does have?

17. How many distinct real zeros does have?

18. Find the zeros of 

19. The polynomial has
a. no real zeros.
b. only one real zero.
c. three rational zeros.
d. only one rational zero.
e. none of the above.

20. Show that 5 is an upper bound for the real zeros of 

21. Show that is a lower bound for the real zeros of 

In Exercises 22 and 23, find the real zeros of the polynomial.

22.

23.

24. List the zeros of the polynomial and the multiplicity of each zero.

25. List the zeros of the polynomial and the multiplicity of each zero.

26. Draw the graph of a function that could not possibly be the graph of a
polynomial function, and explain why.

27. Draw a graph that could be the graph of a polynomial function of degree 5.
You need not list a specific polynomial nor do any computation.

28. Which of the statements is not true about the polynomial function f whose
graph is shown in the figure on the next page?

f 1x2 � �2 1x � 3221x � 42 1x2 � 92

f 1x2 � 5 1x � 4231x � 22 1x � 17231x2 � 42

x5 � 3x4 � 2x3 � x2 � 23x � 20

x6 � 2x5 � x4 � 3x3 � x2 � x � 1

x4 � 4x3 � 15.�1

x4 � 4x3 � 16x � 16.

x3 � 2x � 1

x4 � 11x2 � 18.

x3 � 6x2 � 11x � 6

x3 � 4x

x3 � 2x2 � 2x � 2

x3 � 2x2 � 2x � 2.

2x3 � 8x2 � 5x � 3.

x4 � 2x3 � 4x2 � 1.

3y31y4 � y2 � 52.
x � �2.9x3 � 6x2 � 35x � 26.
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Section 4.3.A

a. f has three zeros between and 3
b. could possibly be a fifth-degree polynomial
c.
d.
e. is positive for all x in the interval 

29. Which of the statements i–v about the polynomial function f whose graph
is shown in the figure below are false?

3�1, 0 4f 1x2
f 122 � f 1�12 6 3
1 f � f 2 102 7 0
f 1x2

�2

x

y

−2 −1−3 1 2 3

−2

1

3

2

x

y

−2−4−6 2

−4

4

i  f has 2 zeros in the interval iv
ii v f has degree 
iii

In Exercises 30–33, find a viewing window (or windows) that shows a complete
graph of the function. Be alert for hidden behavior.

30.

31.

32.

33.

In Exercises 34–37, sketch a complete graph of the function.

34. 35.

36. 37.

38. HomeArt makes plastic replicas of famous statues. Their total cost to
produce copies of a particular statue is shown in the table on the next page.
a. Sketch a scatter plot of the data.
b. Use cubic regression to find a function C(x) that models the data—that

f 1x2 � x4 � 3x � 2h 1x2 � x4 � x3 � 4x2 � 4x � 2

g 1x2 � x3 � 2x2 � 3f 1x2 � x3 � 9x

f 1x2 � 32x3 � 99x2 � 100x � 2

h 1x2 � 4x3 � 100x2 � 600x

g 1x2 � 0.3x5 � 4x4 � x3 � 4x2 � 5x � 1

f 1x2 � 0.5x3 � 4x2 � x � 1

f 102 6 f 112
�4f 1�32 � f 1�62 6 0

f 122 � 2 � 01�6, �32
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is, the cost of making x statues. Assume C is reasonably accurate when

c. Use C to estimate the cost of making the seventy-first statue. 
d. Use C to approximate the average cost per statue when 35 are made and

when 75 are made. Recall that the average cost of x statues is 
C 1x2

x .

x � 100.

Number of statues Total cost

0 $2,000

10 2,519

20 2,745

30 2,938

40 3,021

50 3,117

60 3,269

70 3,425

39. The following table gives the estimated cost of a college education at a
public institution. Costs include tuition, fees, books, and room and board
for four years.
a. Sketch a scatter plot of the data (with corresponding to 1990).
b. Use quartic regression to find a function C that models the data.

Estimate the cost of a college education in 2007 and in 2015.

x � 0

Enrollment Year Costs

1998 $46,691

2000 52,462

2002 58,946

2004 66,232

2006 74,418

Enrollment Year Costs

2008 $ 83,616

2010 93,951

2012 105,564

2014 118,611

Source: Teachers Insurance and Annuity
Association College Retirement Equities
Fund

In Exercises 40–43, sketch a complete graph of the function. Label the x-inter-
cepts, all local extrema, holes, and asymptotes.

40. 41.

42. 43. f 1x2 �
x � 1
x2 � 1

k 1x2 �
4x � 10
3x � 9

h 1x2 �
3 � x
x � 2g 1x2 �

�2
x � 4
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Section 4.5

Section 4.5.A

Section 4.6

In Exercises 44 and 45, list all asymptotes of the graph of the function.

44. 45.

In Exercises 46–49, find a viewing window (or windows) that shows a complete
graph of the function. Be alert for hidden behavior.

46. 47.

48. 49.

50. Which of these statements is true about the graph of

a. The graph has two vertical asymptotes.
b. The graph touches the x-axis at 
c. The graph lies above the x-axis when 
d. The graph has a hole at 
e. The graph has no horizontal asymptotes.

In Exercises 51–58, solve the equation in the complex number system.

51. 52.

53. 54.

55. 56.

57. 58.

59. One zero of is i. Find all zeros.

60. One zero of is i. Find all zeros.

61. Give an example of a fourth-degree polynomial with real coefficients whose
zeros include 0 and 

62. Find a fourth-degree polynomial f whose only zeros are and 
such that 

63. Find the orbit of 1 for 

64. Find the orbit of 0 for using the following values of c. State
whether c is in the Mandelbrot set.

a. b. c.

Factor each of the following over the set of real numbers and over the set of
complex numbers.

65. 66.

67. 68.

69. 70. 9x5 � 30x4 � 43x3 � 114x2 � 28x � 24x4 � 2x2 � 1

2x3 � 3x2 � 9x � 4x4 � x3 � x2 � x � 2

x3 � 3x2 � 3x � 2x3 � 6x2 � 11x � 6

c � 0.3 � 0.5ic � �0.5 � 0.6ic � �1

f 1z2 � z2 � c

f 1z2 � a3
5 �

4
5 ib z.

f 1�12 � 50.
2 � i2 � i

1 � i.

x4 � x3 � 5x2 � x � 6

x4 � x3 � x2 � x � 2

x3 � 27 � 0x3 � 8 � 0

8x4 � 10x2 � 3 � 03x4 � x2 � 2 � 0

�3x2 � 4x � 5 � 05x2 � 2 � 3x

x2 � 2x � 5 � 0x2 � 3x � 10 � 0

x � 1.
x 6 �1.

x � 3.

f 1x2 �
1x � 12 1x � 32
1x2 � 12 1x2 � 12  ?

k 1x2 �
x3 � 2x2 � 4x � 8

x � 10h 1x2 �
x4 � 4

x4 � 99x2 � 100

g 1x2 �
x2 � x � 6

x3 � 3x2 � 3x � 1
f 1x2 �

x � 3
x2 � x � 2

g 1x2 �
x4 � 6x3 � 2x2 � 6x � 2

x2 � 3
f 1x2 �

x2 � 1
x3 � 2x2 � 5x � 6
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Optimization Applications

Many real-world situations require you to find the largest or smallest quan-
tity satisfying certain conditions. For instance, automotive engineers want
to design engines with maximum fuel efficiency. Similarly, a cereal man-
ufacturer who needs a box of volume 300 cubic inches might want to know
the dimensions of the box that requires the least amount of cardboard,
which is the cheapest to make. The exact solutions of such minimum/
maximum problems require calculus. However, graphing technology can
provide very accurate approximate solutions.

Example 1 Maximum of a Rational Function

Find two negative numbers whose product is 50 and whose sum is as
large as possible.

Solution

Let x and z be the two negative numbers, and let y be their sum. Then 

and Solving for z yields so that

The desired quantity is the value of x that makes y as large as possible.

Since x must be negative, graph in a window with 

Each point on the graph represents the following:

• x represents one of the two negative number, and represents the 

other negative number
• y is the sum of the two negative numbers

The largest y possible is the point on the graph with largest y-coordinate,
that is, the highest point on this part of the graph. Either zoom-in or use
the maximum finder to approximate the highest point. As shown in 
Figure 4.C-1, the largest value of y is approximately which
occurs when Therefore, the numbers are approximately 

and The exact solution, as found by

using calculus, is —which is approximately and is very
close to the graphical solution.

■

�7.071068150

50
�7.071067 � �7.071069.�7.071067

x � �7.071067.
�14.14214

50
x

1x, y2
�20 � x � 0.

y � x �
50
x

y � x � z � x �
50
x .

z �
50
xxz � 50y � x � z.xz � 50

–26

2

–20 0

Figure 4.C-1
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Example 2 Largest Volume of a Box

A box with no top is to be made from a inch sheet of cardboard
by cutting squares of equal size from each corner and bending up the
flaps, as shown in Figure 4.C-2. To the nearest hundredth of an inch, what
size square should be cut from each corner in order to obtain a box with
the largest possible volume? What is the volume of this box?

22 � 30

Solution

Let x denote the length of the side of the square to be cut from each cor-
ner. Then, 

Thus, the equation gives the volume y of the box
that results from cutting an square from each corner. Because the
shortest side of the cardboard is 22 inches, the length x of the side of the
cut-out square must be less than 11. (Why?)

On the graph of 

• the x-coordinate of each point is the size of the square to be cut from
each corner.

• the y-coordinate of each point is the volume of the resulting box.

The box with the largest volume corresponds to the point with the largest
y-coordinate, that is, the highest point in the viewing window. A maxi-
mum find shows that the highest point is approximately (4.182, 1233.809),
as shown in Figure 4.C-3. Therefore, a square measuring approximately

inches should be cut from each corner, producing a box of
approximately 1233.81 cubic inches.

■

4.18 � 4.18

f 1x2 � 4x˛

3 � 104x˛

2 � 660x,

x � x
y � 4x˛

3 � 104x˛

2 � 660x

 � 4x˛

3 � 104x˛

2 � 660x
 � 130 � 2x2  122 � 2x2x

 Volume of box � Length � Width � Height

22

30

30 − 2x

x x

x

x

22 − 2x

Figure 4.C-2

0

1300

0 11

Figure 4.C-3

>> >⎧⎪⎨⎪⎩ ⎧⎪⎨⎪⎩
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Example 3 Minimum Surface Area of a Cylinder

A cylindrical can of volume 58 cubic inches (approximately 1 quart) is to
be designed. For convenient handling, it must be at least 1 inch high and
2 inches in diameter. What dimensions will use the least amount of mate-
rial?

Solution

The cylinder can be constructed by rolling a rectangular sheet of metal
into a tube and then attaching the top and bottom, as shown in Fig-
ure 4.C-4. The surface area of the can, which determines the amount of
material needed, has the following formula:

When the sheet is rolled into a tube, the width c of the sheet is the cir-
cumference of the ends of the can, so .

The volume of the cylinder of radius r and height h is Since the can
is to have volume 58 cubic inches,

Therefore,

Note that r must be 1 or greater because the diameter 2r must be at least
2. Furthermore, r cannot be more than 5 because if and then
the volume would be at least which is greater than 58.

The situation can be represented by the graph of the equation 

The x-coordinate of each point represents a possible radius, and the 
y-coordinate represents the surface area of the corresponding can. A
graphical minimum finder shows that the coordinates of the lowest point
are approximately (2.098, 82.947), as shown in Figure 4.C-5.

If the radius is 2.098, then the height is 

The dimensions of can that uses the least amount of materials are approx-
imately a radius of 2.1 inches and a height of 4.2 inches.

■

58
2.0982 � p

� 4.19.

y �
116
x � 2px2.

p1252 112,pr 

2
 h

h � 1,r 7 5

surface area � 2prh � 2pr 2 � 2pr a 58
pr 

2b � 2pr 

2 �
116

r � 2pr 2.

pr 2
 h � 58,  or equivalently,  h �

58
pr 2  .

pr 

2 h.

 � 2prh � 2pr 

2

 Surface Area � Ch � 2pr 

2

C � 2pr

 � Ch � 2pr 

2

� pr 

2� pr 

2Ch�

 Surface Area � Area of rectangular sheet � Area of top � Area of bottom

h

C

r

h

Figure 4.C-4

–55

220

1 5

Figure 4.C-5

> > >
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Exercises

1. Find the highest point on the part of the graph of
that is shown in the given

window. The answers are not all the same.
a. b.
c.

2. Find the lowest point on the part of the graph of
that is shown in the given

window.
a. b.
c.

3. An open-top box with a square base is to be
constructed from 120 square centimeters of
material. What dimensions will produce a box
a. of volume 100 cm3?
b. with largest possible volume?

4. A 20-inch square piece of metal is to be used to
make an open-top box by cutting equal-sized
squares from each corner and folding up the sides
(as in Example 2). The length, width, and height
of the box are each to be less than 12 inches. What
size squares should be cut out to produce a box
with
a. volume 550 in3?
b. largest possible volume?

5. A cylindrical waste container with no top, a
diameter of at least 2 feet, and a volume of 
25 cubic feet is to be constructed. What should its
radius be under the given conditions?
a. 65 square feet of material will be used to

construct it
b. the smallest possible amount of material will

be used to construct it (how much material is
needed?)

6. If is the cost of producing x units, then is

the average cost per unit. Suppose the cost of
producing x units is given by

and that no more
than 300 units can be produced per week.
a. If the average cost is per unit, how many

units are being produced?
b. What production level should be used in order

to minimize the average cost per unit? What is
the minimum average cost?

7. If the cost of material to make the can in Example
3 is 5 cents per square inch for the top and bottom

$1100

c 1x2 � 0.13x3 � 70x 

2 � 10,000x

c1x2
xc 1x2

�3 � x � 2
�2 � x � 20 � x � 2

y � x3 � 3x � 2

�2 � x � 3
�2 � x � 2�2 � x � 0

y � x 

3 � 3x � 2
and 3 cents per square inch for the sides, what
dimensions should be used to minimize the cost
of making the can? [The answer is not the same as
in Example 3.]

8. A certain type of fencing comes in rigid 10-foot
segments. Four uncut segments are used to fence
in a garden on the side of a building, as shown in
the figure. What value of x will result in a garden
of the largest possible area? What is that area?

9. A rectangle is to be inscribed in a semicircle of
radius 2, as shown in the figure. What is the
largest possible area of such a rectangle? Hint: The
width of the rectangle is the second coordinate of
the point P (Why?), and P is on the top half of the
circle x 

2 � y 

2 � 4.

10. Find the point on the graph of that is
closest to the point (0, 1) and has positive
coordinates. Hint: The distance from the point 

on the graph to (0, 1) is 
express y in terms of x.

21x � 022 � 1y � 122;1x, y2

y � 5 � x 

2

x

y

P

x2 + y2 = 4

−2 2

2

0 x−x

x
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Doorway to the past

The image above is of Pueblo Benito in Chaco Canyon, New Mexico. It was the home
of the Anasazi people of the desert southwest for several centuries, and it includes
timbers (shown above the doorway) that were used to date the buildings by using
carbon-14 dating, which involves an exponential equation. See Exercise 55 Section 5.6.

Exponential 
and Logarithmic
Functions

C H A P T E R

5
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5.1 Radicals and Rational Exponents

5.2 Exponential Functions

5.3 Applications of Exponential Functions

5.4 Common and Natural Logarithmic Functions

5.5 Properties and Laws of Logarithms

5.5.A Excursion: Logarithmic Functions to Other

Bases

5.6 Solving Exponential and Logarithmic Equations

5.7 Exponential, Logarithmic, and Other Models

Chapter Outline Chapter Review

can do calculus Tangents to Exponential Functions

Interdependence of Sections
5.3 5.6

5.1 5.2 5.4 5.5

5.7

Section 5.1 contains prerequisite review material for this

chapter. If students are familiar enough with the

objectives of this section, it may be skipped.

Exponential and logarithmic functions are essential for the mathe-

matical description of a variety of phenomena in the physical

sciences, engineering, and economics. Although a calculator is necessary

to evaluate these functions for most values, you will not be able to use

your calculator efficiently or interpret its answers unless you understand

the properties of these functions. When calculations can readily be done

by hand, you will be expected to do them without a calculator.

5.1 Radicals and Rational Exponents

n th Roots

Recall that when the square root of c is the nonnegative solution of
the equation Cube roots, fourth roots, and higher roots are defined
in a similar fashion as solutions of the equation 

This equation can be solved graphically by finding the x-coordinate of the
intersection points of the graphs of and . (Review finding
solutions graphically in Section 2.1 and the shape of the graph of 
in Section 4.3, if needed.)

Depending on whether n is even or odd and whether c is positive or neg-
ative, may have two, one, or no solutions, as shown in the following
figures.

xn � c

y � axn
y � cy � xn

xn � c.
x2 � c.

c � 0,

Objectives

• Define and apply rational
and irrational exponents

• Simplify expressions
containing radicals or
rational exponents

>>

>

All constants,
variables, and solutions in
this chapter are real
numbers.

NOTE

> > >



The figures illustrate the following definition of nth roots.
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x

y

c
y = c

y = xn

x

y

c
y = c

y = xn

x

y

y = 0

y = xn

x

y

c
y = c

y = xn

Figure 5.1-1 Figure 5.1-2 Figure 5.1-3 Figure 5.1-4

nth Roots
Let c be a real number and n a positive integer. The nth root
of c is denoted by either of the symbols

and is defined to be

• the solution of when n is odd; or
• the nonnegative solution of when n is even and

c �� 0.
xn � c

xn � c

n
2c  or  c

1
n

Examples of nth roots are shown below.

Expressions involving nth roots can often be simplified or written in a
variety of ways by using a basic fact of exponents.

Example 1 Operations on nth Roots

Simplify each expression.

a. b.

c. d. A5 � 2c B ˛A5 � 2c B , where c 7 023 8x6
˛y4

212 � 27528˛ � 212

2
n

cd � 2
n

c˛2
n

d    or equivalently,    1cd2 1n � c
1
n

˛ d
1
n

2
4

81 � 181214 � 3 because 3 is the nonnegative solution of x4 � 81.
23 �8 � 1�8213 � �2 because �2 is the solution of x 3 � �8.

n odd

Exactly one solution
for any c

n even

One solution
x � 0

c � 0
One positive and one

negative solution

c 77 0
No solution

c 66 0

Solutions of xn � c
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Figure 5.1-5

Figure 5.1-6

Solution

a.

b.

c.

d.

When using a calculator, exponent notation for nth roots is usually pre-
ferred over radical notation.

■

Example 2 Evaluating nth Roots

Use a calculator to approximate each expression to the nearest ten-
thousandth.

a. b.

Solution

a. Because the expressions and 

are equivalent, as shown at right.

b. The fraction is equivalent to the 

repeating decimal The 

fraction is not equivalent to this decimal if it is rounded off, as 

shown at left. Therefore, it is better to leave the exponent in
fractional form.

■

Rational Exponents

Rational exponents of the form are called nth roots. Rational exponents

can also be of the form such as Rational exponents of the form 

can be defined in such a way that the laws of exponents, such as 

are still valid. For example, because it is reasonable to 

say that These expressions are equivalent.

This illustrates the definition of rational exponents.

4˛

3
2 � 14˛

1
2 23 � A24 B 3 � 1223 � 8

4˛

3
2 � 14˛

32 ˛

1
2 � 164212 � 264 � 8

4˛

3
2 � 14˛

32 ˛

1
2 � 141

2 23.
3
2 � 132 ˛

1
2 � Q12R˛3,

c˛

rs � 1c˛

r2 ˛

s,

m
n4˛

3
2.m

n ,

1
n

225
1
11

˛ � 1.6362

1
11

0.090909 p .

1
11

40˛

1
5 � 2.0913

40˛

0.2

40˛

1
5

1
5 � 0.2,

225 ˛

1
1140˛

1
5

A5 � 2c B ˛A5 � 2c B � 52 � A2c B 2 � 25 � c

23 8x6y4 � 23 8 � 23 x3 � x3 � 23 y3 � y � 2x 2 y˛23 y

 � 223 � 523 � �323
212 � 275 � 24 � 3 � 225 � 3 � 24˛23 � 225˛23
28 � 212 � 28 � 12 � 296 � 216 � 6 � 216 � 26 � 426

CAUTION

When using exponent
notation to evaluate nth
roots with a calculator,
be sure to use parenthe-
ses when raising to the
fractional power.
Example: To enter ,
press 9^(1/3).

23 9



Every terminating decimal is a rational number; therefore, expressions 
such as can be expressed as Although the definition of rational
exponents requires c to be positive, it remains valid when c is negative,
provided that the exponent is in lowest terms with an odd denominator, 
such as In Exercise 89, you will explore why these restrictions are
necessary when c is negative.

1�82  

2
3.

13 

378
100.13 

3.78
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Laws of Exponents

You have seen that the law of exponents is valid for rational expo-
nents. In fact, all of the laws of exponents are valid for rational exponents.

c 

rs � 1cr2s

CAUTION

Although and 4 is a real number,
entering on some calculators may produce either an error
message or a complex number. If this occurs, you can get the cor-
rect answer by entering one of the equivalent expressions below.

3 1�82  

2 4  

1
3  or  3 1�8213 4 2

1�82  

2
3

23 1�822 � 23 64 � 4,1�8223 �

Let c and d be nonnegative real numbers and let r and s be
rational numbers. Then

1. 4.

2. 5.

3. 6.

If and ,

• if and only if 

• if and only if c � d.cr � dr

r � s.cr � cs

d � 1c � 1

c�r �
1
cr  (c � 0)(cr)s � crs

a c
d
br

�
cr

dr  (d � 0)cr

cs � cr�s  (c � 0)

(cd)r � cr
 drcrcs � cr�s

Laws of
Exponents

Example 3 Simplifying Expressions with Rational Exponents

Write the expression using only positive exponents.18r
3
4 s�32 23

Definition of
Rational

Exponents

Let c be a positive real number and let be a rational number 

with positive denominator.

c
t
k � 2

k
ct � AA2k c BBt.In radical notation,

c
t
k is defined to be the number (ct )

1
k � (c

1
k)t

t
k



Solution

definition and 

simplify

simplify and 

The expression can also be written as if it is more convenient.

■

Example 4 Simplifying Expressions with Rational Exponents

Simplify the expression 

Solution

■

Example 5 Simplifying Expressions with Rational Exponents

Simplify the expression 

Solution

commutative

simplify
■

Example 6 Simplifying Expressions with Rational Exponents

Let k be a positive rational number. Write the expression 
without radicals, using only positive exponents.

Solution

definition

simplify and 

simplify
■

 � c
k
4

cr cs � cr�s � c
k
2 �

k
4

1cr 2 s � crs � c
k
2 c�

k
4

1cr2 s � crs � c
5k
10

˛1c�
k
2 2 12

 
10
2c5k 31c�k212 � 1c5k2 1

10 3 1c�k212 4 12

2
10

c5k 21c�k 212

 � x
1
2 y

1
2

cr cs � cr�s � x
5
2 �2 y4�

7
2

 � x
5
2 x�2 y4 y�

7
2

1cr2 s � 1x 5
2 y42 1x�22 1y�

14
4 2

1cd2 r 1x 5
2 y42 1xy

7
4 2�2 � 1x 5

2y42 1x�22 1y 7
4 2�2

1x5
2y4 2 1xy

7
4 2�2.

 � x
5
4 � x2

 � x
5
4 � x

4
2

cr cs � cr�s � x
1
2 �

3
4 � x

1
2 �

3
2

a1b � c2 � ab � ac x
1
2 1x 3

4 � x
3
2 2 � x

1
2 x

3
4 � x

1
2 x

3
2

x
1
2 1x3

4 � x
3
2 2 .

�
42r

s2
4r

1
2

s2

c�r �
1
cr � 4r

1
2

s2

 � 23 64 1r 1
2 2 1s�22

1cr2s � crs � 23 82 1r 6
12 2 1s�

6
3 2

1cd2r � crdr 18r
3
4 s�32 23 � 8

2
3 1r 3

4 2 23 1s�32 23
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Rationalizing Denominators and Numerators

Transforming fractions with radicals in the denominator to equivalent
fractions with no radicals in the denominator is called rationalizing the
denominator. Before the common use of calculators, fractions with rational
denominators were preferred because they were easier to calculate or esti-
mate. With calculators today there is no computational advantage to
rationalizing denominators. However, the skill of rationalizing numera-
tors or denominators is useful in calculus.

Example 7 Rationalizing the Denominator

Rationalize the denominator of each fraction.

a. b.

Solution

a. Multiply the fraction by 1 using a suitable radical fraction.

b. Use the multiplication pattern to determine
a suitable radical fraction equivalent to 1.

■

 � 6 � 226
3

 � 6 � 226
9 � 6

 �
2A3 � 26 B

A3 � 26 B 13 � 262

 � 2
3 � 26

�
3 � 26
3 � 26

 2
3 � 26

�
2

3 � 26
� 1

1a � b2 1a � b2 � a2 � b2

7
25

�
7
25

� 1 �
7
25

�
25
25

�
725

5

2
3 � 26

7
25
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When rationalizing a denominator or numerator which
contains a radical expression, use a suitable radical fraction, equal to
one, that contains the conjugate of the expression.

NOTE

Example 8 Rationalizing the Numerator

Assume Rationalize the numerator of 2x � h � 2x
h

.h � 0.



Solution

Multiply the fraction by 1 using a suitable radical fraction.

■

Irrational Exponents

The example (not proof) below illustrates how is defined when t is an
irrational number.

To compute the exponent could be replaced with the equivalent non-
terminating decimal Each of the decimal approximations
of given below is a more accurate approximation than the preceding
one.

We can raise 10 to each of these rational numbers.

The pattern suggests that as the exponent r gets closer and closer to 
gets closer and closer to a real number whose decimal expansion

begins So is defined to be this number.

Similarly, for any 

The fact below shall be assumed.

The laws of exponents are valid for all real exponents.

at is a well-defined positive number for each real exponent t.

a 7 0,

102225.954 p .
10r

22,

 10 

1.414213 � 25.9545
 10 

1.41421 � 25.9543
 10 

1.4142 � 25.9537
 10 

1.414 � 25.9418
 10 

1.41 � 25.7040
 10 

1.4 � 25.1189

1.4, 1.41, 1.414, 1.4142, 1.41421, p .

22
1.414213562 p .

1022,

at

 � 1
2x � h � 2x

 � h
hA2x � h � 2x B

 � x � h � x
hA2x � h � 2x B

 �
A2x � h B 2 � A2x B 2
hA2x � h � 2x B

 � 2x � h � 2x
h

�
2x � h � 2x
2x � h � 2x

 2x � h � 2x
h

�
2x � h � 2x

h
� 1
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Exercises 5.1

Note: Unless directed otherwise, assume all letters rep-
resent positive real numbers.

In Exercises 1–15, evaluate each expression without
using a calculator.

1. 2. 3.

4. 5. 6.

7. 8. 9.

10. 11. 12.

13. 14. 15.

In Exercises 16–40, simplify each expression without
using a calculator.

16. 17.

18. 19.

20. 21.

22. 23.

24. 25.

26. 27.

28. 29.

30. 31.

32.

33.

34.

35.

36.

37.

38.

39. 40.
1322�1

2 1942�1

27�3
2

11
2 � 2�7 � 2�5

23 � 2
1
2 � 2�10

23 40 � 223 135 � 523 320

5220 � 245 � 2280

A322 � 426 B 2
A225 � 4 B  A325 � 2 B
A4 � 23 B  A5 � 223 B
A3 � 22 B  A3 � 22 B
A1 � 23 B  A2 � 23 B

425 � 220227 � 223

23 54
23 32 � 23 �4

23 324
23 6 � 23 2

26
214 �  263

210
28 �  25

23 �32 � 23 1623 18 � 23 12

28 � 29626 � 212

23 0.41823 1�0.05224

21�1122820.0812

23 12162315

16�
3
2a� 1

64b
�

2
31�64223

81�
1
427

4
321�324

20.5623 �0.12523 0.008

20.00016920.008123 �27

2
4

1623 642144

In Exercises 41–56, simplify each expression.

41. 42.

43. 44.

45.

46.

47. 48.

49. 50.

51. 52.

53. 54.

55. 56.

In Exercises 57–66, write each expression without rad-
icals, using only positive exponents.

57. 58.

59. 60.

61. 62.

63. 64.

65. 66.

In Exercises 67–72, simplify each expression.

67. 68.

69. 70.

71.

72.

In Exercises 73–78, rationalize the denominator and
simplify your answer.

73. 74. 75.

76. 77. 78.
2x

2x � 2c
2

2x � 2
1 � 23
5 � 210

3
2 � 212

2
26

3
28

Ax1
3 � y

1
3 B Ax2

3 � x
1
3 y

1
3 � y

2
3 B

Ax � y B 12 CAx � y B 12 � Ax � y B D
Ax 1

3 � y
1
2 B A2x

1
3 � y

3
2 BAx1

2 � y
1
2 B Ax1

2 � y
1
2 B

x
1
2 A3x

3
2 � 2x�

1
2 Bx

1
2 Ax2

3 � x
4
3 B

Ac 5
6 � c�

5
6 B 2c

1c5
6 2421c512�2

3

Q34
r14 s�

21
5 R�3

7A23 xy2 B�3
5

2x � 23 x2 � 2
4

x325 t � 216t5

323 a3b43
4
2

4
a3

2
4

a3 � b323 a2 � b2

1bx 2x�1

b�xAax2 B 1x

Aa3
4 b B 2 Aab

1
4 B 3

1ab212 1bc2�1
4

12a212 13b2�2 14a235
14a2�3

2 13b22 12a215

16a2122ab

a2b
3
2

17a22 15b232
15a232 17b24

a r
2
3

s
1
5
b

15
9Ac2

5 d�
2
3 B Ac6d3 B 43

Ax1
2 y3 B  Ax0 y7 B�22x7 � x

5
2 � x�

3
2

23 a � b � 23 �1a � b22 � 23 a � b

29 14x � 2y218

2a�10 b�12

2a14 d�4

2c2 d6

24c3 d�4

224x6 y�4216a8 b�2



In Exercises 79–84, factor the given expression. For 
example, 

79. 80.

81. 82.

83. 84.

In Exercises 85–88, rationalize the numerator and sim-
plify your answer. Assume 

85.

86.

87.

88.

89. Some restrictions are necessary when defining
fractional powers of a negative number.
a. Explain why the equations 

etc., have no real solutions. Conclude  
that cannot be defined when 

b. Since is the same as it should be true that 

that is, that Show that this
is false when 

90. a. Suppose r is a solution of the equation 
and s is a solution of Verify that rs is a
solution of 

b. Explain why part a shows that 

91. Write laws 3, 4, and 5 of exponents in radical 

notation in the case when and 

92. a. Graph and explain why this
function has an inverse function.

b. Show algebraically that the inverse function is 

93. If n is an odd positive integer, show that
has an inverse function and find the

rule of the inverse function. Hint: Exercise 92 is
the case when 

94. A long pendulum swings more slowly than a
short pendulum. The time it takes for a
pendulum to complete one full swing, or cycle,

n � 5.

f 1x2 � xn

g1x2 � x
1
5.

f 1x2 � x5

s �
1
n .r �

1
m

2
n

cd � 2
n

c �2
n

d.

xn � cd.
xn � d.

xn � c

c � �8.
23 c � 2

6
c 

2.c
1
3 � c

2
6 ,

2
6 ,1

3

c � �4.c 

1
2, c

1
4, c

1
6

x6 � �4,
x4 � �4,x2 � �4,

21x � h22 � 1x � h2 � 2x2 � x
h

21x � h22 � 1 � 2x2 � 1
h

22x � h � 3 � 22x � 3
h

2x � h � 1 � 2x � 1
h

h � 0.

x  

2
3 � 6x  

1
3 � 9x  

4
5 � 81

x  

1
3 � 7x  

1
6 � 10x � 4x  

1
2 � 3

x  

2
5 � 11x  

1
5 � 30x 

2
3 � x 

1
3 � 6

x � x
1
2 � 2 � (x

1
2 � 2)(x

1
2 � 1).
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is called its period. The relationship between the
period T (in seconds) of the pendulum and its
length x (in meters) is given by the function 

Find the period for pendulums 

whose lengths are 0.5 m and 1.0 m.

95. In meteorology, the wind chill C can be
calculated by using the formula

T1x2 � 2p
A

x
9.8.

1t � 91.42 � 91.4,C � 0.0817A3.712V � 5.81 � 0.25V B
where V is the wind speed in miles per hour and
t is the air temperature in degrees Fahrenheit.
Find the wind chill when the wind speed is 12
miles per hour and the temperature is 

96. The elevation E in meters above sea level and 
the boiling point of water, T, in degrees Celsius 
at that elevation are related by the equation

Find the
approximate boiling point of water at an
elevation of 1600 meters.

97. Accident investigators can usually estimate a
motorist’s speed s in miles per hour by
examining the length d in feet of the skid marks
on the road. The estimate of the speed also
depends on the road surface and weather
conditions. If f represents the coefficient of
friction between rubber and the road surface,
then gives an estimate of the
motorist’s speed. The coefficient of friction f
between rubber and concrete under wet
conditions is 0.4. Estimate, to the nearest mile per
hour, a motorist’s speed under these conditions if
the skid marks are 200 feet long.

98. Using a viewing window with and
graph the following functions on the

same screen.

In each of the following cases, arrange ,
and in order of increasing size and justify
your answer by using the graphs.
a. b.

99. Using a viewing window with and
graph the following functions on

the same screen.

In each of the following cases, arrange and
in order of increasing size and justify your

answer by using the graphs.
a. b.
c. d. x 7 10 6 x 6 1

�1 6 x 6 0x 6 �1

x
1
7

x
1
3, x

1
5,

f 1x2 � x
1
3    g1x2 � x

1
5    h1x2 � x

1
7

�1.5 � y � 1.5,
�3 � x � 3

x 7 10 6 x 6 1

x
1
6

x
1
2, x

1
4

f 1x2 � x
1
2    g1x2 � x

1
4    h1x2 � x

1
6

0 � y � 2,
0 � x � 4

s � 230fd

E � 10001100 � T2 � 5801100 � T22.

35°F.
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5.2 Exponential Functions

Graphs of Exponential Functions

For each positive real number a, there is an exponential function
with base a whose domain is all real numbers and whose rule is 
Some examples are shown below.

The shape of the graph of an exponential function depends only
on the size of a, as shown in the following figures.

f 1x2 � ax

f 1x2 � 10x    g1x2 � 2x    h1x2 � a1
2b

x

    k1x2 � a3
2b

x

f 1x2 � ax.
a � 1,

Objectives

• Graph and identify
transformations of
exponential functions

• Use exponential functions
to solve application
problems

• graph is above x-axis

• y-intercept is 1

• is increasing

• approaches the negative
x-axis as x approaches ��
f(x)

f(x)

• graph is above x-axis

• y-intercept is 1

• is decreasing

• approaches the positive
x-axis as x approaches �
f(x)

f(x)

Graph of
f(x) � ax

x

y

1

a > 1

x

0 << a << 1
y

1

100. Graph in the standard viewing
window. Then, without doing any more
graphing, describe the graphs of these functions.
a. see

Section 3.4.
g1x2 � 2x � 3 Hint: g1x2 � f 1x � 32;

f 1x2 � 2x b.
c.

101. Do Exercise 100 with in place of 2 .23   

k1x2 � 2x � 3 � 2
h1x2 � 2x � 2

For or the function is a constant function, not expo-
nential. Even roots of negative numbers are not defined in the set of real
numbers, so when , is not defined for any rational exponent thataxa 6 0

f 1x2 � axa � 1,a � 0



The graphing explorations above show that the graph of rises
or falls less steeply as the base a gets closer to 1.

f 1x2 � ax
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has an even number as its denominator. Because within any interval there
are infinitely many rational numbers that have an even denominator,

has an infinite number of holes in every interval when .
Therefore, the function is not well-behaved for , so it is not defined
for those values.

The following two Graphing Explorations illustrate the effect that the
value of a has on the shape of the graph of an exponential function for

and for .0 6 a 6 1a 7 1

a 6 0
a 6 0f 1x2 � ax

Graphing Exploration

a. Using a viewing window with and 
graph each function below on the same screen, and observe the
behavior of each to the right of the y-axis.

As the graphs continue to the right, which graph rises least
steeply? most steeply?

How does the steepness of the graph of to the right
of the y-axis seem to be related to the size of the base a?

b. Using the graphs of the same three functions in the viewing
window with and observe the
behavior to the left of the y-axis.

As the graph continues to the left, how does the size of the
base a seem to be related to how quickly the graph of 
falls toward the x-axis?

f 1x2 � ax

�0.5 � y � 2,�4 � x � 2

f 1x2 � ax

f 1x2 � 1.3x  g1x2 � 2x  h1x2 � 10x

�2 � y � 18,�3 � x � 7

Graphing Exploration

Using a viewing window with and graph
each function below on the same screen, and observe the behavior
of each.

Notice that the bases of the exponential functions are increasing in
size: 

As the graphs continue to the right, which graph falls least
steeply? most steeply?

How does the steepness of the graph of seem to
be related to the size of the base a?

f 1x2 � ax

0 6 0.2 6 0.4 6 0.6 6 0.8 6 1

f 1x2 � 0.2x    g1x2 � 0.4x    h1x2 � 0.6x    k1x2 � 0.8x

�1 � y � 4,�4 � x � 4



Example 1 Translations

The graph of is shown in Figure 5.2-1. Without graphing,
describe the transformation from the graph of f to the graph of each func-
tion below. Verify by graphing.

a. b.

Solution

a. If then So the graph of g is the
graph of f shifted horizontally 3 units to the left, as shown in Figure
5.2-2.

b. If then So the graph of
h(x) is the graph of shifted horizontally 3 units to the right
and vertically 4 units downward, as shown in Figure 5.2-3.

■

The graphs of exponential functions of the form increase at an
explosive rate. To see this, consider the graph of in Figure 5.2-3.
If the x-axis were extended to the right, then would be at the right
edge of the page. At this point, the graph of is units high.
The scale of the y-axis in Figure 5.2-3 is about 12 units per inch, or 144
units per foot, or 760,320 units per mile. Therefore, the height of the graph
at is

which would put that part of the graph well beyond the planet Saturn!

Since most quantities that grow exponentially do not change as dramat-
ically as the graph of exponential functions that model real-life
growth or decay are usually modified by the insertion of appropriate con-
stants. These functions are generally of the form

such as the functions shown below.

Their graphs have the same shape as the graph of but may rise
or fall more or less steeply, depending on the constants P, k, and a.

Example 2 Horizontal Stretches

The graph of is shown in Figure 5.2-4. Without graphing,
describe the transformation from the graph of f to the graph of each func-
tion below. Verify by graphing.

g1x2 � 30.2x    h1x2 � 30.8x    k1x2 � 3�x    p1x2 � 3�0.4x

f 1x2 � 3x

f 1x2 � ax,

f 1x2 �
1
2 15.20.45x2    g1x2 � 3.5110�0.03x2    h1x2 � 1�62 11.0762x 2

f 1x2 � Pakx,

f 1x2 � 2x,

250

760,320 � 1,480,823,741 miles,

x � 50

250f 1x2 � 2x
x � 50

f 1x2 � 2x
f 1x2 � ax

f 1x2 � 2x
f 1x � 32 � 4.h1x2 � 2x�3 � 4 �f 1x2 � 2x,

g 1x2 � 2x�3 � f 1x � 32.f 1x2 � 2x,

h1x2 � 2x�3 � 4g1x2 � 2x�3

f 1x2 � 2x
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�4.7

�1.1
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5.1

Figure 5.2-4

�6

�2

6

10

Figure 5.2-1

�6

�2

6

10

Figure 5.2-2



Solution

The graphs of and are the graph of f stretched hor- 

izontally by a factor of and , respectively. The graph of 

is the graph of f reflected across the y-axis. The graph of 

is the graph of f stretched horizontally by a factor of 

and reflected across the y-axis. The graphs are identified in Figure 5.2.5.

■

Example 3 Vertical Stretches

The graph of is shown in Figure 5.2-6. Without graphing,
describe the transformation from the graph of p to the graph of each func-
tion below. Verify by graphing.

Solution

The graph of is the graph of stretched verti-
cally by a factor of 4. The graph of is the graph of

stretched vertically by a factor of 2 and reflected across the
x-axis. The graphs are identified in Figure 5.2-7.

■

Exponential Growth and Decay

In this section, you will see that exponential functions are useful for mod-
eling situations in which a quantity increases or decreases by a fixed factor.
In Section 5.3 you will learn how to construct these types of functions.

Example 4 Finance

If you invest $5000 in a stock that is increasing in value at the rate of 3%
per year, then the value of your stock is given by the function

where x is measured in years.

a. Assuming that the value of your stock continues growing at this
rate, how much will your investment be worth in 4 years?

b. When will your investment be worth $8000?

Solution

a. Letting .
In 4 years your stock is worth about $5627.54.

b. Find the value of x for which In other words, solve the
equation 500011.032x � 8000.

f 1x2 � 8000.

f 142 � 500011.0324 � 5627.54x � 4,

f 1x2 � 500011.032x,

p1x2 � 3�0.4x
r1x2 � 1�223�0.4x

p1x2 � 3�0.4xq1x2 � 4 � 3�0.4x

r1x2 � 1�223�0.4xq1x2 � 4 � 3�0.4x

p1x2 � 3�0.4x

1
0.4 � 2.5p1x2 � 3�0.4x

k1x2 � 3�x

1
0.8 � 1.251

0.2 � 5

h1x2 � 30.8xg1x2 � 30.2x
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3−0.4x 3−x 5.1

4.7−4.7

−1.1

30.8x
3x

30.2x

Figure 5.2-5

�5

�10

5

10

Figure 5.2-6

10

5−5

−10(−2)3−0.4x

3−0.4x 4 . 3−0.4x

Figure 5.2-7



The point of intersection of the graphs of and
is approximately (15.901, 8000).

Therefore, the stock will be worth $8000 in about 16 years.
■

Example 5 Population Growth

Based on data from the past 50 years, the world population, in billions,
can be approximated by the function where cor-
responds to 1950.

a. Estimate the world population in 2015.
b. In what year will the population be double what it is in 2015?

Solution

a. Since corresponds to 1950, to 1951, and so on, the year
2015 corresponds to Find g(65).

The world population in 2015 will be about 8.23 billion people.
b. Twice the population in 2015 is billion. Find the

number x such that that is, solve 

A graphical intersection finder shows that the approximate
coordinates of the point of intersection of the graphs of

and are (102.81, 16.46). The x-coordinate
102.81, or 103 when rounded to the nearest year, corresponds to the
year 2053. Notice that it takes only 38 years for the world population
to double.

■

Example 6 Radioactive Decay

The amount from one kilogram of plutonium that remains after x
years can be approximated by the function Estimate the
amount of plutonium remaining after 10,000 years.

Solution

Because M is an exponential function with a base smaller than 1 but very
close to 1, its graph falls very slowly from left to right. The fact that the
graph falls so slowly as x gets large means that even after an extremely
long time, a substantial amount of plutonium will remain.

When Therefore, almost three-fourths of the orig-
inal plutonium remains after 10,000 years! This is the reason that nuclear
waste disposal is such a serious concern.

■

x � 10,000, M1x2 � 0.74.

M1x2 � 0.99997x.
1239Pu2

y � 16.46g1x2 � 2.511.01852x

2.511.01852x � 16.46.g1x2 � 16.46;
218.232 � 16.46

g1652 � 2.511.0185265 � 8.23

x � 65.
x � 1x � 0

x � 0g1x2 � 2.511.01852x,

y � 8000
f 1x2 � 500011.032x
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The Number e and the Natural Exponential Function

There is an irrational number, denoted e, that arises naturally in a variety
of phenomena and plays a central role in the mathematical description of
the physical universe. Its decimal expansion begins as shown below.

Most calculators have an key that can be used to evaluate the natural
exponential function When you evaluate using a calculator,
the display will show the first part of the decimal expansion of e.

Figure 5.2-11 shows that the graph of has the same shape as the
graphs of and but it climbs more steeply than the graph of

and less steeply than the graph of 

Example 7 Population Growth

If the population of the United States continues to grow as it has since
1980, then the approximate population, in millions, of the United States
in year t, where corresponds to the year 1980, will be given by the
function 

a. Estimate the population in 2015.
b. When will the population reach half a billion?

Solution

a. The year 2015 corresponds to Find P(35).

Therefore, the population in 2015 will be approximately 314.3
million people.

b. Half a billion is 500 million. Find the value of t for which 
A graphical intersection finder shows that the approximate
coordinates of the point of intersection of the graphs of

are approximately (85, 500). A t-value of
85 corresponds to the year 2065. Therefore, the population will reach
half a billion approximately by the year 2065.

■

Other Exponential Functions

In most real-world applications, populations cannot grow infinitely large.
The population growth models shown previously do not take into account
factors that may limit population growth in the future. Example 8 illus-
trates a function, called a logistic model, which is designed to model
situations that have limited future growth due to a fixed area, food sup-
ply, or other factors.

and y � 500P1t2 � 227e0.0093t

P1t2 � 500.

P1352 � 227e0.00931352 � 314.3

t � 35.

P1t2 � 227e0.0093t.
t � 0

y � 3x.y � 2x
y � 3x,y � 2x

f 1x2 � ex

e1f 1x2 � ex.
ex

e � 2.718281828459045p
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Example 8 Logistic Model

The population of fish in a certain lake at time t months is given by the 

function , where There is an upper limit on the fish

population due to the oxygen supply, available food, etc. Graph the function,
and find the upper limit on the fish population.

Solution

The graph of at the left suggests that the horizontal line 
is a horizontal asymptote of the graph. If so, the upper limit on the fish
population is 20,000.

You can verify this by rewriting the rule of p as shown below.

As t increases, increases and grows very large. As grows very large, 

gets very close to 0. As gets closer and closer to 0, gets closer  

and closer to or 20,000. Because is positive and never quite 

reaches 0, the denominator of is always slightly larger than 1 and 
is always less than 20,000.

■

When a cable, such as a power line, is suspended between towers of equal
height, it forms a curve called a catenary, which is the graph of a func-
tion of the form shown below for suitable constants A and k.

The Gateway Arch in St. Louis, shown in Figure 5.2-14, has the shape of
an inverted catenary, which was chosen because it evenly distributes the
internal structural forces.

f 1x2 � A1ekx � e�kx2

p1t2p1t2
24
e

t
4

e
t
4

20,000
1 � 0 ,

p1t224
e

t
4

24
e

t
4

e
t
4e

t
4

t
4

p1t2 �
20,000

1 � 24e�
t
4

�
20,000

1 �
24
e

t
4

y � 20,000p1t2

t � 0.p1t2 �
20,000

1 � 24e�
t
4
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Graphing Exploration

Using the viewing window with and 
graph each function below on the same screen, and observe their
behavior.

How does the coefficient of x affect the shape of the graph?
Predict the shape of the graph of Confirm your
answer by graphing.

y � �Y1 � 80.

Y1 � 101e0.4x � e�0.4x 2    Y2 � 101e2x � e�2x2    Y3 � 101e3x � e�3x2

�10 � y � 80,�5 � x � 5
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Exercises 5.2

In Exercises 1–6, list the transformations needed to trans-
form the graph of into the graph of the given
function. (Section 3.4 may be helpful.)

1. 2.

3. 4.

5. 6.

In Exercises 7–13, list the transformations needed to
transform the graph of into the graph of the
given function. (Section 3.4 may be helpful.)

7. 8.

9. 10.

11. 12.

13.

In Exercises 14–19, sketch a complete graph of the
function.

14. 15.

16. 17.

18. 19.

In Exercises 20–21, match the functions to the graphs.
Assume and 

20.

h1x2 � ax�5
g1x2 � ax � 3
f 1x2 � ax

c 77 1.a 77 1

g1x2 � 2x�5f 1x2 � 25�x

g1x2 � 3
x
2f 1x2 � 23x

f 1x2 � a5
2b

�x

f 1x2 � 4�x

g1x2 � 413�0.15x2
f 1x2 � 8 � 513x2f 1x2 � 32�x

g1x2 � 30.4xk1x2 �
1
4 13x2

g1x2 � 3�xf 1x2 � 3x � 4

h(x) � 3x

g1x2 � �512x�12 � 7f 1x2 � 2x�2 � 5

g1x2 � 2x�1k1x2 � 312x2
g1x2 � �12x2f 1x2 � 2x � 5

h(x) � 2x
In Exercises 22–29, find a viewing window (or win-
dows) that shows a complete graph of the function.

22. 23.

24. 25.

26. 27.

28. 29.

In Exercises 30–34, determine whether the function is
even, odd, or neither. (See Excursion 3.4A.)

30. 31.

32. 33.

34.

35. Use the Big-Little concept (see Section 4.4) to
explain why is approximately equal to 
when x is large.

In Exercises 36–39, find the average rate of change of
the function. (See Section 3.7).

36. as x goes from 1 to 3

37. as x goes from 

38. as x goes from 

39. as x goes from 

In Exercises 40–43, find the difference quotient of the
function. (See Section 3.7.)

40. 41.

42. 43.

In Exercises 44–49, list all asymptotes of the graph of
the function and the approximate coordinates of each
local extremum. (See Section 4.3.)

44. 45.

46. 47.

48. 49. g 1x2 � �xe
x 2

20f 1x2 � e�x 2

k 1x2 � 2x2� 6x�2h1x2 � e
x 2

2

g 1x2 � x 12�x2f 1x2 � x12x2

f 1x2 � ex � e�xf 1x2 � 2x � 2�x

g1x2 � 5x2

f 1x2 � 10x

�3 to �1f 1x2 � ex � e�x

�1 to 0h1x2 � 5�x2

�1 to 1g1x2 � 3x2�x

f 1x2 � x12x2

exex � e�x

f 1x2 � e�x2

f 1x2 �
ex � e�x

2f 1x2 �
ex � e�x

2

g1x2 � 2x � xf 1x2 � 10x

g1x2 �
10

1 � 9e�
x
2

f 1x2 �
5

1 � e�x

k1x2 �
2

ex � e�xg1x2 � 2x � x

h1x2 �
ex � e�x

2f 1x2 �
ex � e�x

2

f 1x2 � e�x2

k1x2 � e�x

A

B C

A
B

C
D

21.

k1x2 � �3cx � 2
h1x2 � cx�5
g1x2 � �3cx
f 1x2 � cx
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b. From examining the graph, do you think that
sales will ever start to increase again? Explain.

56. a. The function gives the
percentage of the population (expressed as a
decimal) that has seen a new TV show t weeks
after it goes on the air. What percentage of
people have seen the show after 24 weeks?

b. Approximately when will of the people
have seen it?

57. a. The beaver population near a certain lake in
year t is approximated by the function

What is the population

now and what will it be in 5 years?
b. Approximately when will there be 1000

beavers?

58. Critical Thinking Look back at Section 4.3, where
the basic properties of graphs of polynomial
functions were discussed. Then review the basic
properties of the graph of discussed in
this section. Using these various properties, give
an argument to show that for any fixed positive
number a, where it is not possible to find a
polynomial function 
such that for all numbers x. In other
words, no exponential function is a polynomial
function.

59. Critical Thinking For each positive integer n, let 
be the polynomial function below.

a. Using the viewing window with 
and graph and on
the same screen. Do the graphs appear to
coincide?

b. Replace the graph of by that of , then
by , and so on until you find a
polynomial whose graph appears to
coincide with the graph of in this
viewing window. Use the trace feature to move
from graph to graph at the same value of x to
see how accurate this approximation is.

c. Change the viewing window so that
and Is the

polynomial you found in part b a good
approximation for in this viewing
window? If not, what polynomial is a good
approximation?

g 1x2
�10 � y � 400.�6 � x � 6

g1x2 � ex
fn1x2

f6 1x2,  f7 1x2
f51x2f41x2

f41x2g 1x2 � ex�5 � y � 55,
�4 � x � 4

fn1x2 � 1 � x �
x2

2! �
x3

3! �
x4

4! � p �
xn

n!

fn

ax � g1x2
g 1x2 � cnxn � p � c1x � c0

a � 1,

f 1x2 � ax

1when t � 02
p1t2 �

2000
1 � 199e�0.5544t .

90%

g1t2 � 1 � e�0.0479t

50. If you deposit at interest, compounded
annually and paid from the day of deposit to the
day of withdrawal, your balance at time t is given
by How much will you have
after 2 years? after 3 years and 9 months?

51. The population of a colony of fruit flies t days
from now is given by the function 
a. What will the population be in 15 days? in 25

days?
b. When will the population reach 2500?

52. A certain type of bacteria grows according to the
function where the time x is
measured in hours.
a. What will the population be in 8 hours?
b. When will the population reach 1 million?

53. According to data from the National Center for
Health Statistics, the life expectancy at birth for a
person born in year x is approximated by the
function below.

a. What is the life expectancy of someone born in
1980? in 2000?

b. In what year was life expectancy at birth 60
years?

54. The number of subscribers, in millions, to basic
cable TV can be approximated by the function

where corresponds to 1970. (Source: The
Cable TV Financial Datebook and The Pay TV
Newsletter)
a. Estimate the number of subscribers in 1995 and

in 2005.
b. When does the number of subscribers reach

70 million?
c. According to this model, will the number of

subscribers ever reach 90 million?

55. The estimated number of units that will be sold
by a certain company t months from now is given
by 
a. What are the current sales What will

sales be in 2 months? in 6 months?
1t � 02?

N1t2 � 100,000e�0.09t.

x � 0

g 1x2 �
76.7

1 � 16 � 0.8444x

11900 � x � 20502
D1x2 �

79.257
1 � 9.7135 � 1024 � e�0.0304x

f 1x2 � 5000e0.4055x,

p1t2 � 100 � 3
t

10.

B1t2 � 75011.0222t.

2.2%$750
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5.3 Applications of Exponential Functions

In Section 5.2, you used several exponential functions that modeled expo-
nential growth and decay. In this section you will learn how to construct
such exponential models in a variety of real-life situations.

Compound Interest

When interest is paid on a balance that includes interest accumulated from
the previous time periods it is called compound interest.

Example 1 Compounding Annually

If you invest at interest, compounded annually, how much is
in the account at the end of 10 years?

Solution

After one year the account balance is

Principal � Interest

The account balance has changed by a factor of 1.08. If this amount is left
in the account, the balance will again change by a factor of 1.08 after the
second year.

Because the balance will change by a factor of 1.08 every year, the bal-
ance in the account at the end of year x is given by

Therefore, the balance (to the nearest penny) in the account after 10 years is

■

The pattern illustrated in Example 1 can be generalized as shown below.

B1102 � 6000 � 11.08210 � $12,953.55.

B1x2 � 6000 � 11.082x.

3600011.082 4  11.082, or 600011.0822

6000 � 0.08160002 � 600011 � 0.082 � 600011.082.

8%$6000

Objective

• Create and use exponential
models for a variety of
exponential growth or
decay application problems

If P dollars is invested at interest rate r (expressed as a decimal)
per time period t, then A is the amount after t periods.

A � P(1 � r)t

Compound
Interest

Notice that in Example 1, and the number of periods,
or years, is t � 10.

P � 6000, r � 0.08,
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Example 2 Different Compounding Periods

Determine the amount that a investment over three years at an
annual interest rate of is worth for each compounding period.

a. annually b. quarterly c. monthly d. daily

Solution

a. Use and in the compound interest
formula.

b. Quarterly compounding means that interest is compounded every
one-fourth of a year or 4 times a year. Therefore,

• the interest rate per period is and

• the number of periods in 3 years is 

c. Monthly compounding means that interest is compounded 

every of a year or 12 times a year. Therefore,

• the interest rate per period is and

• the number of periods in 3 years is 

d. Daily compounding means that interest is compounded 

every of a year, or 365 times a year. Therefore,

• the interest rate per period is and

• the number of periods in 3 years is 

■

Notice in Example 2 that the more often interest is compounded, the larger
the final amount will be. Example 3 shows you how to write and solve
an exponential equation to determine how long it will take for an invest-
ment to be worth a given amount.

A � 4000a1 �
0.064
365 b

365132
� $4846.60

t � 365132.
r �

0.064
365 ,

1
365

A � 4000a1 �
0.064

12 b
12132

� $4844.21

t � 12132.
r �

0.064
12 ,

1
12

A � 4000a1 �
0.064

4 b4132
� $4839.32

t � 4132.
r �

0.064
4 ,

A � 400011.06423 � $4818.20

t � 3P � 4000,  r � 0.064,

6.4%
$4000



Example 3 Solving for the Time Period

If is invested at annual interest, compounded daily, when will
the investment be worth 

Solution

Use the compound interest formula with the final amount and 

Because the interest is compounded every of a year, the 

interest rate per period is 

The point of intersection of the graphs of and 

is approximately (1603.5, 6800). Therefore, the investment will
be worth after about 1603 days, or about 4.4 years.

■

Continuous Compounding and the Number e

As you have seen in previous examples, the more often interest is com-
pounded, the larger the final amount will be. However, there is a limit
that is reached, as you will see in Example 4.

Example 4 The Number e

Suppose you invest for one year at 100% annual interest, compounded
n times per year. Find the maximum value of the investment in one year.

Solution

Use the compound interest formula. The annual interest rate is 1.00, so 

the interest rate per period is and the number of periods is n.

Observe what happens to the final amount as n grows larger and larger.

 � a1 �
1
nb

n

 � 1a1 �
1
nb

n

 A � P11 � r2t
1
n ,

$1

$6800
y2 � 6800

y1 � 5000a1 �
0.07
365 b

t

6800 � 5000a1 �
0.07
365 b

t
A � P11 � r2t

r �
0.07
365 .

1
365P � 5000.

A � 6800

$6800?
7%$5000
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0
0

3,000

8,000

Figure 5.3-1
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If P dollars is invested at an annual interest rate of r,
compounded continuously, then A is the amount after 
t years.

A � Pert

Continuous
Compounding

The maximum amount of the investment after one year is approxi-
mately no matter how large n is.

■

When the number of compounding periods increases without bound, the
process is called continuous compounding. Note that the last entry in the
preceding table is the same as the number e to five decimal places. Exam-
ple 4 is the case when , , and . A similar result occurs
in the general case and leads to the following formula.

t � 1r � 100%P � 1

$2.72,
$1

Compounding 
period n

Annually 1

Semiannually 2

Quarterly 4

Monthly 12

Daily 365

Hourly 8760

Every minute 525,600

Every second 31,536,000 a1 �
1

31,536,000b
31,536,000

� 2.7182825

a1 �
1

525,600b
525,600

� 2.7182792

a1 �
1

8760b
8760

� 2.718127

a1 �
1

365b
365

� 2.71457

a1 �
1

12b
12

� 2.6130

a1 �
1
4b

4

� 2.4414

a1 �
1
2b

2

� 2.25

a1 �
1
1b

1

� 2

a1 �
1
nb

n

Example 5 Continuous Compounding

If you invest at annual interest compounded continuously, how
much is in the account at the end of 3 years?

5%$4000



Solution

Use the continuous compounding formula with and

After 3 years the investment will be worth 
■

Exponential Growth

Compound interest is one type of exponential growth; other exponential
growth functions are very similar to the compound interest formula, as
you will see in Example 6.

Example 6 Population Growth

The world population in 1950 was about 2.5 billion people and has been
increasing at approximately 1.85% per year. Write the function that gives
the world population in year x, where corresponds to 1950.

Solution

If the population increases each year by then it increases each year
by a factor of 1.0185. Notice that this pattern of population growth is the
same as that of compound interest.

1.85%,

x � 0

$4647.34.

 � 4647.34
 � 4000e0.05132

 A � Pert

t � 3.
P � 4000, r � 0.05,
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Year 1950 1951 1952 1953 …

Population 2.5 2.5(1.0185) . . .
(in billions)

2.511.01852x2.511.0185232.511.018522
1950 � x

So, the function that gives the world population, in billions, in year x,
where corresponds to 1950 is 

■
f 1x2 � 2.511.01852x.x � 0

Exponential growth can be described by a function of the form

where is the quantity at time x, P is the initial quantity
when and is the factor by which the quantity
changes when x increases by 1. If the quantity is growing
at rate r per time period, then and

f(x) � Pax � P(1 � r)x.

a � 1 � r
f(x)

a 77 1x � 0
f(x)

f(x) � Pax,

Exponential
Growth



Example 7 Bacteria Growth

At the beginning of an experiment, a culture contains 1000 bacteria. Five
hours later, there are 7600 bacteria. Assuming that the bacteria grow expo-
nentially, how many bacteria will there be after 24 hours?

Solution

Use the exponential growth formula with 

Because there are 7600 bacteria after 5 hours, and
Solve for a to find the factor by which the bacteria popu-

lation grows.

Therefore, the function’s growth factor is 

Find the bacteria population after 24 hours.

After 24 hours, the bacteria population will be approximately 16,900,721.
■

Exponential Decay

Sometimes a quantity decreases by a fixed factor as time goes on, as shown
in Example 8.

Example 8 Filtering

When tap water is filtered through a layer of charcoal and other purify-
ing agents, of the chemical impurities in the water are removed. If
the water is filtered through a second purifying layer, of the remain-
ing impurities in the water are removed. How many layers are needed
to ensure that of the impurities are removed from the water?

Solution

With the first layer, of the impurities are removed and of the
impurities remain. With the second layer, of the of the impu-
rities remain. The table below shows this pattern of exponential decay.

70%70%
70%30%

95%

30%
30%

f 1242 � 1000 � 7.60.2 1242 � 16,900,721

f 1242,
f 1x2 � 1000 � 7.60.2x

7.60.2.

 a � 7.6
1
5 � 7.60.2

 a � 25 7.6
 a5 � 7.6

 1000a5 � 7600

1000a5 � 7600.
f 152 � 7600

f 1x2 � 1000ax

P � 1000.
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Therefore, the percentage of impurities remaining in the water after it
passes through x layers of purifying material is given by the function

When of the impurities are removed, remain. So, find the value
of x for which 

The point of intersection of the graphs of and is approx-
imately (8.4, 0.05). Because you cannot have a fractional part of a filter, 9
layers are needed to ensure that 95% of the impurities are removed from
the water.

■

Example 8 illustrates exponential decay. Notice that the impurities were
removed at a rate of and that the amount of impurities remain-
ing in the water was changing by a factor of This pattern
is true in general for exponential decay.

1 � 0.3 � 0.7.
30% � 0.3

y2 � 0.05y1 � 0.7x

f 1x2 � 0.05.
5%95%

f 1x2 � 0.7x.
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Layer Impurities remaining

1

2 or 

3 or 

x 0.7x

oo

34.3% 0.73 � 0.343,

49% 0.72 � 0.49,

 0.7 � 70%

0

�0.1

12

0.5

Figure 5.3-2

Exponential decay can be described by a function of the form

where f(x) is the quantity at time x, P is the initial quantity
when and is the factor by which the quantity
changes when x increases by 1. If the quantity is
decaying at rate r per time period then and

f(x) � Pax � P(1 � r)x.

a � 1 � r
f(x)

0 66 a 66 1x � 0

f(x) � Pax,

Exponential
Decay

The half-life of a radioactive substance is the time it takes a given quan-
tity of the substance to decay to one-half of its original mass. The half-life
depends only on the substance, not on the size of the sample. Because
radioactive substances decay exponentially, their decay can be described
by a function of the form where x is measured in the same time
units as the half-life. The constant a can be determined from the half-life
of the substance.

f 1x2 � Pax,



For example, suppose that the half-life of a substance is 25 years. Then
after 25 years, the initial amount P decays to 0.5P, or 

The function for this radioactive decay is

f 1x2 � Pax � P 10.5
1
25 2x � P 10.52 x

25.

 a � 0.5
1
25

 a25 � 0.5
 Pa25 � 0.5P

 f 1252 � 0.5P

f 1252 � 0.5P.
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0

�0.5

15,000

1.5

Figure 5.3-3

The amount of a radioactive substance that remains is given
by the function

where P is the initial amount of the substance, 
corresponds to the time when the radioactive decay began,
and h is the half-life of the substance.

x � 0

f(x) � P(0.5)
x
h,

Radioactive
Decay

Example 9 Radioactive Decay

When a living organism dies, its carbon-14 decays exponentially. An
archeologist determines that the skeleton of a mastodon has lost of
its carbon-14. The half-life of carbon-14 is 5730 years. Estimate how long
ago the mastodon died.

Solution

Use the exponential decay formula for radioactive decay, with 

Because the mastodon has lost of its carbon-14, of its carbon-
14, or 0.36P, remains. So, find the value of x for which 

 0.36 � 0.5
x

5730

 0.36P � P10.5
x

5730 2
f 1x2 � 0.36P.

36%64%

f 1x2 � P10.5
x

5730 2
h � 5730.

64%

The point of intersection of the graphs of
and is approxi-

mately (8445.6, 0.36) as shown in Figure
5.3-3. Therefore, the mastodon died
about 8445.6 years ago.

■

y2 � 0.36y1 � 0.5
x

5730
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Exercises 5.3

1. If is invested at interest, find the value
of the investment after 5 years for each
compounding period.
a. annually b. quarterly
c. monthly d. weekly

2. If is invested at interest, what is the
value of the investment after 10 years for each
compounding period?
a. annually b. monthly c. daily

In Exercises 3–12, determine how much money will be
in a savings account with an initial deposit of $500 and
the interest rate indicated below.

3. compounded annually for 8 years

4. compounded annually for 10 years

5. compounded quarterly for 10 years

6. compounded monthly for 9 years

7. compounded daily for 8.5 years

8. compounded weekly for 7 years and 7
months

9. compounded continuously for 4 years

10. compounded continuously for 10 years

11. compounded continuously for 6.2 years

12. compounded continuously for 11.6 years

A sum of money P that can be deposited today to yield
some larger amount A in the future is called the pres-
ent value of A. In Exercises 13–18, find the present
value of the given amount A. Hint: Substitute the given
amount A, the interest rate r per period, and the num-
ber of periods t into the compound interest formula,
and solve for P.

13. at compounded annually for 7
years

14. at compounded annually for 4
years

15. at compounded quarterly for 5
years

16. at compounded quarterly for 8
years

5.9%A � $7400

7.2%A � $4800

5.5%A � $3500

6%A � $5000

3.25%

2.45%

3.5%

3%

3.5%

2.9%

2.3%

2%

2%

2%

11.5%$2500

8%$1,000 17. at compounded monthly for 3
years

18. at compounded monthly for 6
years

In Exercises 19–26, use the compound interest formula.
Given three of the quantities, A, P, r, and t, find the
remaining one.

19. A typical credit card company charges 
annual interest, compounded monthly, on the
unpaid balance. If your current balance is 
and you do not make any payments for 6 months,
how much will you owe?

20. When his first child was born, a father put 
in a savings account that pays annual interest,
compounded quarterly. How much will be in the
account on the child’s 18th birthday?

21. You have to invest for 2 years. Fund A
pays interest, compounded annually. Fund
B pays interest, compounded quarterly,
and Fund C pays interest, compounded
monthly. Which fund will return the most money?

22. If you invest for 5 years, which will return
more money: an interest rate of compounded
quarterly or an interest rate of compounded
continuously?

23. If you borrow at interest, compounded
monthly, and pay off the loan (principle and
interest) at the end of 2 years, how much interest
will you have paid?

24. A developer borrows at interest,
compounded quarterly, and agrees to pay off the
loan in 4 years. How much interest will she owe?

25. A manufacturer has settled a lawsuit out of court
by agreeing to pay 1.5 million dollars 4 years from
now. How much should the company put in an
account paying annual interest,
compounded monthly, in order to have 
million in 4 years? Hint: See Exercises 13–18.

26. Ellen wants to have available in 5 years
for a down payment on a house. She has inherited

How much of the inheritance should be
invested at interest, compounded quarterly,
in order for the investment to reach a value of
$30,000?

5.7%
$25,000.

$30,000

$1.5
6.4%

6.5%$150,000

14%$1200

4.8%
5%

$7400

12.6%
12.7%

13.2%
$10,000

4%
$3000

$520

18%

9.4%A � $9500

11.3%A � $8900



27. Suppose you win a contest and have a choice of
prizes. You can take now or you can receive

in 4 years. If money can be invested at 
interest, compounded annually, which prize is
more valuable in the long run?

28. If money can be invested at interest,
compounded quarterly, which is worth more:

now or in 5 years?

29. If an investment of grows to in
seven years with interest compounded annually,
what is the interest rate?

30. If an investment of grows to in 
years, with an annual interest rate that is
compounded quarterly, what is the annual interest
rate?

31. If you put in a savings account today, what
interest rate (compounded annually) must you
receive in order to have after 5 years?

32. If interest is compounded continuously, what
annual rate must you receive if your investment
of is to grow to in 6 years?

33. a. At an interest rate of compounded
annually, how long will it take to double an
investment of of of 

b. What conclusion does part a suggest about
doubling time?

34. At an interest rate of compounded annually,
how long will it take to double an investment of P
dollars?

35. How long will it take to double an investment of
at interest, compounded continuously?

36. How long will it take to triple an investment of
at interest, compounded continuously?

37. a. Suppose P dollars is invested for 1 year at 
interest, compounded quarterly. What interest
rate r would yield the same amount in 1 year
with annual compounding? r is called the
effective rate of interest. Hint: Solve the 

equation for r. The left 

side of the equation is the yield after 1 year at
interest, compounded quarterly, and the

right side is the yield after 1 year at 
interest, compounded annually.

b. Complete the following table:

r%
12%

Pa1 �
0.12

4 b
4

� P11 � r2

12%

8%$5000

7%$500

6%,

$1200?$500?$100?

8%,

$2100$1500

$4000

$3000

31
2$2700$2000

$1407.10$1000

$12,500$9000

7%

6%$4000
$3000
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38. This exercise investigates the continuous
compounding formula, using a realistic interest
rate. Consider the value of deposited for 3
years at interest, compounded n times per
year, for increasing values of n. In this case, the 

interest rate per period is and the number of 

periods in 3 years is 3n. So, the value at the end of
3 years is given by:

a. Complete the following table:

A � 4000a1 �
0.05

n b
3n

� 4000 c a1 �
0.05

n b
n d 3

0.05
n ,

5%
$4000

n

1000

10,000

500,000

1,000,000

5,000,000

10,000,000

a1 �
0.05

n b
n

12% interest
compounding period Effective rate

annually 12%

quarterly

monthly

daily

b. Compare the entries in the second column of
the table in part a to the number and
complete the following sentence:
As n gets larger and larger, the value of 

gets closer and closer to the 

number ? .
c. Use your answer to part b to complete the

following sentence:
As n gets larger and larger, the value of 

gets closer and closer 

to the number ? .
d. Compare your answer to part c with the value

given by the continuous compounding formula.

A � 4000 c a1 �
0.05

n b
n d 3

a1 �
0.05

n b
n

e0.05,



39. A weekly census of the tree-frog population in a
state park is given below.
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Week 1 2 3 4 5 6

Population 18 54 162 486 1458 4374

corresponds to the 1989–1990 school year.
b. According to this model, what are the

expenditures per pupil in 1999–2000?
c. In what year did expenditures first exceed

per pupil?

44. There are now 3.2 million people who play bridge
and the number increases by a year.
a. Write the rule of a function that gives the

number of bridge players x years from now.
b. How many people will be playing bridge 15

years from now?
c. When will there be 10 million bridge players?

45. At the beginning of an experiment a culture
contains 200 h-pylori bacteria. An hour later there
are 205 bacteria. Assuming that the h-pylori
bacteria grow exponentially, how many will there
be after 10 hours? after 2 days? (See Example 7.)

46. The population of India was approximately 1030
million in 2001 and was 865 million a decade
earlier. What will the population be in 2006 if it
continues to grow exponentially at the same rate?

47. Use graphical methods to estimate the following
values.
a. b. c.

48. Kerosene is passed through a pipe filled with clay
in order to remove various pollutants. Each foot
of pipe removes of the pollutants.
a. Write the rule of a function that gives the

percentage of pollutants remaining in the
kerosene after it has passed through x feet of
pipe. (See Example 8.)

b. How many feet of pipe are needed to ensure
that of the pollutants have been removed
from the kerosene?

49. If inflation runs at a steady per year, then the
amount that a dollar is worth today decreases by

each year.
a. Write the function rule that gives the value of 

a dollar x years from today.
b. How much will the dollar be worth in 5 years?

in 10 years?
c. How many years will it take before today’s

dollar is worth only a dime?

50. a. The half-life of radium is 1620 years. Find the
rule of the function that gives the amount
remaining from an initial quantity of 100
milligrams of radium after x years.

b. How much radium is left after 800 years? after
1600 years? after 3200 years?

3%

3%

90%

25%

513413313

3.5%

$7000

a. Find a function of the form that
describes the frog population at time x weeks.

b. What is the growth factor in this situation (that
is, by what number must this week’s
population be multiplied to obtain next week’s
population)?

c. Each tree frog requires 10 square feet of space
and the park has an area of 6.2 square miles.
Will the space required by the frog population
exceed the size of the park in 12 weeks? in 14
weeks? ( square feet)

40. The fruit fly population in a certain laboratory
triples every day. Today there are 200 fruit flies.
a. Make a table showing the number of fruit flies

present for the first 4 days (today is day 0,
tomorrow is day 1, etc.).

b. Find a function of the form that
describes the fruit fly population at time x days.

c. What is the growth factor here (that is, by what
number must each day’s population be
multiplied to obtain the next day’s population)?

d. How many fruit flies will there be a week from
now?

41. The population of Mexico was 100.4 million in
2000 and is expected to grow by approximately

each year.
a. If is the population, in millions, of Mexico

in year x, where corresponds to the year
2000, find the rule of the function g. (See
Example 6.)

b. Estimate the population of Mexico in the year
2010.

42. The number of dandelions in your lawn increases
by a week, and there are 75 dandelions now.
a. If is the number of dandelions in week x,

find the rule of the function f.
b. How many dandelions will there be in 16 weeks?

43. Average annual expenditure per pupil in
elementary and secondary schools was in
1989–1990 and has been increasing at about 
each year.
a. Write the rule of a function that gives the

expenditure per pupil in year x, where x � 0

3.68%
$5550

f 1x2
5%

x � 0
g1x2

1.4%

f 1x2 � Pax

1 square mile � 52802

f 1x2 � Pax
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x

y

f(x) = 10x

1
x

y y = x

1

1

g(x)

f(x)

Figure 5.4-1 Figure 5.4-2

The inverse function of the exponential function is called the
common logarithmic function. The value of this function at the number
x is denoted as log x and called the common logarithm of the number x.

The functions and are inverse functions.

log v � u  if and only if  10u � v

g1x2 � log xf 1x2 � 10x

f1x2 � 10x

5.4 Common and Natural Logarithmic Functions

From their invention in the seventeenth century until the development of
computers and calculators, logarithms were the only effective tools for
numerical computation in astronomy, chemistry, physics, and engineer-
ing. Although they are no longer needed for computation, logarithmic
functions still play an important role in the sciences and engineering. In
this section you will examine the two most important types of logarithms,
those to base 10 and those to base e. Logarithms to other bases are con-
sidered in Excursion 5.5A.

Common Logarithms

The graph of the exponential function is shown in Figure 5.4-1.
Because it is an increasing function, it is a one-to-one function, as
explained in Section 3.6. Recall that the graphs of inverse functions are
reflections of one another across the line The exponential function

and its inverse function are graphed in Figure 5.4-2.f 1x2 � 10x
y � x.

f 1x2 � 10x

Objectives

• Evaluate common and
natural logarithms with and
without a calculator

• Solve common and natural
exponential and logarithmic
equations by using an
equivalent equation

• Graph and identify
transformations of common
and natural logarithmic
functions

51. a. The half-life of polonium-210 is 140 days. Find
the rule of the function that gives the amount
of polonium-210 remaining from an initial 20
milligrams after t days.

b. How much polonium-210 is left after 15 weeks?
after 52 weeks?

c. How long will it take for the 20 milligrams to
decay to 4 milligrams?

52. How old is a piece of ivory that has lost of
its carbon-14? (See Example 9.)

53. How old is a mummy that has lost of its
carbon-14?

49%

58%

Technology 
Tip

The graph of 
can be obtained in para-

metric mode by letting

and

where t is any real number.

The graph of the inverse
function g can then be
obtained by letting

and

where t is any real number.

y � t,x � 10t

y � 10t,x � t

f 1x2 � 10x



Because logarithms are a special kind of exponent, every statement about
logarithms is equivalent to a statement about exponents.
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Logarithmic statement Equivalent exponential statement

102.5775 � 378log 378 � 2.5775

101.4624 � 29log 29 � 1.4624

10u � vlog v � u

Logarithms are
rounded to four decimal
places and an equal sign is
used rather than the
“approximately equal”
sign. The word “common”
will be omitted except
when it is necessary to
distinguish the common
logarithm from another
type of logarithm.

NOTE

Figure 5.4-3

Example 1 Evaluating Common Logarithms

Without using a calculator, find each value.

a. b. c. d.

Solution

a. If then Because 
b. If then Because .

c. If then Because 

d. If then Because there is no real number
exponent of 10 that produces is not defined for real
numbers.

■

Every scientific and graphing calculator has a LOG key for evaluating log-
arithms. For example,

A calculator is necessary to evaluate most logarithms, but you can get a
rough estimate mentally. For example, because log 795 is greater than log

and less than log you can estimate that log 795 is
between 2 and 3 and closer to 3.

Example 2 Using Equivalent Statements

Solve each equation by using an equivalent statement.

a. b.

Solution 

a. If log then Therefore, 
b. If then log Therefore, as shown in

Figure 5.4-3.
■

x � 1.4624,29 � x.10x � 29,
x � 100.102 � x.x � 2,

10x � 29log x � 2

1000 � 3,100 � 2

log 0.6 � �0.2218  and  log 327 � 2.5145

�3, log 1�3210x � �3.log 1�32 � x,

10
1
2 � 210, log210 �

1
2.10x � 210.log210 � x,

100 � 1, log 1 � 010x � 1.log 1 � x,
103 � 1000, log 1000 � 3.10x � 1000.log 1000 � x,

log 1�32log210log 1log 1000



Natural Logarithms

The exponential function is very useful in science and engi-
neering. Consequently, another type of logarithm exists, based on the
number e instead of 10.

The graph of the exponential function is shown in Figure 5.4-4.
Because it is an increasing function, it is one-to-one. The function 
and its inverse function are graphed in Figure 5.4-5.

f 1x2 � ex
f 1x2 � ex

f 1x2 � ex
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Logarithmic statement Equivalent exponential statement
ln 

e�1.6094 � 0.2ln 0.2 � �1.6094

e2.6391 � 14ln 14 � 2.6391

eu � vv � u

This inverse function of the exponential function is called the
natural logarithmic function. The value of this function at the number x
is denoted as ln x and called the natural logarithm of the number x.

The functions and are inverse functions.

Again, as with common logarithms, every statement about natural loga-
rithms is equivalent to a statement about exponents.

ln v � u  if and only if  eu � v

g 1x2 � ln xf 1x2 � ex

f 1x2 � ex

Figure 5.4-6

x

y

f(x) = ex

1
x

y y = x

1

1

g(x)

f(x)

Figure 5.4-4 Figure 5.4-5

Example 3 Evaluating Natural Logarithms

Use a calculator to find each value.
a. ln 0.15 b. ln 186 c. ln 

Solution

a. which means that 
b. ln which means that 
c. is undefined for real numbers because there is no exponent of

e that produces 
■

�5.
ln1�52

e5.2257 � 186.186 � 5.2257,
e�1.8971 � 0.15.ln 0.15 � �1.8971,

1�52



In a few cases you can evaluate ln x without a calculator.

Example 4 Solving by Using an Equivalent Statement

Solve each equation by using an equivalent statement.

a. b.

Solution

a. If ln then . Therefore, 
b. If then ln . Therefore, 

■

Graphs of Logarithmic Functions

Because the graphs of exponential functions have the same basic shape
and each logarithmic function is the inverse of an exponential function,
the graphs of logarithmic functions have common characteristics.

The following table compares the graphs of exponential and logarithmic
functions.

x � 1.6094.5 � xex � 5,
x � 54.5982.e4 � xx � 4,

ex � 5ln x � 4

ln 1 � 0  because  e0 � 1
ln e � 1  because   e1 � e
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Exponential functions Logarithmic functions

Examples

Domain all real numbers all positive real numbers

Range all positive real numbers all real numbers

increases as x increases increases as x increases

approaches the x-axis approaches the y-axis as
as x decreases x approaches 0

Reference
points

a1
e , �1b, 11, 02, 1e, 12a�1, 1e b, 10, 12, 11, e2

g(x) � ln xf(x) � ex

a 1
10, �1b, 11, 02, 110, 12a�1, 1

10b, 10, 12, 11, 102
g(x) � log  xf(x) � 10x

g1x2f1x2
g1x2f1x2

g1x2 � log x; g1x2 � ln xf1x2 � 10x; f1x2 � ex

Figure 5.4-7

(0, 1)
(1, 0)

y

x

exponential

logarithmic

y = x

Figure 5.4-8

Example 5 Transforming Logarithmic Functions

Describe the transformation from the graph of to the graph
of Give the domain and range of h.h1x2 � 2 log1x � 32. g1x2 � log x



Solution

The graph of is the graph of after a hori-
zontal translation of 3 units right and a vertical stretch by a factor of 2.

Domain of h: The domain of is all positive real numbers.
The horizontal translation of 3 units to the right
changes the domain to all real numbers greater than 3.

Range of h: The range of is all real numbers, so the
vertical stretch has no effect on the range.

The graphs of g and h are shown in Figure 5.4-9. The points 

and on the graph of g are translated to the points 

and on the graph of h. Although the graph of
appears to stop abruptly at you know that it

continues to approach the asymptote at 
■

Example 6 Transforming Logarithmic Functions

Describe the transformation from to 
Give the domain and range of h.

Solution

Because its graph is that of after a hor-
izontal reflection across the y-axis followed by a horizontal translation of
2 units to the right and a vertical translation of 3 units downward.

Domain of h: The domain of is all positive real numbers.
The reflection across the y-axis first changes the domain
to all negative real numbers. Then the translation of 2
units to the right changes the domain from all negative
real numbers to all real numbers less than 2.

Range of h: The range of is all real numbers, so the
vertical translation does not affect the range.

The graphs of g and h are shown in Figure 5.4-10. The points 

and on the graph of g are translated to points 

and on the graph of h.
■

Example 7 Solving Logarithmic Equations Graphically

If you invest money at an interest rate r, compounded annually, then 
gives the time in years that it would take to double.

D1r2 �
ln 2

ln11 � r2

D1r2

12 � e, �22a2 �
1
e , �4b, 11, �32,

1e, 12a1
e , �1b, 11, 02,

g1x2 � ln x

g 1x2 � ln x

g 1x2 � ln xh1x2 � g1�1x � 22 2 � 3,

h1x2 � ln 12 � x2 � 3.g1x2 � ln x

x � 3.
x � 3,h1x2 � 2 log 1x � 32113, 2214, 02,

a3 1
10, �2b,110, 1211, 02,
a 1

10, �1b,

g1x2 � log x

g1x2 � log x

g1x2 � log xh1x2 � 2 � g1x � 32
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Figure 5.4-10
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0

�1

1

7

Figure 5.4-11

Exercises 5.4

Unless stated otherwise, all letters represent positive
numbers. 

In Exercises 1–4, find the value of each logarithm.

1. 2.

3. 4.

In Exercises 5–14, translate the given logarithmic state-
ment into an equivalent exponential statement.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

In Exercises 15–24, translate the given exponential
statement into an equivalent logarithmic statement.

15. 16. 103 � 100010�2 � 0.01

log1a � c2 � dln1x2 � 2y2 � z � w

ln s � rln 0.01 � �4.6052

ln 10 � 2.3026ln 3 � 1.0986

log 0.8 � �0.0969log 750 � 2.8751

log 0.001 � �3log 1000 � 3

log23 0.01log 
210
1000

log 0.001log 10,000

17. 18.

19. 20.

21. 22.

23. 24.

In Exercises 25–36, evaluate the given expression with-
out using a calculator.

25. 26. 27.

28. 29. 30.

31. 32. 33.

34. 35. 36.

In Exercises 37–40, find the domain of the given func-
tion.

37. 38.

39. 40. k 1x2 � log12 � x2h 1x2 � log1�x2
g 1x2 � ln1x � 22f 1x2 � ln1x � 12

eln 2x�3eln x2

ln ex2�2y

ln ex�yeln 34.17eln 931

ln 25 eln 1eln e3.78

ln e15log 102x2�y2

log 10243

e4uv � me
2
r � w

ek � te
12
7 � 5.5527

e�4 � 0.0183e3.25 � 25.79

107k � r100.4771 � 3

a. How long will it take to double an investment of at 
annual interest?

b. What annual interest rate is needed in order for the investment in
part a to double in 6 years?

Solution

a. The annual interest rate r is 0.065. Find D(0.065).

Therefore, it will take approximately 11 years to double an
investment of at annual interest.

b. If the investment doubles in 6 years, then To find the 

annual interest rate r, solve by graphing. The point of 

intersection of the graphs of and is 

approximately (0.1225, 6). Therefore, an annual interest rate of
is needed for the investment to double in 6 years. See Figure

5.4-11.
■

12.25%

Y2 � 6Y1 �
ln 2

ln11 � r2

ln 2
ln11 � r2 � 6

D1r2 � 6.
6.5%$2500

D10.0652 �
ln 2

ln11 � 0.0652 � 11.0067

6.5%$2500



41. Compare the graphs of and
How are they alike? How are they

different?

42. Compare the graphs of and
How are they alike? How are they

different?

In Exercises 43–48, describe the transformation from
to the given function. Give the domain and

range of the given function.

43. 44.

45. 46.

47. 48.

In Exercises 49–52, sketch the graph of the function.

49. 50.

51. 52.

In Exercises 53–58, find a viewing window (or win-
dows) that shows a complete graph of the function.

53. 54.

55. 56.

57. 58.

In Exercises 59–62, find the average rate of change of
the function. (See Section 3.7.)

59. as x goes from 3 to 5

60. as x goes from 0.5 to 1

61. as x goes from to 

62. as x goes from 1 to 4

63. a. What is the average rate of change of
as x goes from 3 to 

b. What is the value of h when the average rate of
change of as x goes from 3 to 
is 0.25?

64. a. Find the average rate of change of 
as x goes from 0.5 to 2.

b. Find the average rate of change of
as x goes from 3.5 to 5.

c. What is the relationship between your answers
in parts a and b? Explain why this is so.

g 1x2 � ln1x � 322,

f 1x2 � ln x2,

3 � h,f 1x2 � ln x,

3 � h?f 1x2 � ln x,

f 1x2 � x log 0x 0 ,
�3�5g 1x2 � log 1x2 � x � 12,

g 1x2 � x � ln x,

f 1x2 � ln1x � 22,

f 1x2 �
log x

xf 1x2 � 10 log x � x

k 1x2 � e
2

ln xh 1x2 �
ln x 2

x

g 1x2 �
ln x

xf 1x2 �
x

ln x

f 1x2 � ln1�x2 � 3h 1x2 � �2 log x

g 1x2 � 2 ln x � 3f 1x2 � log1x � 32

k 1x2 � ln1x � 22 � 2h 1x2 � ln1x � 32 � 4

k 1x2 � ln1x � 22h 1x2 � ln1x � 42
f 1x2 � ln x � 7f 1x2 � 2 ln x

g(x) � ln x

k 1x2 � 3 log x.
h 1x2 � log x3

g 1x2 � 2 log x.
f 1x2 � log x2
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65. a. Use the doubling function D from Example 7 to
find the time it takes to double your money at
each of these interest rates: 4%, 6%, 8%, 12%,
18%, 24%, and 36%.

b. Round the answers in part a to the nearest year
and compare them with these numbers:

and Use this 

evidence to state a “rule of thumb” for
determining approximate doubling time,
without using the function D. This rule of
thumb, which has long been used by bankers,
is called the Rule of 72.

66. The height h above sea level (in meters) is related
to air temperature t (in degrees Celsius), the
atmospheric pressure p (in centimeters of mercury
at height h), and the atmospheric pressure c at sea
level by:

If the pressure at the top of Mount Rainier is 44
centimeters on a day when sea level pressure is
75.126 centimeters and the temperature is what
is the height of Mount Rainier?

67. A class is tested at the end of the semester and
weekly thereafter on the same material. The
average score on the exam taken after t weeks is
given by the following “forgetting function”.

a. What was the average score on the original
exam?

b. What was the average score after 2 weeks?
after 5 weeks?

68. Students in a precalculus class were given a final
exam. Each month thereafter, they took an
equivalent exam. The class average on the exam
taken after t months is given by the following
function.

a. What was the average score on the original
exam?

b. What was the average score after 6 months?
after 10 months?

69. One person with a flu virus visited the campus.
The number T of days it took for the virus to
infect x people is given by T.

T � �0.93 ln a7000 � x
6999x b

F 1t2 � 82 � 8 � ln1t � 12

g 1t2 � 77 � 10 ln1t � 12

7°,

h � 130t � 80002 ln a c
pb

72
36.72

4 , 72
6 , 72

8 , 72
12, 72

18, 72
24,



a. How many days did it take for 6000 people to
become infected?

b. After 2 weeks, how many people were infected?

70. Critical Thinking For each positive integer n, let 
be the polynomial function whose rule is

where the sign of the last term is if n is odd
and if n is even. In the viewing window with

and graph 
and on the same screen. 

For what values of x does appear to be a good
approximation of g?

71. Critical Thinking Using the viewing window in
Exercise 70, find a value of n for which the graph
of the function (as defined in Exercise 70)fn

f4

f4 1x2ln11 � x2g 1x2 �
�4 � y � 1,�1 � x � 1

�
�

fn1x2 � x �
x 2

2 �
x 3

3 �
x4

4 �
x 5

5 � p –
x n

n

fn
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5.5 Properties and Laws of Logarithms

The definitions of common and natural logarithms differ only in their
bases. Therefore, common and natural logarithms share the same basic
properties and laws.

Basic Properties of Logarithms

Logarithms are only defined for positive real numbers. That is,

The graphs of and both contain the point (1, 0) because
and 

The values of log and ln can be found by writing equivalent expo-
nential statements.

In general,

 ln ek � k,  for every real number k.
 log 10k � k,  for every real number k.

 If ln e9 � x, then ex � e9. So x � 9.
 If log 104 � x, then 10x � 104. So x � 4.

e9104

log 1 � 0  and  ln 1 � 0

e0 � 1.100 � 1
y � ln xy � log x

log v and ln v are defined only when v 77 0.

Objectives

• Use properties and laws of
logarithms to simplify and
evaluate expressions

appears to coincide with the graph of
Use the trace feature to move

from graph to graph to see how good this
approximation actually is.

72. A bicycle store finds that N the number of bikes
sold, is related to d, the number of dollars spent
on advertising.

a. How many bikes will be sold if nothing is
spent on advertising? if is spent? if

is spent?
b. If the average profit is per bike, is it

worthwhile to spend on advertising?
What about 

c. What are the answers in part b if the average
profit per bike is $35?

$10,000?
$1000

$25
$10,000

$1000

N � 51 � 100 � ln a d
100 � 2b

g 1x2 � ln11 � x2.

Any number
raised to the zero power,
except zero, is 1.

where x � 0x0 � 1,

NOTE



By definition, log 678 is the exponent to which 10 must be raised to pro-
duce 678.

Similarly, ln 54 is the exponent to which e must be raised to produce 54. 

In general,

The facts presented above are summarized in the table below.

10logv � v  and  eln v � v,  for every v 77 0.

eln 54 � 54

10log 678 � 678
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Common logarithms Natural logarithms

1. log v is defined only when 1. ln v is defined only when 
2. and 2. and 
3. log for every real 3. ln for every real

number k number k
4. for every 4. for every v 77 0eln v � vv 77 010log v � v

ek � k10k � k
ln e � 1ln 1 � 0log 10 � 1log 1 � 0

v 77 0v 77 0

Basic Properties
of Logarithms

Figure 5.5-1

�2

�2

8

3

Properties 3 and 4 are restatements of the fact that the composition of
inverse functions produces the identity function.

That is, if and then

Analogous statements are true for and 

The properties of logarithms can be used to simplify expressions and solve
equations. For example, applying Property 3 with 
allows you to rewrite the expression as 

Example 1 Solving Equations by Using Properties of Logarithms

Use the basic properties of logarithms to solve the equation 

Solution

Because is a function, if then 

Apply Property 4 with

The intersection of the graphs of and shown in 
Figure 5.5-1, confirms the solution.

■

Y2 � 2,Y1 � ln 1x � 12
 x � 6.3891
 x � e2 � 1

v � x � 1x � 1 � e2

e ln1x�12 � e2

eln1x�12 � e2.ln1x � 12 � 2,f 1x2 � ex

ln 1x � 12 � 2.

2x2 � 7x � 9.ln e2x2�7x�9
k � 2x2 � 7x � 9

g 1x2 � ln x.f 1x2 � ex

 1g � f 2 1x2 � g110x2 � log 10x � x for all x
 1 f � g2 1x2 � f 1log x2 � 10log x � x for all x 7 0

g 1x2 � log x,f 1x2 � 10x



Laws of Logarithms

The Product Law of Exponents states that Because loga-
rithms are exponents, the following law holds.

bm
˛bn � bm�n.
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For all 

ln (vw) � ln v � ln w.

 log (vw) � log v � log w

v, w 77 0,
Product Law of

Logarithms

Proof According to Property 4 of logarithms, and
Then, by the Product Law of Exponents:

Again by Property 4 of logarithms:

Therefore, ; and because exponential functions are
one-to-one, . A similar argument can be made for
natural logarithms.

Example 2 Using the Product Law of Logarithms

Use the Product Law of Logarithms to evaluate each logarithm.

a. Given that and find 
b. Given that and find 

Solution

a.

b.
■

ln 63 � ln 17 � 92 � ln 7 � ln 9 � 1.9459 � 2.1972 � 4.1431
log 33 � log13 � 112 � log 3 � log 11 � 0.4771 � 1.0414 � 1.5185

ln 63.ln 9 � 2.1972,ln 7 � 1.9459
log 33.log 11 � 1.0414,log 3 � 0.4771

log vw � log v � log w
10log vw � 10log v� log w

10log vw � vw

vw � 10log v � 10log w � 10log v� log w

10log w � w.
10log v � v

Graphing Exploration

Using the viewing window with and 
graph both functions below on the same screen.

Explain how the graph illustrates the caution in the margin.

f 1x2 � ln x � ln 9  g 1x2 � ln 1x � 92

�8 � y � 8,�10 � x � 10

The Quotient Law of Exponents states that When the expo-

nents are logarithms, the Quotient Law is still valid.

bm

bn � bm�n.

CAUTION

A common error in
applying the Product
Law of Logarithms is to
write the false statement

instead of the correct
statement

ln 17 � 92 � ln 63.
ln 7 � ln 9 �

ln17 � 92 � ln 16
ln 7 � ln 9 �
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For all 

lna v
wb � ln v � ln w.

log a v
wb � log v � log w

v, w 77 0,
Quotient Law of

Logarithms

For all k and 

ln vk � k ln v.

logvk � klog v,

v 77 0,
Power Law of

Logarithms

CAUTION

Do not confuse 

with

the quotient 

. 

They are different num-
bers.

ln 7
ln 9

� 0.8856

lna7
9b � �0.2513

The proof of the Quotient Law of Logarithms is similar to the proof of
the Product Law of Logarithms.

Example 3 Using the Quotient Law of Logarithms

Use the Quotient Law of Logarithms to evaluate each logarithm.

a.

b.

Solution

a.

b. ln 3 � lna18
6 b � ln 18 � ln 6 � 2.8904 � 1.7918 � 1.0986

log 4 � loga28
7 b � log 28 � log 7 � 1.4472 � 0.8451 � 0.6021

Given that ln 18 � 2.8904 and ln 6 � 1.7918, find ln 3.
Given that log 28 � 1.4472 and log 7 � 0.8451, find log 4.

Graphing Exploration

Using the viewing window with and graph
both functions below on the same screen.

Explain how the graph illustrates the caution in the margin.

f 1x2 � ln ax
9b  g1x2 �

ln x
ln 9

�4 � y � 2,0 � x � 8

■

The Power Law of Exponents, which states that can also be
translated into a logarithmic statement.

1bm2k � bmk,



Proof
According to Property 4 of logarithms, Then, by the Power
Law of Exponents:

Again by Property 4 of logarithms:

So, and therefore, . A similar argument
can be made for natural logarithms.

Example 4 Using the Power Law of Logarithms

Use the Power Law of Logarithms to evaluate each logarithm.

a.

b.

Solution

a.

b.

■

The laws of logarithms can be used to simplify various expressions.

Example 5 Simplifying Expressions

Write ln as a single logarithm.

Solution

Power Law

Product Law

Quotient Law

■

Example 6 Simplifying Expressions

Simplify lna2x
x b � lnA24 ex2 B .

 � lnax4

y b
 � lna 3x5

3xyb
 � ln13x � x42 � ln 3xy

 ln 3x � 4 ln x � ln 3xy � ln 3x � ln x4 � ln 3xy

3x � 4 ln x � ln 3xy

ln23 50 � ln 50
1
3 �

1
3 ln 50 �

1
3 13.91202 � 1.3040

log26 � log 6
1
2 �

1
2 log 6 �

1
2 10.77822 � 0.3891

Given that ln 50 � 3.9120, find ln 23 50.
Given that log 6 � 0.7782, find log 26.

log vk � k log v10log v k

� 10k log v

10log v k

� vk

vk � 110log v2 k � 10k log v

10log v � v.
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Solution

Power Law

Product Law

Power Law

■

Applications

A logarithmic scale is a scale that is determined by a logarithmic func-
tion. Because logarithmic growth is slow, measurements on a logarithmic
scale can sometimes be deceptive. The Richter scale is an illustration of this.

The magnitude of an earthquake on the Richter scale is given by 

where i is the amplitude of the ground motion of the earth-

quake and is the amplitude of the ground motion of the zero earthquake.
A moderate earthquake might have 1000 times the ground motion of the
zero earthquake, or Its magnitude would be

An earthquake with 10 times this ground motion, or would
have a magnitude of

So a tenfold increase in ground motion produces only a 1-point change
on the Richter scale. In general,

increasing the ground motion by a factor of increases 
the Richter magnitude by k units.

Example 7 Richter Scale

The 1989 World Series earthquake in San Francisco measured 7.0 on the
Richter scale, and the great earthquake of 1906 measured 8.3. How much
more intense was the ground motion of the 1906 earthquake than that of
the 1989 earthquake?

10k

loga10,000i0

i0
b � log 10,000 � 4

i � 10,000i0,

loga1000i0

i0
b � log 1000 � 3

i � 1000i0.

i0

R 1i2 � loga i
i0
b,

R1i 2

ln e � 1 � 1
4

 � 1
4 ln e

 � �
1
2 ln x �

1
4 ln e �

1
2 ln x

 � �
1
2 ln x �

1
4 1ln e � 2 ln x2

 � �
1
2 ln x �

1
4 1ln e � ln x22

 � �
1
2 ln x �

1
4 ln 1ex22

 � ln1x�
1
2 2 � ln 1ex2214

 lna2x
x b � ln A24 ex2 B � lnax

1
2

x b � ln 1ex2 214
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The zero
earthquake has ground
motion amplitude of less
than 1 micron on a
standard seismograph 100
kilometers from the
epicenter.

NOTE



Solution

The difference in Richter magnitude is Therefore, the 1906
earthquake was times more intense than the 1989 earthquake
in terms of ground motion.

■

101.3 � 20
8.3 � 7.0 � 1.3.
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Exercises 5.5

In Exercises 1–4, solve each equation by using the
basic properties of logarithms.

1. 2.

3. 4.

In Exercises 5–10, use laws of logarithms and the val-
ues given below to evaluate each logarithmic
expression.

5. 6.

7. 8.

9. 10.

In Exercises 11–20, write the given expression as a sin-
gle logarithm.

11. 12.

13.

14.

15.

16. 17.

18. 19.

20.

In Exercises 21–26, let and Write the
given expression in terms of u and v. For example,

21. 22.

23. 24. ln a2x
y bln A2x � y2 B

ln 1x3y22ln 1x2y52
ln x3y � ln x3 � ln y � 3 ln x � ln y � 3u � v.

v � ln y.u � ln x

ln 1e2 x2 � ln 1ey2 � 3

log 10x � log 20y � 12 � 2 log 20

3 ln 1e2 � e2 � 3ln a e
2x
b � ln A2ex B

2 ln x � 31 ln x2 � ln x2
log 3x � 2 3 log x � log 12 � y2 4
log 1x2 � 92 � log 1x � 32

ln 2x � 2 ln x � ln 3yln x2 � 3 ln y

log 1.5log 0.6

log a 3
14blog a5

7b
log 12log 8

log 3 � 0.4771 log 2 � 0.3010
log 7 � 0.8451 log 5 � 0.6990

5 � ln 1x � 12 � 8ln 1x � 42 � �1

log12x2 � 3log1x � 32 � 2

25. 26.

27. a. Graph and in separate viewing
windows. For what values of x are the graphs
identical?

b. Use the properties of logarithms to explain
your answer in part a.

28. a. Graph and in separate viewing
windows. For what values of x are the graphs
identical?

b. Use the properties of logarithms to explain
your answer in part a.

In Exercises 29–34, use graphical or algebraic means
to determine whether the statement is true or false.

29. 30.

31. 32.

33. 34.

In Exercises 35 and 36, find values of a and b for which
the statement is false.

35.

36.

37. If what is b?

38. Suppose where A and B are
constants. If and , what are A
and B?

39. If and and 
find A and B.

40. Show that is the inverse 

function of (See Section 3.6.)f 1x2 �
1

1 � e�x .

g1x2 � lna x
1 � x

b

f 1e22 � 8,f 1e2 � 5f 1x2 � A ln x � B

f 1e2 � 1f 112 � 10
f 1x2 � A ln x � B,

ln b7 � 7,

log1a � b2 � log a � log b

log a
log b

� logaa
b
b

log 2x � 2log xln x3 � 1ln x23
ex ln x � xx 1x 7 02log x5 � 5 log x

lna1
xb �

1
ln x

ln 0 x 0 � 0 ln x 0

y � ln e xy � x

y � e ln xy � x

ln a2x 2y

23 y
bln A23 x2 1y B



In Exercises 41–44, state the magnitude on the Richter
scale of an earthquake that satisfies the given condi-
tion.

41. 100 times stronger than the zero quake

42. times stronger than the zero quake

43. 350 times stronger than the zero quake

44. 2500 times stronger than the zero quake

Exercises 45–48 deal with the energy intensity i of a
sound, which is related to the loudness of the sound 

by the function where is the 

minimum intensity detectable by the human ear and
L(i) is measured in decibels. Find the decibel measure
of the sound.

45. ticking watch (intensity is 100 times )

46. soft music (intensity is 10,000 times )

47. loud conversation (intensity is 4 million times )

48. Victoria Falls in Africa (intensity is 10 billion 
times )i0

i0

i0

i0

i0L(i) � 10 � log a i
i0
b,

104.7
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49. How much louder is the sound in Exercise 46
than the sound in Exercise 45?

50. The perceived loudness L of a sound of intensity I
is given by where k is a certain
constant. By how much must the intensity be
increased to double the loudness? (That is, what
must be done to I to produce 2L?)

51. Compute each of the following pairs of numbers:

a. b.

c. What do the results in parts a and b suggest?

52. Find each of the following logarithms.
a. b. c.
d. e.
f. How are the numbers 8.753, 87.53, 875.3, 8753,

and 87,530 related to one another? How are
their logarithms related? State a general
conclusion that this evidence suggests.

log 87,530log 8753
log 875.3log 87.53log 8.753

log 8950 and ln 8950
ln 10

log 18 and ln 18
ln 10

L � k � ln I,

Common and natural logarithms were defined by considering the inverse
functions of the exponential functions and In this sec-
tion, you will see that a similar procedure can be carried out with any
positive number b in place of 10 and e.

f 1x2 � ex.f 1x2 � 10x
Objectives

• Evaluate logarithms to any
base with and without a
calculator

• Solve exponential and
logarithmic equations to any
base by using an
equivalent equation

• Identify transformations of
logarithmic functions to any
base

• Use properties and laws of
logarithms to simplify and
evaluate logarithmic
expressions to any base

5.5.A Excursion: Logarithmic Functions to 
Other Bases

In the discussion below, b is a fixed positive number with
The discussion on exponents and logarithms to base b is also

valid for but in that case the graphs have a different shape.0 6 b 6 1,
b 7 1.

NOTE

Defining Logarithmic Functions to Other Bases

Because is an increasing function, it is a one-to-one function and
therefore has an inverse function. (See Section 3.6) Recall that the graphs
of inverse functions are reflections of one another across the line 
An exponential function and its inverse function are graphed in
Figure 5.5.A-1.

f 1x2 � bx
y � x.

f 1x2 � bx



Example 1 Evaluating Logarithms to Other Bases

Without using a calculator, find each value.

a. b. c.

Solution

a. If then Because 

b. If then Because 

c. If then Because there is no real number
exponent of 5 that produces a negative number, is not
defined.

■

Example 2 Solving Logarithmic Equations

Solve each equation for x.

a. b. c. d. log6 6 � xlog1
6 1�32 � xlog6 1 � xlog5 x � 3

log51�2525x � �25.log51�252 � x,

a1
3b

�2

� 9, log 
1
3
 9 � �2a1

3b
x

� 9.log 
1
3
 9 � x,

24 � 16, log2 16 � 4.2x � 16.log2 16 � x,

log51�252log1
3
 9log2 16
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x

y y = x

1

1

g(x)

f(x)

Figure 5.5.A-1

This inverse function g is called the logarithmic function to the base b.
The value of g(x) at the number x is denoted and is called the log-
arithm to the base b of the number x.

Because the functions and are inverse functions,

if and only if

Because all logarithms are exponents, every statement about logarithms
is equivalent to a statement about exponents.

bu � v.logb v � u

g1x2 � logb xf 1x2 � bx

logb x

Logarithmic statement Equivalent exponential statement

8�
2
3 �

1
4log8a1

4b � �
2
3

125
1
3 � 5log125 5 �

1
3

43 � 64log4 64 � 3

34 � 81log3 81 � 4

bu � vlogb v � u



Solution

a. If then Therefore, 
b. If then Therefore, 

c. If then Because no real power of is a 

negative number, has no real solution.

d. If then Therefore, 
■

Basic Properties of Logarithms to Other Bases

Logarithms are only defined for positive real numbers. That is,

The graph of x contains the point (1, 0) because for any
That is,

The value of can be found by writing an equivalent exponential
statement.

If then So 

In general,

.

By definition, is the exponent to which 3 must be raised to pro-
duce 104. Therefore,

In general,

.

The facts presented above are summarized in the table below.

blogb v � v for every v 77 0

3log3 104 � 104.

log3 104

logb b
k � k for every real number k

x � 4.5x � 54.log5 54 � x,

log5 54

logb 1 � 0

b 7 0.
b0 � 1y � logb

logb v is defined only when v 77 0.

x � 1.6x � 6.log6 6 � x,

log1
6
 1�32 � x

1
6a1

6b
x

� �3.log1
6
 1�32 � x,

x � 0.6x � 1.log6  1 � x,
x � 125.53 � x.log5 x � 3,
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Basic Properties
of Logarithms For and ,

1. is defined only when 

2. and 

3. for every real number k

4. for every v 77 0blogb v � v

logb b
k � k

logb b � 1logb 1 � 0

v 77 0logb v

b � 1b 77 0

Properties 3 and 4 are restatements of the fact that the composition of
inverse functions produces the identity function.



If and then

Equations that involve both logarithmic and constant terms may be solved
by using basic properties of logarithms.

Example 3 Solving Logarithmic Equations

Solve the equation 

Solution

exponentiate both sides

■

Laws of Logarithms to Other Bases

Because all logarithms are a form of exponents, the laws of exponents
translate to the corresponding laws of logarithms to any base.

 x � 82
b log b v � v x � 1 � 34

 3log3 1x�12 � 34

 log31x � 12 � 4

log31x � 12 � 4.

blogb v � v for b 7 0 and b � 1

 1g � f 2 1x2 � g1bx 2 � logb bx � x for all x
 1 f � g2 1x2 � f 1logb x2 � blogb x � x for all x 7 0

g1x2 � logb x,f 1x2 � bx
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Example 4 Using the Laws of Logarithms

Use the Laws of Logarithms to evaluate each expression, given that
and 

a. b. c.

Solution

a. Use the Product Law.

log7 10 � log7 12 � 52 � log7 2 � log7 5 � 0.3562 � 0.8271 � 1.1833

log7 48log7 2.5log7 10

log7 5 � 0.8271.log7 2 � 0.3562, log7 3 � 0.5646,

Laws of
Logarithms For all b, v, w, and k, with b, v, and w positive and 

Product Law:

Quotient Law:

Power Law: logb(v
k) � k logb v

logba v
wb � logb v � logb w

logb(vw) � logb v � logb w

b � 1:



b. Use the Quotient Law.

c. Use the Product and Power Laws.

■

Example 5 Using the Laws of Logarithms

Simplify and write each expression as a single logarithm.

a.

b.

Solution

a.

b.

■

Change-of-Base Formula

Scientific and graphing calculators have a LOG key and a LN key for cal-
culating logarithms. No calculators have a key for logarithms to other
bases. One way to evaluate logarithms to other bases is to use the for-
mula below.

� �log5 x
� 3 � 3 � log5 x
� 3 � 1log5 125 � log5 x23 � log51125x2

 � log3 
y

x � 2

 � log3 S 1x � 22y
1x � 22 1x � 22 T

 � log3 S 1x � 22y
x2 � 4 T

 � log3 3 1x � 22y 4 � log3 1x2 � 42log31x � 22 � log3 y � log31x2 � 42

3 � log51125x2
log31x � 22 � log3 y � log31x2 � 42

 � 1.9894
 � 0.5646 � 410.35622
 � log7 3 � 4 log7 2
 � log7 3 � log7 24

 log7 48 � log713 � 242

log7 2.5 � log7 a5
2b � log7 5 � log7 2 � 0.8271 � 0.3562 � 0.4709
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can also 
be expressed as or 

. log 5˛a1
xb

 log5 x�1
� log5 xNOTE

Change-of-Base
Formula For any positive number v,

logb v �
log v

log b
  and  logb v �

ln v
ln b



Proof By Property 4 of the Basic Properties of Logarithms .

take logarithms of both sides

apply the Power Law

A similar argument can be made by taking common logarithms of both
sides.

Example 6 Evaluating Logarithms to Other Bases

Evaluate 

Solution

Use the change-of-base formula and a calculator.

■

Graphing Logarithmic Functions to Other Bases

The graph of a logarithmic function to any base b shares characteristics
with the graphs of natural logarithms and common logarithms. The fol-
lowing table compares the graphs of exponential and logarithmic
functions for base b, where b is any real number, , and .b � 1b 7 0

log8 9 �
log 9
log 8

� 1.0566  or  log8 9 �
ln 9
ln 8

� 1.0566

log8 9.

 logb v �
ln v
ln b

 logb v1ln b2 � ln v
 ln1blogb v2 � ln v

 blogb v � v

 blogb v � v
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Exponential function Logarithmic function

Domain all real numbers all positive real numbers

Range all positive real numbers all real numbers

increases as x increses increases as x increases

approaches the x-axis approaches the y-axis as
as x decreases x approaches 0

Reference a 1
b

, �1b, 11, 02, 1b, 12a�1, 1
b
b, 10, 12, 11, b2

g1x2f1x2
g1x2f1x2

g(x) � logb xf(x) � bx

points

Example 7 Transforming Logarithmic Functions

Describe the transformation from to 
Give the domain and range of h.

h1x2 � log21x � 12 � 3.g1x2 � log2 x

Figure 5.5A-2

Figure 5.5A-3

(1, b)

(0, 1)

(1, 0)

(b, 1)y = bx

y = logb x

y = xy

x



Solution

Because its graph is the graph of after
a horizontal translation of 1 unit to the left and a vertical translation of 3
units down.

Domain of h: The domain of is all positive real
numbers. The horizontal translation of 1 unit to the left
changes the domain to all real numbers greater than
�1.

Range of h: The range of is all real numbers, so the
vertical translation has no effect on the range.

The points and (2, 1) on the graph of g are translated to 

the points and on the graph of h. To graph these 

functions with a calculator, graph for and 

for The graphs of g and h are 

shown in Figure 5.5A-4.
■

h1x2 � log21x � 12 � 3.Y2 �
ln1x � 12

ln 2
� 3

g1x2 � log2 xY1 �
ln x
ln 2

11, �22a�1
2, �4b, 10, �32,
a1

2, �1b, 11, 02,

g1x2 � log2 x

g1x2 � log2 x

g1x2 � log2 xh1x2 � g1x � 12 � 3,
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�2

�8

12

4

Figure 5.5A-4

Exercises 5.5.A

Note: Unless stated otherwise, all letters represent pos-
itive numbers and 

In Exercises 1–10, translate the given exponential state-
ment into an equivalent logarithmic statement.

1. 2. 3.

4. 5. 6.

7. 8.

9. 10.

In Exercises 11–20, translate the given logarithmic
statement into an equivalent exponential statement.

11. 12.

13. 14.

15. 16.

17. 18. log2 22 �
1
2log2a1

4b � �2

log8 a1
4b � �

2
3log5 125 � 3

log 0.8 � �0.0969log 750 � 2.8751

log 0.001 � �3log 10,000 � 4

b14 � 33793�2 �
1
9

2�3 �
1
878 � 5,764,801

101a�b2 � c107k � r100.4771 � 3

23 10 � 10
1
3103 � 100010�2 � 0.01

b � 1.
19.

20.

In Exercises 21–28, evaluate the given expression with-
out using a calculator.

21. 22. 23.

24. 25. 26.

27. 28.

In Exercises 29–36, find the missing entries in each
table.

29.

log23 a1
9blog23 1272

log2 64log16 4log3.513.51x2�12 2
log 102x2�y2

log17 117172log 10243

log1a � c2 � d

log1x2 � 2y2 � z � w

x 0 1 2 4

? ? ? ?f 1x2 � log4 x



30.
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32.

38.

39.

2

5 10 15 20 25

1

3

4

5

−5

−2

x

y

x ? ? 100 1000

6 3 ? ?g 1x2 � 3 log x

x �0.05 1 400

�1.05 0 2
1
2f 1x2

225

x 1 5 125

�4 0 2 6f 1x2

1
25

x �2.75 �1 1 29

? ? ? ?h1x2 � 3 log2 1x � 32

x 5 25

? ? ? ?g 1x2 � log5 x

251
25

x ? 1 216

? ? ?�2h 1x2 � log6 x

1
6

x 4 6 12

? ? ? ?k1x2 � log3˛ 1x � 32

10
3

x 1 e

? ? ? ?k1x2 � 2 ln x

e21
e

x 0 49

? ? ? ?f 1x2 � 2 log7 x

271
7

33.

34.

35.

36.

In Exercises 37–40, a graph or a table of values is given
for the function . Find b.

37.

f (x) � logb x

31.

2

2 4 6 8 9 10 111 3 5 7

1

3

−1

−2

x

y

40.

In Exercises 41–46, solve each equation for x.

41. 42.

43. 44.

45. 46.

In Exercises 47–60, write the given expression as the log-
arithm of a single quantity. (See Example 5.)

47.

48.

49.

50.

51. 52.

53. 54.

55.

56. ln 1z � 32 � 2 ln 1z � 32
2 ln 1x � 12 � ln 1x � 22

1
3 ˛ log5˛ 1x � 12�2 log4 17c2

1
3 ˛ log2 ˛127b6 21

2 ˛ log2˛ 125c22
log3 ˛1y � 22 � log3 ˛1y � 32 � log3 y

log x � log˛1x � 32 � log˛1x2 � 92
5 log8 x � 3 log8 y � 2 log8 z

2 log x � 3 log y � 6 log z

logx ˛a1
9b � �

2
3logx 64 � 3

log5 x � �4log27 x �
1
3

log81 27 � xlog3 243 � x



57. 58.

59. 60.

In Exercises 61–68, use a calculator and the change-of-
base formula to evaluate the logarithm.

61. 62. 63.

64. 65. 66.

67. 68.

In Exercises 69–72, describe the transformation from f
to g, and give the domain and range of g.

69.

70.

71.

72.

In Exercises 73–78, answer true or false. Explain your
answer.

73.

74.

75.

76.

77.

78.

79. Which is larger: or Hint:
2.5988 and and is an
increasing function.

f 1x2 � 10xlog 398 � 2.5999
log 397 �398397?397398

logb 1ab2t � t˛1logb a2 � t

log5 15x2 � 51log5 x2
logb 1cd2 � logb c � logb d

logb r
t � logb ˛1r1

t 2

logb a
logb c

� logb ˛aa
cb

logb ˛a r
5b � logb r � logb 5

f 1x2 � log4 x and g1x2 � 3 log4 ˛1�2x2
f 1x2 � log2 x and g1x2 �

1
3 � log 2˛1x � 12 � 7

f 1x2 � log7 x and g1x2 � �2 � log7˛ 1x � 52
f 1x2 � log5 x and g1x2 � log5 ˛13x � 42

log12 725log12 56

log500 250log500 1000log5 7

log7 5log2 22log2 10

4 � 4 log5 12022 ln 1e2 � e2 � 2

2 � log5 125z2log2 12x2 � 1
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80. If and then 

what is 

In Exercises 81–84, assume that a and b are positive,
with and 

81. Express in terms of logarithms to the base a.

82. Show that .

83. How are and related?

84. Show that 

85. If show that 

86. Graph the functions and
on the same screen. For what

values of x is it true that What do
you conclude about the statement 

87. Graph the functions and 

Are they the same? What does this 

say about a statement such as 

In Exercises 88–90, sketch a complete graph of the
function, labeling any holes, asymptotes, or local
extrema.

88.

89.

90. g1x2 � log20 x2

h1x2 � x log x2

f 1x2 � log5 x � 2

log ˛a48
4 b �

log 48
log 4

?

g1x2 �
log x
log 4

.

f 1x2 � log ˛ax
4b

log 16 � 72?
log 6 � log 7 �

f 1x2 � g1x2?
g1x2 � log ˛1x � 72

f 1x2 � log x � log 7

x � 1b32 ˛2v.logb x �
1
2 logb v � 3,

alog b � blog a.

log100 ulog u

logb a �
1

loga b

logb ˛u

b � 1.a � 1

logb 359.62
logb 9.21

?

logb 359.62 � 19.61,logb 9.21 � 7.4
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Figure 5.6-1
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■

5.6 Solving Exponential and Logarithmic Equations

Exponential and logarithmic equations have been solved in this chapter
so far by using the graphing method or by writing equivalent statements
that can be easily solved. Most of them could also have been solved alge-
braically by using the techniques presented in this section, which depend
primarily on the properties and laws of logarithms.

By definition of a function, if and f is a function, then 
This results in two statements.

Because exponential and logarithmic functions are one-to-one functions,
the converse is also true.

Exponential Equations

The easiest exponential equations to solve are those in which both sides
are powers of the same base.

Example 1 Powers of the Same Base

Solve the equation Confirm your solution with a graph.

Solution

Write the equation so that each side is a power of the same base.

If , then .

To find a window for the graphs of and consider the
basic shapes of the graphs and any transformations. Because both bases
of these exponential functions are greater than 1, the graphs are increas-
ing. Because there is no vertical shift on either function, both graphs are
asymptotic to the x-axis. The intersection of the graphs of and

shown at the left, confirms the solution.Y2 � 2x�1,
Y1 � 8x

Y2 � 2x�1,Y1 � 8x

x �
1
2

 2x � 1
u � vbu � bv 3x � x � 1

 23x � 2x�1

 1232x � 2x�1

 8x � 2x�1

8x � 2x�1.

If logb u � logb v, then u � v.
If bu � bv, then u � v.

If u � v, then logb u � logbv for all real numbers b 77 0.
If u � v, then bu � bv for all real numbers b 77 0.

f 1u2 � f 1v2.u � v

Objectives

• Solve exponential and
logarithmic equations

• Solve a variety of
application problems by
using exponential and
logarithmic equations



Example 2 Powers of Different Bases

Solve the equation Confirm your solution with a graph.

Solution

take logarithms on each side

use the Power Law

The intersection of the graphs of and shown at the left,
confirms the solution.

■

Example 3 Powers of Different Bases

Solve the equation Confirm your solution with a graph.

Solution

Take logarithms on each side

Power Law

Distributive Property

Rearrange terms and isolate x

The intersection of the graphs of and shown at the
left, confirms the solution.

■

When you multiply each side of an equation by the same expression, extra-
neous solutions may be introduced, as shown in Example 4.

Example 4 Using Substitution

Solve the equation Confirm your solution with a graph.ex � e�x � 4.

Y2 � 31�x,Y1 � 24x�1

 x � 0.4628

 x �
ln 3 � ln 2

4 ln 2 � ln 3

 x 14 ln 2 � ln 32 � ln 3 � ln 2
 4x ln 2 � x ln 3 � ln 3 � ln 2

 4x ln 2 � ln 2 � ln 3 � x ln 3
 14x � 12ln 2 � 11 � x2ln 3

 ln124x�12 � ln131�x2
 24x�1 � 31�x

24x�1 � 31�x.

Y2 � 2,Y1 � 5x

 x �
0.6931
1.6094 � 0.4307

 x �
ln 2
ln 5

 x ln 5 � ln 2
 ln 5x � ln 2

 5x � 2

5x � 2.
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CAUTION

and 

ln 2
ln 5

� ln 2 � ln 5

ln 2
ln 5

� ln a2
5b
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Solution

First multiply each side by to eliminate negative exponents.

Product Law.

Let and substitute.

Replace u with to get or Because can only 
be positive and is negative, has no solution.

The intersection of the graphs of and shown in Fig-
ure 5.6-4, confirms that there is exactly one solution

■

Applications of Exponential Equations

When a living organism dies, its carbon-14 decays. The half-life of 
carbon-14 is 5730 years, so the amount of carbon-14 remaining at time 
t is given by where P is the mass of carbon-14 that was
present initially. The function M can be used to determine the age of fos-
sils and some relics.

Example 5 Radiocarbon Dating

The skeleton of a mastodon has lost 58% of its original carbon-14. When
did the mastodon die?

Solution

If the mastodon has lost 58% of its original carbon-14, then 42% of the ini-
tial amount, or 0.42P, remains and To determine when the 
mastodon died, solve for t.0.42P � P10.52 t

5730

M1t2 � 0.42P.

M1t2 � P10.52 t
5730,

Y2 � 4,Y1 � ex � e�x

ln e � 1 x � 1.4436
 x � ln e � ln A2 � 25 B

 ln ex � ln A2 � 25 B
 ex � 2 � 25

ex � 2 � 252 � 25
exex � 2 � 25.ex � 2 � 25ex

 u � 2 – 25

 u �
4 – 225

2

 u �
4 – 220

2

 u �
�1�42 – 21�422 � 4112 1�12

2112
 u2 � 4u � 1 � 0

u � ex

 e2x � 4ex � 1 � 0
 e2x � 1 � 4ex

 ex ex � ex e�x � 4ex

 ex 1ex � e�x2 � ex142
 ex � e�x � 4

ex

�7

�6

7

6

Figure 5.6-4



Therefore, the mastodon died approximately 7200 years ago. The inter-
section of the graphs of and shown in Figure 
5.6-5, confirms the solution.

■

Example 6 Compound Interest

If $3000 is to be invested at 8% per year, compounded quarterly, in how
many years will the investment be worth $10,680?

Solution

The interest rate per quarter r is or 0.02. To find the time t that it 

will take the investment to be worth $10,680 use the compound interest
formula .

Therefore, it will take 64.12 quarters, or years. The inter-

section of the graphs of and shown in
Figure 5.6-6, confirms the solution.

■

Example 7 Population Growth

A biologist knows that if there are no inhibiting or stimulating factors, the
population of a certain type of bacteria will increase exponentially. The
population at time t is given by the function 

S1t2 � Pert,

Y2 � 300011 � 0.022x,Y1 � 10,680

64.12
4 � 16.03

 t �
ln 3.56
ln 1.02

� 64.1208 quarters

 ln 3.56 � t 1ln 1.022
 ln 3.56 � ln11.022t

 3.56 � 11.022t
 10,680 � 300011.022t
 10,680 � 300011 � 0.022t

A � P11 � r2t

0.08
4 ,

Y2 � 10.52 x
5730,Y1 � 0.42

 t � 7171.3171

 t �
57301ln 0.422

ln 0.5

 ln 0.42 �
t

5730  1ln 0.52
 ln 0.42 � ln10.52 t

5730

 0.42 � 10.52 t
5730

 0.42P � P10.52 t
5730
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where P is the initial population and r is the continuous growth rate. The
biologist has a culture that contains 1000 bacteria, and 7 hours later there
are 5000 bacteria.

a. Write the function for this population.
b. When will the population reach 1 billion?

Solution

a. The initial population P is 1000. To find the growth rate r, use the
fact that 

Therefore, the function for this population is

The intersection of the graphs of and shown
in Figure 5.6-7, confirms the value of r.

b. Find the value of t when S(t) is 1 billion.

The bacteria population will reach 1 billion after about 60 hours. The
intersection of the graphs of and 
shown in Figure 5.6-8, confirms the solution.

■

Example 8 Inhibited Population Growth

A population of fish in a lake at time t months is given by the function F.

How long will it take for the fish population to reach 15,000?

F1t2 �
20,000

1 � 24e�
t
4

Y2 � 1,000,000,000,Y1 � 1000e0.2299x

 t �
ln 1,000,000

0.2299 � 60.0936 hours

ln e � 1 0.2299t � ln 1,000,000
 0.2299t ln e � ln 1,000,000

 ln e0.2299t � ln 1,000,000
 e0.2299t � 1,000,000

 1000e0.2299t � 1,000,000,000

Y2 � 1000e7x,Y1 � 5000

S1t2 � 1000e0.2299t

 r �
ln 5

7 � 0.2299

ln e � 1 ln 5 � 7r
 ln 5 � 7r ln e
 ln 5 � ln e7r

 5 � e7r

 5000 � 1000er  172
 S1t2 � 1000ert

S172 � 5000.

0
0

0.5

6,000

Figure 5.6-7
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100
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Solution

Find the value of t when F(t) is 15,000.

and  

Therefore, it will take a little more than 17 months for the population to
reach 15,000. The intersection of the graphs of and 

shown in Figure 5.6-9 confirms the solution.

■

Logarithmic Equations

Properties of one-to-one functions are useful when solving logarithmic
equations, as shown in Example 9.

Example 9 Equations with Only Logarithmic Terms

Solve the equation Confirm your solu-
tion with a graph.

Solution

First use the Product and Power Laws to rewrite the equation.

is a one-to-one function

 x2 � 5x � 3 � 0
y � ln x 2x2 � 5x � 3 � x2

 ln12x2 � 5x � 32 ˛ � ln x2

 ln 3 1x � 32 12x � 12 4 � ln x2

 ln1x � 32 � ln12x � 12 � 21ln x2

ln1x � 32 � ln12x � 12 � 21ln x2.

Y2 �
20,000

1 � 24e�
x
4

Y1 � 15,000

 t � 4 ln 72 � 17.1067

ln  1 � 0ln  e � 1 � t
4 � 0 � ln 72

 � t
4 ln e � ln 1 � ln 72

 ln e�
t
4 � ln 1

72

 e�
t
4 �

1
3 �

1
24

 24e�
t
4 �

4
3 � 1

 1 � 24e�
t
4 �

20,000
15,000

 15,00011 � 24e�
t
4 2 � 20,000

 15,000 �
20,000

1 � 24e�
t
4
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Use the Quadratic Formula to solve for x.

Because is undefined for can-

not be a solution. Therefore, the only solution of the original equation is 

The intersection of the graphs of 

and shown in Figure 5.6-10, confirms the solution.
■

Equations that involve both logarithmic and constant terms may be solved
by using the basic property of logarithms.

Example 10 Equations with Logarithmic and Constant Terms

Solve the equation Confirm your solution with
a graph.

Solution

First get all the logarithmic terms on one side of the equal sign and the
constants on the other. Then rewrite the side that contains the logarithms
as a single logarithm.

The intersection of the graphs of and 
shown in Figure 5.6-11, confirms the solution. 

■

Example 11 Equations with Logarithmic and Constant Terms

Solve the equation Confirm your solution
with a graph.

log1x � 162 � 2 � log1x � 12.

Y2 � 5 � ln1x � 32,Y1 � ln1x � 32
 x � e

5
2 � 3 � 15.1825

 x � 3 � e
5
2

 eln1x�32 � e
5
2

 ln1x � 32 �
5
2

 2 ln1x � 32 � 5
 ln1x � 32 � ln1x � 32 � 5

 ln1x � 32 � 5 � ln1x � 32

ln1x � 32 � 5 � ln1x � 32.

10log v � v  and  eln v � v

Y2 � 21ln x2,ln12x � 12
Y1 � ln1x � 32 �x �

5 � 237
2 � 5.5414.

x � 3, x �
5 � 237

2 � �0.5414ln 1x � 32
 x �

5 � 237
2 � 5.5414  or  x �

5 � 237
2 � �0.5414

 x �
�1�52 – 21�522 � 4112 1�32

2112

0

�6

10

6

Figure 5.6-10
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Solution

Because and are not defined for it cannot
be a solution. Therefore, the only solution is The intersection of
the graphs of and shown in Figure
5.6-12, confirms the solution.

■

Y2 � 2 � log1x � 12,Y1 � log1x � 162 x � 21.
x � �4,log 1x � 12log 1x � 162

 x � �4   x � 21
 x � 4 � 0  or  x � 21 � 0

 1x � 42 1x � 212 � 0
 x2 � 17x � 84 � 0
 x2 � 17x � 16 � 100
 10log1x2�17x�162 � 102

 log1x2 � 17x � 162 � 2
 log 3 1x � 162 1x � 12 4 � 2

 log 1x � 162 � log1x � 12 � 2
 log1x � 162 � 2 � log1x � 12
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Exercises 5.6

In Exercises 1–8, solve the equation without using log-
arithms.

1. 2. 3.

4. 5. 6.

7. 8.

In Exercises 9 – 29, solve the equation. Give exact
answers (in terms of natural logarithms). Then use a
calculator to find an approximate answer.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. Hint: Note that let
u � 3x.

9x � 13x 22;9x � 4 � 3x � 3 � 0

7.8e
x
3 ln 5 � 142.1e

x
2 ln 3 � 5

3.4e�
x
3 � 5.66e�1.4x � 21

e�3x � 2e2x � 5

3z�3 � 2z21�3x � 3x�1

43x�1 � 3x�231�2x � 5x�5

4x�2 � 2x�12x � 3x�1

5x � 43x � 5

4x2�1 � 8x9x2

� 3�5x�2

2x2�5x �
1

1635x9x2

� 2745x � 162x�1

3x�1 � 95x3x � 3 � 303x � 81

24.

25.

26. 27.

28. 29.

In Exercises 30–32, solve the equation for x.

30. 31. 32.

33. Prove that if ln then Hint: Use the
basic property of inverses 

34. a. Solve using natural logarithms. Give an
exact answer, not an approximation.

b. Solve using common logarithms. Give
an exact answer, not an approximation.

c. Use the change-of-base formula in Excursion
5.5.A to show that your answers in parts a and
b are the same.

In Exercises 35–44, solve the equation. (See Example
9.)

35.

36. log 14x � 12 � log 1x � 12 � log 2

ln 13x � 52 � ln 11 � ln 2

7 x � 3

7 x � 3

e ln v � v.
u � v.u � ln v,

ex � e�x

ex � e�x � tex � e�x

2 � tex � e�x

ex � e�x � t

4x � 6 � 4�x � 58e 2x � 8e x � 6

6e 2x � 16e x � 62e 2x � 9ex � 4 � 0

e2x � 5e x � 6 � 0 Hint: Let u � ex.

4x � 6 � 2x � �8
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37.

38.

39. 40.

41.

42.

43.

44.

In Exercises 45–52, solve the equation.

45.

46.

47.

48.

49. 50.

51.

52.

Exercises 53 – 62 deal with the half-life function
which was discussed in Section 5.3 and

used in Example 5 of this section.

53. How old is a piece of ivory that has lost 36% of its
carbon-14?

54. How old is a mummy that has lost 49% of its
carbon-14?

55. Find when part of the Pueblo Benito ruins was
built if the doorway timbers have 89.14% of their
original carbon-14. (See the image on the first
page of this chapter.)

56. How old is a wooden statue that has only one-
third of its original carbon-14?

57. A quantity of uranium decays to two-thirds of its
original mass in 0.26 billion years. Find the half-
life of uranium.

58. A certain radioactive substance loses one-third of
its original mass in 5 days. Find its half-life.

M(x) � c(0.5)
x
h,

ln 1x � 12
ln 1x � 12 � 2

ln 1x2 � 12 � ln 1x � 12 � 1 � ln 1x � 12
log23 x2 � 21x �

2
3log 2x2 � 1 � 2

log 1x � 12 � log 1x � 22 � 1

log x � log 1x � 32 � 1

ln 12x � 12 � 1 � ln 1x � 22
ln 1x � 92 � ln x � 1

ln 12x � 32 � ln x � ln e

ln x � ln 3 � ln 1x � 52
ln 16x � 12 � ln x �

1
2 ln 4

ln x � ln 1x � 12 � ln 3 � ln 4

2 log x � 3 log 42 ln x � ln 36

ln 1x � 62 � ln 10 � ln 1x � 12 � ln 2

log 13x � 12 � log 2 � log 4 � log 1x � 22 59. Krypton-85 loses 6.44% of its mass each year.
What is its half-life?

60. Strontium-90 loses 2.5% of its mass each year.
What is its half-life?

61. The half-life of a certain substance is 3.6 days.
How long will it take for 20 grams to decay to 3
grams?

62. The half-life of cobalt-60 is 4.945 years. How long
will it take for 25 grams to decay to 15 grams?

Exercises 63–68 deal with the compound interest for-
mula which was discussed in Section 5.3
and used in Example 6 of this section.

63. At what annual rate of interest should $1000 be
invested so that it will double in 10 years, if
interest is compounded quarterly?

64. Find how long it takes $500 to triple if it is
invested at 6% in each compounding period. 
a. annually b. quarterly c. daily

65. a. How long will it take to triple your money if
you invest $500 at a rate of 5% per year
compounded annually?

b. How long will it take at 5% compounded
quarterly?

66. At what rate of interest compounded annually
should you invest $500 if you want to have $1500
in 12 years?

67. How much money should be invested at 5%
interest compounded quarterly so that 9 years later
the investment will be worth $5000? This answer is
called the present value of $5000 at 5% interest.

68. Find a formula that gives the time needed for an
investment of P dollars to double, if the interest
rate is r% compounded annually. Hint: Solve the
compound interest formula for t, when 

Exercises 69 – 76 deal with functions of the form
where k is the continuous exponential

growth rate. See Example 7.

69. The present concentration of carbon dioxide in the
atmosphere is 364 parts per million (ppm) and is
increasing exponentially at a continuous yearly
rate of 0.4% (that is, ). How many years
will it take for the concentration to reach 500 ppm?

70. The amount P of ozone in the atmosphere is
currently decaying exponentially each year at a 

k � 0.004

f(x) � Pekx,

A � 2P.

A � P(1 � r)t,
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continuous rate of How 

long will it take for half the ozone to disappear 

that is, when will the amount be Your 

answer is the half-life of ozone.

71. The population of Brazil increased exponentially
from 151 million in 1990 to 173 million in 2000.
a. At what continuous rate was the population

growing during this period?
b. Assuming that Brazil’s population continues to

increase at this rate, when will it reach 250
million?

72. Outstanding consumer debt increased exponentially
from $781.5 billion in 1990 to $1765.5 billion in 2002.
(Source: Federal Reserve Bulletin)
a. At what continuous rate is consumer debt

growing?
b. Assuming this rate continues, when will

consumer debt reach $2500 billion?

73. The probability P percent of having an accident
while driving a car is related to the alcohol level
of the driver’s blood by the formula 
where k is a constant. Accident statistics show that
the probability of an accident is 25% when the
blood alcohol level is 
a. Find k. Use not 0.25.
b. At what blood alcohol level is the probability

of having an accident 50%?

74. Under normal conditions, the atmospheric
pressure (in millibars) at height h feet above sea
level is given by where k is a
positive constant.
a. If the pressure at 18,000 feet is half the pressure

at sea level, find k.
b. Using the information from part a, find the

atmospheric pressure at 1000 feet, 5000 feet,
and 15,000 feet.

75. One hour after an experiment begins, the number
of bacteria in a culture is 100. An hour later there
are 500.
a. Find the number of bacteria at the beginning of

the experiment and the number 3 hours later.
b. How long does it take the number of bacteria

at any given time to double?

P1h2 � 1015e�kh,

P � 25,
t � 0.15.

P � e kt,

P
2 b?a

1that is, k � �0.00252.1
4 % 76. If the population at time t is given by 

find a formula that gives the time it takes for the
population to double.

77. The spread of a flu virus in a community of 45,000
people is given by the function 

where is the number of people infected in
week t.
a. How many people had the flu at the outbreak

of the epidemic? after 3 weeks?
b. When will half the town be infected?

78. The beaver population near a certain lake in year t

is approximately .

a. When will the beaver population reach 1000?
b. Will the population ever reach 2000? Why?

79. Critical Thinking According to one theory of
learning, the number of words per minute N that
a person can type after t weeks of practice is
given by where c is an upper limit
that N cannot exceed and k is a constant that must
be determined experimentally for each person.
a. If a person can type 50 wpm (words per

minute) after 4 weeks of practice and 70 wpm
after 8 weeks, find the values of k and c for this
person. According to the theory, this person
will never type faster than c wpm.

b. Another person can type 50 wpm after 4 weeks
of practice and 90 wpm after 8 weeks. How
many weeks must this person practice to be
able to type 125 wpm?

80. Critical Thinking Wendy has been offered two jobs,
each with the same starting salary of $24,000 and
identical benefits. Assuming satisfactory
performance, she will receive a $1200 raise each
year at the company A, whereas the company B
will give her a 4% raise each year.
a. In what year (after the first year) would her

salary be the same at either company? Until
then, which company pays better? After that,
which company pays better?

b. Answer the questions in part a assuming that
the annual raise at company A is $1800.

N � c 11 � e�kt2,

p1t2 �
2000

1 � 199e�0.5544t

f 1t2
f 1t2 �

45,000
1 � 224e�0.889t  ,

S1t2 � ce kt,
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5.7 Exponential, Logarithmic, and Other Models

Many data sets can be modeled by suitable exponential, logarithmic, and
related functions. Most calculators have regression procedures for con-
structing the models described in the table below.

Objectives

• Model real data sets with
power, exponential,
logarithmic, and logistic
functions Model Equation Examples

Power

Exponential

Logarithmic

Logistic y �
650

1 � 6e�0.3xy �
20,000

1 � 24e�0.25xy �
a

1 � be�kx

y � 2 � 3 ln xy � 5 � 4.2 ln xy � a � b ln x

y � 2e0.4947xy � 211.642xy � ab x or y � ae kx

y � 3.5x�0.45y � 5x2.7y � axr

Exponential Models

In the table of values for the exponential model that follows,
examine the patterns in the ratios of successive y-values.

y � 3 � 2x

At each step, x changes from x to y changes from to 
and the ratio of successive y-values is always the same.

A similar argument applies to any exponential model and shows
that if x changes by a fixed amount k, then the ratio of the corresponding
y-values is the constant In the exponential model above, 
b is 2 and k is 4. This fact identifies the model that would best represent
the data.

When the ratio of successive entries in a table of data is
approximately constant, an exponential model is appropriate.

Example 1 U.S. Population Before the Civil War

In the years before the Civil War, the population of the United States grew
rapidly, as shown in the following table. Find a model for this growth.

y � 3 � 2xbk.

y � abx

3 � 2x�4

3 � 2x �
3 � 2x � 24

3 � 2x � 24 � 16

3 � 2x�4,3 � 2xx � 4,

x 0 4 8 12 16

y 3 48 768 12,288 196,608

196,608
12,288 � 16

12,288
768 � 16768

48 � 1648
3 � 16
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Population
Year in millions

1790 3.93

1800 5.31

1810 7.24

1820 9.64

Solution

The data points, with corresponding to 1790, are shown in Figure
5.7-1. Their shape suggests either a polynomial graph of even degree or
an exponential graph. Since populations generally grow exponentially, an
exponential model is likely to be a good choice. This can be confirmed by
looking at the successive entries in the table.

x � 0

Population
Year in millions

1830 12.86

1840 17.07

1850 23.19

1860 31.44
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Figure 5.7-1

[Source: U.S. Bureau of the Census]

Year Population Year Population

1790 3.93 1830 12.86

1800 5.31 1840 17.07

1810 7.24 1850 23.19

1820 9.64 1860 31.44

1830 12.86

12.86
9.64

� 1.334

31.44
23.19

� 1.356
9.64
7.24

� 1.331

23.19
17.07

� 1.359
7.24
5.31

� 1.363

17.07
12.86

� 1.327
5.31
3.93

� 1.351

Because the ratios are almost constant, as they would be in an exponen-
tial model, use regression to find an exponential model. The procedure is
the same as for linear and polynomial regression. An exponential regres-
sion produces this model.

The graph of the exponential model in Figure 5.7-2 appears to fit the data
well. In fact, you can readily verify that the model has an error of less
than 1% for each of the data points. Furthermore, as discussed before this
example, when x changes by 10, the value of y changes by approximately

which is very close to the successive ratios of the data.
■

1.029910 � 1.343,

y � 3.957211.0299x2

Throughout this
section, coefficients are
rounded for convenient
reading, but the full
expansion is used for
calculations and graphs.

NOTE
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0

50

Figure 5.7-2
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Population
Year in millions

1870 38.56

1880 50.19

1890 62.98

1900 76.21

1910 92.23

Population
Year in millions

1920 106.02

1930 123.20

1940 132.16

1950 151.33

Population
Year in millions

1960 179.32

1970 202.30

1980 226.54

1990 248.72

2000 281.42

Logistic Models

A logistic model represents growth that has a limiting factor, such as food
supplies, war, new diseases, etc. Logistic models are often used to model
population growth, as shown in Example 2.

Example 2 U.S. Population After the Civil War

After the Civil War, the population of the United States continued to
increase, as shown in the following table. Find a model for this growth.
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Figure 5.7-3

Solution

The model from Example 1 does not remain valid, as can be seen in Fig-
ure 5.7-3, which shows its graph together with all the data points from
1790 through 2000, where corresponds to 1790.x � 0

The rate of growth has steadily decreased since the Civil War. For instance, 

the ratio of the first two entries is and the ratio of the last 

two is So an exponential model may not be the best choice.

Other possibilities are polynomial models, which grow at a slower rate,
or logistic models, in which the growth rate decreases with time. Figure
5.7-4 on the next page shows these models compared to an exponential
model.

281.42
248.72 � 1.131.

50.19
38.56 � 1.302
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The quartic and logistic models fit the data better than does the expo-
nential model. The quartic model indicates unlimited future growth, but
the logistic model has the population growing more slowly in the future.

■

Exponential versus Power Models

In Example 1, the ratios of successive entries of the data table were used
to determine that an exponential model was appropriate. Another way to
determine if an exponential model might be appropriate is to consider
the exponential function as shown below.

Take the natural logarithm of each side

Product Law

Power Law

Because ln a and ln b are constants, let and 

The points (x, ln y) lie on a straight line with slope m and 
y-intercept k. Consequently, a guideline for determining if an exponential
model is appropriate is as follows.

If are data points and if the points are
approximately linear, then an exponential model may 
be appropriate for the data.

Similarly, consider the power function 

Take the natural logarithm of each side

Product Law

Power Law ln y � ln a � r ln x
 ln y � ln a � ln xr

 ln y � ln 1axr2
 y � axr

y � axr

(x, ln y)(x, y)

 ln y � mx � k
 ln y � 1ln b2x � ln a
 ln y � ln a � x ln b

m � ln b.k � ln a

 ln y � ln a � x ln b
 ln y � ln a � ln bx

 ln y � ln 1abx2
 y � abx

 y � abx,

500500

250250 250−5−5 −5

500

�5�5 �5

Figure 5.7-4

Exponential Model

y � 6.0662 � 1.02039x

Quartic Model

� 0.0093x2 � 0.1621x � 5.462

y � 17.94 � 10�82x4 � 12.76 � 10�52 x3

Logistic Model

y �
442.10

1 � 56.329e�0.022x
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Because r and ln a are constants, let Then:

Thus, the points lie on the straight line with slope r and 
y-intercept k. Consequently, a guideline for determining if a power model
is appropriate is as follows

If are data points and if the points are
approximately linear, then a power model may be
appropriate for the data.

Example 3 Different Planet Years

The length of time that a planet takes to make one complete rotation
around the sun is that planet’s “year.’’ The table below shows the length
of each planet’s year, relative to an Earth year, and the average distance
of that planet from the Sun in millions of miles. Find a model for this data
in which x is the length of the year and y is the distance from the Sun.

(ln x, ln y)(x, y)

1ln x, ln y2
 ln y � r ln x � k
 ln y � r ln x � ln a
 ln y � ln a � r ln x

k � ln a.

Planet Year Distance

Mercury 0.24 36.0

Venus 0.62 67.2

Earth 1.00 92.9

Mars 1.88 141.6

Jupiter 11.86 483.6

Planet Year Distance

Saturn 29.46 886.7

Uranus 84.01 1783.0

Neptune 164.79 2794.0

Pluto 247.69 3674.5

Solution

Figure 5.7-5 shows the data points for the five planets with the shortest
years. Figure 5.7-6 shows all of the data points, but on this scale, the first
four points look like a single large point near the origin.

Technology 
Tip

Suppose the x- and y-
coordinates of the data 

points are stored in lists 
and , respectively.

Keying in 

produces the list , whose
entries are the natural log-
arithms of the numbers in
list , and stores it in the
statistics editor. You can
then use lists and to
plot the points (x, ln y).

L4L1

L2

L4

LN L2 STO S L4

L2L1

−1 15

0

600

Figure 5.7-5

−25 300

0

5,000

Figure 5.7-6



Plotting the point for each data point produces the graph
shown in Figure 5.7-7. Its points do not form a linear pattern, so an expo-
nential model is not appropriate. The points shown in Figure
5.7-8 do form a linear pattern, which suggests that a power model will
work.

1ln x, ln y2
1x, y21x, ln y2
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Figure 5.7-7
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Figure 5.7-8
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Figure 5.7-9

−25 300

5,000

0

Figure 5.7-10

A power regression produces this model:

Its graph in Figures 5.7-9 and 5.7-10 show that it fits the original data
points well.

y � 92.8932x0.6669

■

Logarithmic Models

Consider the logarithmic function 

Because a and b are constants, let and Then:

The points lie on the straight line with slope m and 
y-intercept k. Consequently, a guideline for determining if a logarithmic
model is appropriate is as follows.

If are data points and if the points are approximately
linear, then a logarithmic model may be appropriate for the data.

(ln x, y)(x, y)

1ln x, y2
y � m1ln x2 � k

k � a.m � b

 y � b ln x � a
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Example 4 Logarithmic Population Growth

Find a model for population growth in El Paso, Texas, given the infor-
mation in the following table.

Year 1950 1970 1980 1990 2000

Population 130,485 322,261 425,259 515,342 563,662

Solution

The scatter plot of the data, where corresponds to 1950, shown in
Figure 5.7-11, suggests a logarithmic curve with a very slight bend.

x � 50

40 120

700,000

0
Figure 5.7-11

40 120

700,000

0
Figure 5.7-13

[Source: U.S. Bureau of the Census.]

The graph of this model, shown in Figure 5.7-13, shows that it is a good
fit for the data.

■

CAUTION

When using
logarithmic models,
you must have data
points with positive
first coordinates
because logarithms of
negative numbers and
0 are not defined.

3 6

700,000

0
Figure 5.7-12

To determine whether a logarithmic model is appropriate for this data,
plot points that is (ln 100, 563,662). Because
these points, shown in Figure 5.7-12, appear to be approximately linear,
a logarithmic model seems appropriate.

Using logarithmic regression, the model is:

y � �2,382,368.345 � 640,666.815 ln x

1ln 50, 130,4852 p1ln x, y2;
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Model Corresponding function

A. Linear

B. Quadratic

C. Power

D. Cubic

E. Exponential

F. Logarithmic

G. Logistic y �
a

1 � be�kx

y � a � b ln x

y � ab x

y � ax 3 � bx 2 � cx � d

y � axr

y � ax2 � bx � c

y � ax � b

Exercises 5.7

In Exercises 1–10, state which of the following models
might be appropriate for the given scatter plot of data.
More than one model may be appropriate.

4.

5.

6.

7.

8.

x

y

x

y

x

y

x

y

x

y

1.

2.

3.

x

y

x

y

x

y
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9.

10.

In Exercises 11 and 12, compute the ratios of succes-
sive entries in the table to determine whether an
exponential model is appropriate for the data.

11.

x

y

x

y 16. Based on your graphs in Exercise 15, describe the
general shape of the graph of when 
and r is as described below.
a. b. c.

In Exercises 17–20, determine whether an exponential,
power, or logarithmic model (or none or several of
these) is appropriate for the data by determining
which (if any) of the following sets of points are
approximately linear, where the given data set consists
of the points 

17.

5(ln x, y)65(ln x, ln y)65(x, ln y)6
5(x, y)6.

r 7 10 6 r 6 1r 6 0

a 7 0y � axr,

12.

19.

20.

18.

13. a. Show algebraically that in the logistic model
for the U.S. population in Example 2, the
population can never exceed 442.10 million
people.

b. Confirm your answer in part a by graphing the
logistic model in a window that includes the
next three centuries.

14. According to estimates by the U.S. Bureau of the
Census, the U.S. population was 287.7 million in
2002. Based on this information, which of the
models in Example 2 appears to be the most
accurate predictor?

15. Graph each of the following power functions in a
window with 
a. b. c. h1x2 � x2.4g1x2 � x0.75f 1x2 � x�1.5

0 � x � 20.

x 0 2 4 6 8 10

y 3 15.2 76.9 389.2 1975.5 9975.8

x 1 3 5 7 9 11

y 3 21 55 105 171 253

x 1 3 5 7 9 11

y 2 25 81 175 310 497

x 3 6 9 12 15 18

y 385 74 14 2.75 0.5 0.1

x 5 10 15 20 25 30

y 17 27 35 40 43 48

x 5 10 15 20 25 30

y 2 110 460 1200 2500 4525

Year Multiple births

1989 92,916

1990 96,893

1991 98,125

1992 99,255

1993 100,613

1994 101,658

1995 101,709

21. The table shows the number of babies born as
twins, triplets, quadruplets, etc., in recent years.



a. Sketch a scatter plot of the data, with 
corresponding to 1989.

b. Plot both of the following models on the same
screen with the scatter plot:

and

c. Use the table feature to estimate the number of
multiple births in 2000 and 2005.

d. Over the long run, which model do you think
is the better predictor?

22. The graph shows the Census Bureau’s estimates
of future U.S. population.

g1x2 �
102,519.98

1 � 0.1536e�0.4263x

f 1x2 � 93,201.973 � 4,545.977 ln x

x � 1
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*Rates are infant (under 1 year) deaths per 1000 live births.

a. Sketch a scatter plot of the data, with 
corresponding to 1900.

b. Verify that the set of points where
are the original data points, is

approximately linear.
c. Based on part b, what type of model would be

appropriate for this data? Find such a model.

24. The average number of students per computer in
the U.S. public schools (elementary through high
school) is shown in the table below.

1x, y2
1x, ln y2,

x � 0

a. How well do the projections in the graph
compare with those given by the logistic model
in Example 2?

b. Find a logistic model of the U.S. population,
using the data given in Example 2 for the years
from 1900 to 2000, with corresponding to
1900.

c. How well do the projections in the graph
compare with those given by the model in 
part b?

23. Infant mortality rates in the United States are
shown in the following table.

x � 0

275
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2000 2010 2020
Year

U.S. Population Projections: 2000–2050

2030 2040 2050
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 (i
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m

ill
io

ns
)

281.422
299.862

324.927

351.070

377.350

403.687

Infant
Year mortality rate*

1920 76.7

1930 60.4

1940 47.0

1950 29.2

1960 26.0

1970 20.0

Infant
Year mortality rate*

1980 12.6

1985 10.6

1990 9.2

1995 7.6

2000 6.9

Fall of school year Students per computer

1987 32

1988 25

1989 22

1990 20

1991 18

1992 16

1993 14

1994 10.5

1995 10

1996 7.8

1997 6.1

1998 5.7

1999 5.4



a. Sketch a scatter plot of the data, with 
corresponding to 1987.

b. Find an exponential model for the data.
c. Use the model to estimate the number of

students per computer in 2003.
d. In what year, according to this model, will each

student have his or her own computer in
school?

e. What are the limitations of this model?

25. The number of children who were home-schooled
in the United States in selected years is shown in
the table below. 

x � 1
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b. Use the model to estimate the federal debt in
2003.

27. The table gives the life expectancy of a woman
born in each given year.

a. Sketch a scatter plot of the data, with 
corresponding to 1980.

b. Find a quadratic model for the data.
c. Find a logistic model for the data.
d. What is the number of home-schooled children

predicted by each model for the year 2003?
e. What are the limitations of each model?

26. a. Find an exponential model for the federal debt,
based on the data in the following table. Let

correspond to 1960.x � 0

x � 0

[Source: National Home Education Research Institute]

[Source: National Center for Health Statistics]

Fall of Number of
school year children (in 1000s)

1985 183

1988 225

1990 301

1992 470

1993 588

1994 735

1995 800

1996 920

1997 1100

1999 1400

2000 1700

Accumulated gross federal debt

Year Amount (in billions of dollars)

1960 284.1

1965 313.8

1970 370.1

1975 533.2

1980 907.7

1985 1823.1

1990 3233.3

1995 4974.0

2000 5674.2

Life Expectancy
Year (in years)

1910 51.8

1920 54.6

1930 61.6

1940 65.2

1950 71.1

Life Expectancy
Year (in years)

1960 73.1

1970 74.7

1980 77.5

1990 78.8

2000 79.4

a. Find a logarithmic model for the data, with
corresponding to 1910.

b. Use the model to find the life expectancy of a
woman born in 1986. For comparison, the
actual expectancy is 78.3 years.

c. Assume the model remains accurate. In what
year will the life expectancy of a woman born
in that year be at least 81 years?

x � 10



28. The table gives the death rate in motor vehicle
accidents, per 100,000 population, in selected
years.
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a. Find an exponential model for the data, with
corresponding to 1970.

b. Use the model to predict the death rate in 1998
and in 2002.

c. Assuming the model remains accurate, when
will the death rate drop to 13 per 100,000?

29. Worldwide production of computers has grown
dramatically, as shown in the first two columns of
the following table.
a. Sketch a scatter plot of the data, with 

corresponding to 1985.
b. Find an exponential model for the data.
c. Use the model to complete column 3 of the

table.
d. Fill in column 4 of the table by dividing each

entry in column 2 by the preceding one.
e. What does column 4 tell you about the

appropriateness of the model?

x � 1

x � 0

Year Death Rate

1970 26.8

1980 23.4

1985 19.3

1990 18.8

1995 16.5

2000 15.6

Predicted
Worldwide number of 
shipments shipment

Year (in thousands) (in thousands) Ratio

1985 14.7

1986 15.1

1987 16.7

1988 18.1

1989 21.3

1990 23.7

1991 27

1992 32.4

1993 38.9

1994 47.9

1995 60.2

1996 70.9

1997 84.3

[Source: Dataquest]
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Important Facts 
and Formulas

• Rational Exponents:

• Laws of Exponents:

• is the inverse function of 

• is the inverse function of 

• is the inverse function of 

• Logarithm Laws: For all and any k:

• Exponential Growth Functions:

• Exponential Decay Functions:

• Logistic Function:

• Compound Interest Formula: 

• Continuous Compounding: 

• Radioactive Decay Function:

• Change of Base Formula: logb v �
ln v
ln b

f 1x2 � P10.52xh
A � Pert

A � P11 � r2t
f 1x2 �

a
1 � be�kx

 f 1x2 � Pekx 1k 6 02
 f 1x2 � Pax 10 6 a 6 12
 f 1x2 � P11 � r2x 10 6 r 6 12

 f 1x2 � Pekx 1k 7 02
 f 1x2 � Pax 1a 7 12
 f 1x2 � P11 � r2x 10 6 r 6 12

 logb 1vk 2 � k logb v ln 1vk2 � k ln v

 logb a v
wb � logb v � logb w lna v

wb � ln v � ln w

 logb 1vw2 � logb v � logb w ln 1vw2 � ln v � ln w

v, w 7 0

blogb v � v for all v 7 0  and  logb 1bu2 � u for all u

k1x2 � bx:h1x2 � logb x

eln v � v for all v 7 0  and  ln eu � u for all u

f 1x2 � ex:g1x2 � ln x

10log v � v for all v 7 0  and  log 10u � u for all u

f 1x2 � 10x:g1x2 � log x

 c�r �
1
cr 1cr2s � crs

 a c
d
br

�
cr

dr c
r

cs � cr�s

 1cd2r � cr dr crcs � cr�s

 1ct2 1k � 1c1
k 2t � c

t
k

 c
1
n � 2

n
c
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In Exercises 1–6, simplify the expression.

1. 2. 3.

4. 5. 6.

In Exercises 7 and 8, simplify and write the expression without radicals or neg-
ative exponents.

7. 8.

9. Rationalize the numerator and simplify: 

10. Rationalize the denominator: 

In Exercises 11–16, list the transformations needed to transform the graph of
into the graph of the given function.

11. 12. 13.

14. 15. 16.

In Exercises 17 and 18, find a viewing window (or windows) that shows a com-
plete graph of the function.

17. 18.

19. Compunote offers a starting salary of $60,000 with $1000 yearly raises.
Calcuplay offers a starting salary of $30,000 with a 6% raise each year.
a. Complete the following table for each company.

g1x2 �
850

1 � 5e�0.4xf 1x2 � 2x3�x�2

h1x2 � �5x�2h1x2 � 5x � 4g1x2 � 52�x

k1x2 � 5�
1
2xh1x2 � 53xg1x2 � �2 � 5x

f(x) � 5x

5
2x � 3

22x � 2h � 1 � 22x � 1
h

18u5214  2�1u�3

2u8
23 6c4 d14

23 48c�2 d2

c
3
2 A2c

1
2 � 3c�

3
2 BAu1

4 � v
1
4 B  Au1

4 � v
1
4 B13c235 12d2�214c212

14c215 12d2412c2�3
2

Aa�
2
3 b

2
5 B Aa3 b6 B 43A23 4c3 d2 B 3Ac2d B 2323 c12

Section 5.2

Review Exercises

Section 5.1

Year Compunote Year Calcuplay

1 $60,000 1 $30,000

2 $61,000 2 $31,800

3 3

4 4

5 5

b. For each company write a function that gives your salary in terms of
years employed.

c. If you plan on staying with the company for only five years, which job
should you take to earn the most money?

d. If you plan on staying with the company for 20 years, which is your
best choice?
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20. A computer software company claims that the following function models
the “learning curve” for their software.

where t is measured in months and P(t) is the average percent of the
software program’s capabilities mastered after t months.
a. Initially what percent of the program is mastered?
b. After 6 months what percent of the program is mastered?
c. Roughly, when can a person expect to “learn the most in the least

amount of time”?
d. If the company’s claim is true, how many months will it take to have

completely mastered the program?

21. Phil borrows $800 at 9% annual interest, compounded annually.
a. How much does he owe after 6 years?
b. If he pays off the loan at the end of 6 years, how much interest will he

owe?

22. If you invest $5000 for 5 years at 9% annual interest, how much more will
you make if interest is compounded continuously than if it is compounded
quarterly?

23. Mary Karen invests $2000 at 5.5% annual interest, compounded monthly.
a. How much is her investment worth in 3 years?
b. When will her investment be worth $12,000?

24. If a $2000 investment grows to $5000 in 14 years, with interest
compounded annually, what is the interest rate?

25. Company sales are increasing at 6.5% per year. If sales this year are
$56,000, write the rule of a function that gives the sales in year x (where

corresponds to the present year).

26. The population of Potterville is decreasing at an annual rate of 1.5%. If the
population is 38,500 now, what will be the population x years from now?

27. The half-life of carbon-14 is 5730 years. How much carbon-14 remains from
an original 16 grams after 12,000 years?

28. How long will it take for 4 grams of carbon-14 to decay to 1 gram?

In Exercises 29–34, translate the given exponential statement into an equiva-
lent logarithmic one.

29. 30. 31.

32. 33. 34.

In Exercises 35–38, translate the given logarithmic statement into an equivalent
exponential one.

35. 36. 37.

38.

39. Find log 1�0.012.
log 1234 � 3.0913

ln 1rs2 � tln 1ax � b2 � yln 1234 � 7.118

10c�d � t102.8785 � 756ea�b � c

er2�1 � u � ve5.8972 � 364e6.628 � 756

x � 0

P1t2 �
100

1 � 48.2e�0.52t

Section 5.3

Section 5.4
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In Exercises 40–43, describe the transformation from or 
to the given function. Give the domain and range of the given function.

40. 41.

42. 43.

44. You are conducting an experiment about memory. The people who
participate agree to take a test at the end of your course and every month
thereafter for a period of two years. The average score for the group is
given by the model where t is time in
months after the first test.
a. What is the average score on the initial exam?
b. What is the average score after three months?
c. When will the average drop below 50%?
d. Is the magnitude of the rate of memory loss greater in the first month

after the course (from to ) or after the first year (from 
to )?

e. Hypothetically, if the model could be extended past months,
would it be possible for the average score to be 0%?

In Exercises 45–48, evaluate the given expression without using a calculator.

45. 46. 47. 48.

49. Simplify: 50. Simplify: 

In Exercises 51 and 52, write the given expression as a single logarithm.

51. 52.

53. Which of the following statements is true?

a. b.

c. d.

e. None of the above is true.

54. Which of the following statements is false?
a. b.

c. d.

e. All of the above are false.

55. What is the domain of the function 

In Exercises 56 and 57, translate the given logarithmic statement into an equiv-
alent exponential one.

56. 57.

58. Write as a single logarithm.

59. 60. If what is x?log3 9x2

� 4,log20 400 � ?

log7 7x � log7 y � 1

logd 1uv2 � wlog5 1cd � k2 � u

f 1x2 � lna x
x � 1b?

log 6
log 3

� log 2log 1 � ln 1

log 100 � 3 � log 10510 1log 52 � log 50

ln 1�e2 � �1ln a1
7b � ln 7 � 0

ln a e
6b � ln e � ln 6ln 10 � 1ln 22 1ln 52

4 ln x � 2 1ln x3 � 4 ln x2ln 3x � 3 ln x � ln 3y

ln 1e4e2�1 � 4e3 ln 2x �
1
2 ln x

eln 1x�2y2eln 34ln eln e3

t � 24
t � 13

t � 12t � 1t � 0

0 � t � 24,M1t2 � 91 � 14 ln 1t � 12,

k1x2 � 3 ln x � 5h1x2 � ln13x2
k1x2 � log14 � x2h1x2 � �

1
2 log1x � 32

g(x) � ln xf (x) � log x

Section 5.5

Section 5.5.A
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Use the following six graphs for Exercises 61 and 62.

Section 5.6

1

−1
−1−2

2

3

1 2 −2 2 −2 2

x

y

1

−1
−1

2

3

1

x

y

1

−1
−1

2

3

1

x

y

−2 2 −2 2

−2 2
1

−1
−1

2

3

1

x

y

1

−1
−1

2

3

1

x

y

1

−1

−2

−3

−1 1

x

y

Figure I Figure II Figure III

61. If then the graph of could possibly be
a. I c. V e. none of these
b. IV d. VI

62. If then the graph of could possibly be
a. II c. IV e. none of these
b. III d. VI

In Exercises 63–71, solve the equation for x.

63. 64. 65.

66. 67. 68.

69. 70.

71.

72. At a small community college the spread of a rumor through the
population of 500 faculty and students can be modeled by

where n is the number of people who have heard the rumor after t days.
a. How many people know the rumor initially (at )?
b. How many people have heard the rumor after four days?
c. Roughly, in how many weeks will the entire population have heard the

rumor?
d. Use the properties of logarithms to write n as a function of t; in other

words solve the model above for n in terms of t.

t � 0

ln n � ln11000 � 2n2 � 0.65t � ln 998,

log 1x2 � 12 � 2 � log 1x � 12
ln 1x � 82 � ln x � 1ln x � ln 13x � 52 � ln 2

2x � 3x�3u � c � d ln x725e�4x � 1500

2 � 4x � 5 � �4e3x � 48x � 4x2�3

g1x2 � b x � 10 6 b 6 1

f 1x2 � �logb xb 7 1,

Figure IV Figure V Figure VI

Section 5.6
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a. What does a 20-mph wind make feel like?
b. Sketch a scatter plot of the data, with corresponding to 0 mph.
c. Explain why an exponential model would be appropriate.
d. Find an exponential model for the data.
e. According to the model, what is the wind-chill factor for a 

23-mph wind?

x � 0
25°F

e. Enter the function you found in part d into your calculator and use the
table feature to check your answers to parts a, b, and c. Do they agree?

f. Graph the function. Over what time interval does the rumor seem to
“spread” the fastest?

73. The half-life of polonium is 140 days. If you start with 10
milligrams, how much will be left at the end of a year?

74. An insect colony grows exponentially from 200 to 2000 in 3 months. How
long will it take for the insect population to reach 50,000?

75. Hydrogen-3 decays at a rate of 5.59% per year. Find its half-life.

76. The half-life of radium-88 is 1590 years. How long will it take for 10 grams
to decay to 1 gram?

77. How much money should be invested at 8% per year, compounded
quarterly, in order to have $1000 in 10 years?

78. At what annual interest rate should you invest your money if you want to
double it in 6 years?

79. One earthquake measures 4.6 on the Richter scale. A second earthquake is
1000 times more intense than the first. What does it measure on the Richter
scale?

80. The table below gives the population of Austin, Texas.

1210Po2

Year 1950 1970 1980 1990 2000

Population 132,459 253,539 345,890 465,622 656,562

Wind speed (mph) 0 5 10 15 20 25 30 35 40 45

Wind chill temperature 25 19 15 13 11 9 8 7 6 5(°F)

a. Sketch a scatter plot of the data, with corresponding to 1950.
b. Find an exponential model for the data.
c. Use the model to estimate the population of Austin in 1960 and 2005.

81. The wind-chill factor is the temperature that would produce the same
cooling effect on a person’s skin if there were no wind. The table shows the
wind-chill factors for various wind speeds when the temperature is 25°F.

x � 0

[Source: National Weather Service]

Section 5.7
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Tangents to Exponential Functions

Tangent lines to a curve are important in calculus—where they are used
to approximate function values close to a specific point and used for find-
ing the zeros of general functions. The procedure developed in the Can
Do Calculus for Chapter 3 will be used here to develop the equations of
the tangent lines to exponential functions.

Slopes of Secant Lines and Tangent Lines

Recall that the difference quotient of f at the specific value is given by

where h is the amount of change in the x values from one point to another.
The difference quotient can be interpreted as the slope of the secant line
that passes through the points and As h gets very 

small, the value of approaches the value of the slope of 

the tangent line at 

Also, if f is any function, then the slope of the secant line through 
and any other point on the graph of f is given by

.

As the point approaches the point the value of 

approaches the value of the slope of the tangent line to the curve at 
Figure 5.C-1 shows four secant lines that pass through the point 
The tangent line to f at is shown in red.

Tangent Lines to the Exponential Function

Consider the function and the values of the slopes of secant lines
that pass through that is, Find the values of

when x is near 0.

f 1x2 � f 102
x � 0 �

e 

x � e 

0

x �
e 

x � 1
x

10, 12.10, e 

02,f 1x2 � e 

x

1b, f 1b2 2 1b, f 1b2 2.1b, f 1b2 2.
f 1x2 � f 1b2

x � b
1b, f 1b2 2,1x, f 1x2 2

f 1x2 � f 1b2
x � b

1x, f 1x2 2 1b, f 1b2 2
1b, f 1b2 2.
f 1b � h2 � f 1b2

h

1b � h, f 1b � h2 2.1b, f 1b2 2

f 1b � h2 � f 1b2
h

,

x � b
y

b

(x, f(x))

f

(b, f(b))
x

Figure 5.C-1

x 0.001 0.01

0.99502 0.9995 1.0005 1.005e 

x � 1
x

�0.001�0.01
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The table suggests that the slope of the tangent line to at 
is 1. The tangent line to the curve at contains the point (0, 1) and
has slope Therefore, the equation of the tangent line to 
at can be found by using the point-slope form of a line.

Point-slope form of a line

Equation of tangent line

The graph of and the tangent line to the curve at is shown
in Figure 5.C-2.

Example 1 Tangent Line to the Exponential Function

Find the tangent line to when Graph f and the tangent
line.

Solution

When so the point is the point where the tan-
gent line will touch the graph. To find the slope of the tangent line, look
at values of the difference quotient near .

Alternately, you may use the numerical derivative feature of your calcu-
lator to find an approximate value of the slope of the tangent line for

at You should find that the value of the slope of the tan-
gent line is approximately 2.718282282.

Recall that It appears that the slope of the tangent line to
at is e, which can be proved using calculus. Therefore, the

tangent line’s equation is

or equivalently

and the graphs of f and the tangent line are in Figure 5.C-3b.
■

y � exy � e � e 1x � 12
11, e2f 1x2 � e 

x
e � 2.71828.

x � 1.f 1x2 � e 

x

f 1x2 � f 112
x � 1 �

e 

x � e 

1

x � 1 �
e 

x � e
x � 1

x � 1

11, e2x � 1, f 112 � e 

1 � e,

x � 1.f 1x2 � e 

x

10, 12f 1x2 � e 

x

 y � x � 1
 y � 1 � x
 y � 1 � 1 1x � 02

 y � y0 � m1x � x02
x � 0

f 1x2 � e 

xm � 1.
x � 0

x � 0f 1x2 � e 

xy

x

2 4
0

4

2

−2

−4

−2−4

Figure 5.C-2

Figure 5.C-3a

–10

10

–5 5

Figure 5.C-3b

Calculator Exploration

Find the slope of the tangent lines to when 
2, 3, 4. Plot the points where y is the slope of the tangent

line, along with the corresponding points for What func-
tion would represent the graph of these points?

x � 0, 1.
1x, y2,�1,

�2,x � �3,f 1x2 � e 

x
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In the Calculator Exploration, you should
have found the values and plotted the
points shown in Figure 5.C-4. Also shown
in Figure 5.C-4 are all the points on the
graph of f 1x2 � e 

x.

Figure 5.C-4

–5

50

–5 5

Figure 5.C-5

The exponential function is the only function with this characteristic.

Example 2 Slope of 

a. Find the x-value where the slope of is 
b. Write the equation of the tangent line at 
c. Graph and the tangent line at on the same screen.

Solution

a. The slope of is when 
b. Using the point-slope form of a line with and the equa-

tion of the tangent line to at is

c. The graphs of and are shown in Figure 5.C-5.
■

Exponential Functions with Bases Other Than e

The procedure for finding the equation of the tangent line at a specific
value of x for exponential functions with bases other than e is the same
as that for finding the equation of the tangent line at a specific value of
x for any function.

1. Find the values of slopes of secant lines by using the difference quo-
tient and several values of x near the point in question.

2. Find the slope of the tangent line by determining the value of the slope
suggested by the values found in Step 1.

3. Write the equation of the tangent line using the point-slope form of a
linear equation.

4. Confirm your finding by graphing the function and the tangent line.

y � e 

31x � 22y � e 

x

 y � e 

3x � 2e 

3 � e 

31x � 22
 y � e 

3 � e 

31x � 32
x � 3y � e 

x
13, e 

32,m � e 

3

x � 3.e 

3y � e 

x

x � 3y � e 

x

x � 3.
e 

3.y � ex

y � e  

x

The slope of the tangent line at any point on has the
same value as the y coordinate, at that point.e 

x,
y � e 

x
Slope of the

Tangent line to
y � e  

x
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Exercises

5. 6.

7. 8.

In Exercises 9–12, write the equation of the tangent
line at the following values of x for the function

Graph the function along with the tangent
at each point.

9. 10.

11. 12. x � �2x � 2

x � 1x � 0

f (x) � 3 

x.

x � �2x � 2

x � 1x � 0In Exercises 1–4, write the equation of the tangent line
at the following values of x for the function 
Graph the function along with the tangent at each
point.

1. 2.

3. 4.

In Exercises 5–8, write the equation of the tangent line
at the following values of x for the function

Graph the function along with the tan-
gent at each point.
f (x) � e 

x � 2.

x � �2x � 2

x � 1x � 0

f (x) � e�x.

The points to be graphed in the Calculator Exploration are

and the regression equation is

Notice that In fact, the slope of the tangent line at
any point on the graph of is given by or

Example 3 Tangent Line of 

Find the equation of the tangent line to the curve at and
confirm your result by graphing.

Solution

The point on the curve at is or (4, 16). The slope of the tan-
gent line at that point is so the equation of the tangent
line of at (4, 16) is

The graph of and are shown in Fig-
ure 5.C-6.

■

y � 11.091x � 42 � 16f 1x2 � 2 

x

 y � 11.091x � 42 � 16
 y � 16 � 11.091x � 42

f 1x2 � 2 

x
1ln 22 1162 � 11.09,

14, 2 

42,x � 4

x � 4,y � 2 

x

y � 2  

x

ln 2 12 

c2. ln 2 � f 1c2,f 1x2 � 2 

x1c, f 1c2 2ln 2 � 0.6931471806.

y � 0.693147180612 

x2.

1�2, 0.173292 1�1, 0.346572 10, 0.693152 11, 1.38632 12, 2.77262 13, 5.54522

Calculator Exploration

Find the values of the slope of the tangent line for at 
0, 1, 2, 3. Graph the ordered pairs (x, slope of tangent) and find an
equation to represent the graph by using exponential regression.

x � �2, �1,y � 2 

x

–5

30

–1 6

Figure 5.C-6
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Where are we?

Navigators at sea must determine their location. Surveyors need to determine the height
of a mountain or the width of a canyon when direct measurement is not feasible. A
fighter plane’s computer must set the course of a missile so that it will hit a moving
target. Many phenomena such as the tides, seasonal change, and radio waves, have
cycles that repeat. All of the situations can be described mathematically using
trigonometry.

Trigonometry

C H A P T E R

6
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6.1 Right-Triangle Trigonometry

6.2 Trigonometric Applications

6.3 Angles and Radian Measure

6.4 Trigonometric Functions

6.5 Basic Trigonometric Identities

Chapter Review

can do calculus Optimization with Trigonometry

Chapter Outline
Interdependence of Sections

6.2

6.1 6.4 6.5

6.3

T rigonometry, which means “triangle measurement,” was developed

in ancient times for determining the angles and sides of triangles in

order to solve problems in astronomy, navigation, and surveying. With

the development of calculus and physics in the 17th century, a different

viewpoint toward trigonometry arose, and trigonometry was used to

model all kinds of periodic behavior, such as sound waves, vibrations,

and planetary orbits. In this chapter, you will be introduced to both types

of trigonometry, beginning with right-triangle trigonometry.

6.1 Right-Triangle Trigonometry

Angles and Degree Measure

Recall from geometry that an angle is a figure formed by two rays with
a common endpoint, called the vertex. The rays are called the sides of the
angle. An angle may be labeled by the angle symbol and the vertex.
The angle in Figure 6.1-1 may be labeled �A.

1�2

Objectives

• Define the six trigonometric
ratios of an acute angle in
terms of a right triangle

• Evaluate trigonometric
ratios, using triangles and
on a calculator

side

vertex
side

angle

A

Figure 6.1-1

>
>

>

>
>



Angles may be measured in degrees, where 1 degree is of a circle. 

(See Figure 6.1-2.) Thus, a angle is an entire circle, a angle is half
of a circle, and a angle is a quarter of a circle. A angle is also called
a right angle. A right angle is indicated on a diagram by a small square,
as shown in Figure 6.1-3. An angle of less than is called an acute angle.
The measure of an angle is indicated by the letter m in front of the angle
symbol, such as m�A � 36°.

90°

90°90°
180°360°

1
3601�2
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1°

right-angle
symbol

Figure 6.1-2 Figure 6.1-3

Minutes and Seconds
Fractional parts of a degree are usually expressed in decimal form or in 

minutes and seconds. A minute is of a degree, and a second is 

of a minute, or of a degree. This form is often called DMS form, for 

degrees, minutes, seconds.

Example 1 Converting Between Decimal Form and DMS Form

a. Write in decimal form.
b. Write in DMS form.

Solution

a.

b. First, convert the entire decimal part to minutes by writing it in terms 

of of a degree.

Second, convert the decimal part of the minutes to seconds by 

writing it in terms of of a minute.1
60

 � 48° � a21.75
60 b

°
� 48° � 21.75¿

 48.3625° � 48° � 0.3625° � 48° � a60
60b0.3625°

1
60

 � 35.2575°
 � 35° � 0.25° � 0.0075°

 35° 15¿ 27– � 35° � a15
60b

°
� a 27

3600b
°

48.3625°
35° 15¿ 27–

1
3600

1
601�21

601�2



Figure 6.1-5

■

Similar Triangles and Trigonometric Ratios

Examine the following right triangles.

 � 48° 21¿ 45–

 � 48° � 21¿ � a45
60b

¿

 48° � 21.75¿ � 48° � 21¿ � a60
60b0.75¿
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Since all right triangles that contain a angle are similar, the corre-
sponding ratios would be the same. Thus, the ratio is dependent only on
the measure of the angle. These ratios, which can be determined for any
angle between and are the basis of trigonometry.

The hypotenuse (hyp) of a right triangle is the side across from the right
angle. The hypotenuse is always the longest side of the triangle. The
remaining sides are labeled by their relationship to the given angle, as
shown in Figure 6.1-5. The adjacent (adj) side is the side of the given angle
that is not the hypotenuse, and the opposite (opp) side is the side of the
triangle that is across from the given angle.

90°,0°

34°

a
b

�
d
e

b
c

�
e
f

a
c

�
d
f

a

b

c

34° 34°

f
d

e
A

B

C D

E

F

Figure 6.1-4

ab

c
hypotenuse

opp ∠A
adj ∠B

opp ∠B
adj ∠A

A B

C

In the figure, if is the given angle, the adjacent side is b and the oppo-
site side is a. If is the given angle, the adjacent side is a and the opposite
side is b.

There are six possible ratios for the three sides of a triangle. These ratios
are called trigonometric ratios.

�B
�A
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Example 2 Evaluating Trigonometric Ratios

Evaluate the six trigonometric ratios of the angle shown in Figure 6.1-7.

Solution

The opposite side has length 5, the adjacent side has length 12, and the
hypotenuse has length 13.

■

Example 3 Evaluating Trigonometric Ratios

Evaluate the six trigonometric ratios of by using the triangle in Fig-
ure 6.1-8. (Side lengths given are approximate.)

62°

cot u �
adjacent
opposite �

12
5 � 2.4tan u �

opposite
adjacent

�
5
12 � 0.4167

sec u �
hypotenuse

adjacent
�

13
12 � 1.0833cos u �

adjacent
hypotenuse

�
12
13 � 0.9231

csc u �
hypotenuse

opposite �
13
5 � 2.6sin u �

opposite
hypotenuse

�
5
13 � 0.3846

u

For a given acute angle in a right triangle:

The sine of written as sin is the ratio

The cosine of written as cos is the ratio

The tangent of written as tan is the ratio

In addition, the reciprocal of each ratio above is also a
trigonometric ratio.

�
1

tan U�
1

cos U
�

1
sin U

cot U �
adjacent
oppositesec U �

hypotenuse
adjacent

csc U �
hypotenuse

opposite

cotangent of Usecant of Ucosecant of U

tan U �
opposite
adjacent

U,U,

cos U �
adjacent

hypotenuse

U,U,

sin U �
opposite

hypotenuse

U,U,

U
Trigonometric

Ratios

13

12

5

�

Figure 6.1-7

hypotenuse

adjacent

opposite

�

Figure 6.1-6

3

3.4

62°

1.6

�

Figure 6.1-8

The Greek letter
(theta) is commonly used

to label the measure of an
angle in trigonometry.

u

NOTE
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Solution

■

cot 62° �
adjacent
opposite � 1.6

3 � 0.5333tan 62° �
opposite
adjacent

� 3
1.6 � 1.8750

sec 62° �
hypotenuse

adjacent
� 3.4

1.6 � 2.1250cos 62° �
adjacent

hypotenuse
� 1.6

3.4 � 0.4706

csc 62° �
hypotenuse

opposite � 3.4
3 � 1.1333sin 62° �

opposite
hypotenuse

� 3
3.4 � 0.8824

Evaluating Trigonometric Ratios Using a Calculator

If the measure of an angle is given without a corresponding triangle, it
may be difficult to accurately evaluate the trigonometric ratios of that
angle. For example, to find sin it would be possible to draw a right
triangle with an angle of and measure its sides. However, there may
be inaccuracies in drawing and measuring the triangle. Tables of trigono-
metric ratios are available, but it is usually most convenient to use a
calculator.

20°
20°,

In trigonometry, many of the values used are approximate, and answers
are usually rounded to 4 decimal places. However, in calculations involv-
ing trigonometric ratios, the values should not be rounded until the end
of the problem.

Example 4 Evaluating Trigonometric Ratios on a Calculator

Evaluate the six trigonometric ratios of 

Solution

Your calculator should have buttons for sine, cosine, and tangent. To find
the cosecant, secant, and cotangent, take the reciprocal of each answer.

20°.

Technology 
Tip

The following facts will be helpful in evaluating trigonometric ratios on
a calculator.

• Scientific and graphing calculators have modes for different units of
angle measurements. When using degrees, make sure that your
calculator is set in degree mode.

• The functions and on a calculator do not indicate the
reciprocal functions. These functions will be discussed in Section 8.2.

• Some calculators automatically insert an opening parenthesis “(” after
sin, cos, or tan. Be sure to place the closing parenthesis “)” in the
appropriate place.

tan�1sin�1, cos�1,
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■

Special Angles

Properties of 30-60-90 and 45-45-90 triangles can be used to find exact val-
ues of the trigonometric ratios for and These angles are called
special angles.

45°.30°, 60°,

cot 20° �
1

tan 20° � 1
0.3640 � 2.7475tan 20° � 0.3640

sec 20° �
1

cos 20° � 1
0.9397 � 1.0642cos 20° � 0.9397

csc 20° �
1

sin 20° � 1
0.3420 � 2.9238sin 20° � 0.3420

Figure 6.1-9

2

3

11

1

60°

30°

45°

45°

2

Figure 6.1-10

For a review of the properties of 30-60-90 and 45-45-90
triangles, see the Geometry Review in the Appendix.

NOTE

In the 30-60-90 triangle: In the 45-45-90 triangle:

• the hypotenuse is 2 • the hypotenuse is 
• for the angle, • for either angle,

1 is opposite and is adjacent 1 is both opposite and adjacent
• for the angle, is 

opposite and 1 is adjacent

The following table summarizes the values of the trigonometric ratios for
the special angles.

2360°
23

45°30°
22

Example 5 Evaluating Trigonometric Ratios of Special Angles

Evaluate the six trigonometric ratios of and 

Solution

A 30-60-90 and a 45-45-90 triangle are shown below.

45°.30°, 60°,
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The exact values
of the trigonometric ratios
of the special angles will be
needed regularly. You
should memorize the sine
and cosine values for all
three angles. The other
ratios are easily derived
from the sine and cosine.

NOTE

Exercises 6.1

In Exercises 1–4, write the DMS degree measurement
in decimal form.

1. 2.

3. 4.

In Exercises 5–8, write the decimal degree measure-
ment in DMS form.

5. 6.

7. 8.

In Exercises 9–14, find the six trigonometric ratios for 

9.

3

2
11

θ

U.

85.655°4.2075°

50.3625°23.16°

20° 51¿ 54–15° 24¿ 45–

38° 33¿ 9–47° 15¿ 36–

10.

11.

12.

17
8

15

θ

7

3

2

θ

5
5

2

5
θ

■

1
23

�
23
3

1
1 � 1

23
1 � 23cot u �

adjacent
opposite

2
1 � 2

22
1 � 222

23
�

223
3sec u �

hypotenuse
adjacent

2
23

�
223

3
22
1 � 222

1 � 2csc u �
hypotenuse

opposite

23
1 � 231

1 � 11
23

�
23
3tan u �

opposite
adjacent

1
2

1
22

�
22
2

23
2cos u �

adjacent
hypotenuse

23
2

1
22

�
22
2

1
2sin u �

opposite
hypotenuse

60�45�30°U
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13.

14.

In Exercises 15–20, use a calculator in degree mode to
find the following. Round your answers to four deci-
mal places.

15. 16. 17.

18. 19. 20.

In Exercises 21–26, use the exact values of the trigono-
metric ratios for the special angles to find a value of 
that is a solution of the given equation. (See Example 5.)

21. 22. 23.

24. 25. 26.

In Exercises 27–32, refer to the figure below. Find the
exact value of the trigonometric ratio for the given val-
ues of a, b, and c.

27.

28.

29.

30.

31.

32. b � 2, c � 3, csc B �   ?  

a � 7, c � 16, sec B �   ?  

a � 12, b � 15, cot A �   ?  

b � 3, c � 8, cos A �   ?  

a � 5, c � 7, sin A �   ?  

a � 4, b � 2, tan B �   ?  

A C

B

a
c

b

sec u � 2cos u �
1
2cot u � 23

csc u � 22tan u � 1sin u �
1
2

U

cot 39°sec 47°csc 25°

tan 6°cos 68°sin 32°

t

1
θ

1 + t2

m
h

d
θ

In Exercises 33–38, use a calculator in degree mode to
determine whether the equation is true or false, and
explain your answer.

33.

34.

35.

36.

37.

38.

39. Critical Thinking Complete the table below.

? ?

? ?

? ?

? ?

Based on the values in the table, what do you
think would be a reasonable value for sin and
cos Verify your answers with a calculator.
Why can’t these values be found by using the
definition on page 416?

40. Critical Thinking Complete the table below.

? ?

? ?

? ?

? ?

Based on the values in the table, what do you
think would be a reasonable value for sin and
cos Verify your answers with a calculator.
Why can’t these values be found by using the
definition on page 416?

90°?
90°

89.999°

89.99°

89.9°

89°

cos Usin UU

0°?
0°

0.001°

0.01°

0.1°

1°

cos Usin UU

tan 75° �
tan 30° � tan 45°

1 � tan 30° tan 45°

tan 75° � tan 30° � tan 45°

1cos 28°22 � 11 � sin 28°22
1cos 28°22 � 1 � 1sin 28°22
sin 50° � 2 sin 25° cos 25°

sin 50° � 2 sin 25°



43.

44.

45.

38°

12

9

30°

44

20

59°

72
140

41. Critical Thinking Use the diagram below to show
that the area of a triangle with acute angle that
has sides a and b is

In Exercises 42–45, use the result of Exercise 41 to find
the area of the given triangle.

42.

25°

14

10

a

h
b

θ

A �
1
2 ab sin u.

u
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6.2 Trigonometric Applications

Solving Right Triangles

Many applications in trigonometry involve solving a triangle. This means
finding the lengths of all three sides and the measures of all three angles
when only some of these quantities are known. Solving right triangles by
using trigonometric ratios involves two theorems from geometry:

Triangle Sum Theorem: The sum of the measures of the
angles in a triangle is 
Pythagorean Theorem: In a right triangle with legs a and b
and hypotenuse c,

If the measures of two angles are known, the Triangle Sum Theorem can
be used to find the measure of the third. If the lengths of two sides of a
right triangle are known, the Pythagorean Theorem can be used to find
the length of the third.

Trigonometric ratios are used to solve right triangles when the measure
of an angle and the length of a side or when the lengths of two sides are
given. The underlying idea is that the definition of each trigonometric
ratio involves three quantities:
• the measure of an angle • the lengths of two sides of the triangle

a2 � b2 � c 2.

180�.

Objectives

• Solve triangles using
trigonometric ratios

• Solve applications using
triangles
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65°

8

x

Figure 6.2-1

When two of the three quantities are known, the third can always be
found, as illustrated in the next two examples.

Example 1 Finding a Side of a Triangle

Find side x of the right triangle in Figure 6.2-1.

3 4

5
θ

Figure 6.2-2

Solution

The angle and the hypotenuse are known. The adjacent side x must
be found, so use the cosine ratio.

Solve this equation for x and then use a calculator to evaluate cos 

Multiply both sides by 8

Use a calculator
■

Example 2 Finding an Angle of a Triangle

Find the measure of angle in Figure 6.2-2.u

 � 3.3809
 x � 8 cos 65°

 cos 65° �
x
8

65°.

cos 65° �
adjacent

hypotenuse
�

x
8

65°

Solution

Note that

sin u �
opposite

hypotenuse
�

3
5 � 0.6.
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Figure 6.2-3a Figure 6.2-3b Figure 6.2-3c

A faster and more accurate method of finding is to use the key
on your calculator. is labeled ASIN on some models.) When you
key in (0.6), as in Figure 6.2-3d, the calculator produces an acute
angle whose sine is 0.6, namely, 

Figure 6.2-3d

Thus, the key provides the electronic equivalent of searching the
sine table, without actually having to construct the table.

■

In this chapter, the key and the analogous and
keys will be used as they were in Example 2 to find an angle 

The other uses of these keys are discussed in Section 8.2, which deals
with inverse trigonometric functions.

Here is a summary of how these techniques can be used to solve any right
triangle.

u.TAN�1
COS�1SIN�1NOTE

SIN�1

u � 36.8699°.
SIN�1

1SIN�1
SIN�1u

Make sure your
calculator is in degree
mode.

NOTE

Before calculators were available, was found by using a table of sine
values. You can do the same thing by having your calculator generate a
table for by using the settings shown in Figure 6.2-3a and
Figure 6.2-3b.

View the table, shown in Figure 6.2-3c, and look through the column of
sine values for the closest one to 0.6. Then look in the first column for the
corresponding value of The closest entry to 0.6 in the sine column is
0.60042, which corresponds to an angle of Hence, u � 36.9°.36.9°.

u.

Y1 � sin 1X2
u
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17

a

b

75°

θ

Figure 6.2-4

Example 3 Solving a Right Triangle

Solve the right triangle in Figure 6.2-4.

Solution

One side and one angle are given, so use the first case above. To solve the
triangle, it is necessary to find a, and b.

To find subtract the measures of the given angles from 

Write a trigonometric equation that has a as the variable. Since a is oppo-
site the given angle and the hypotenuse is given, the sine is used.

Next, write a trigonometric equation that has b as the variable. Since b is
adjacent to the given angle, cosine is used. Evaluate cos by using a
calculator, and solve.

75°

 a � 17 10.96592 � 16.42
 a � 17 sin 75°

opposite
hypotenuse

 sin 75° �
a

17

u � 180° � 75° � 90° � 15°

180°.u,

u,

A right triangle can be solved if the following information is
given.

Case 1: Case 2:
an acute angle and a side two sides

Solving Right
Triangles

Sketch the triangle and label 
the acute angle, the right 
angle, and the given side.

Find the remaining acute
angle by subtracting the
known angles from 

Write a trigonometric
equation that has an
unknown side as the
variable, and solve it with 
a calculator to evaluate the
trigonometric ratio of the
angle.

Repeat the previous step or
use the Pythagorean Theorem
to find the third side.

Sketch the triangle and label
the right angle and the two
given sides.

Find the third side by using
the Pythagorean Theorem.

Write a trigonometric
equation that has an
unknown angle as the
variable. If the angle is a
special angle, you can solve
it by recognizing the value of
the trigonometric ratio.

If the angle is not one of the
special angles, use the
technique explained in
Example 2.

180°.
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■

Example 4 Solving a Right Triangle

Solve the right triangle in Figure 6.2-5.

Solution

Two sides are given, so use the second case above. To solve the triangle,
it is necessary to find a, and 

To find a, use the Pythagorean Theorem.

To find use trigonometric ratios. The adjacent side and the hypotenuse
are given, so cosine is used.

From the table of trigonometric ratios of special angles on page 419, 

Since is the only acute angle with a cosine of 

and
■

Applications

The following examples illustrate a variety of applications of the trigono-
metric ratios.

Example 5 Height Above Sea Level

A straight road leads from an ocean beach at a constant upward angle of
How high above sea level is the road at a point 1 mile from the beach?

Figure 6.2-6

5280 ft

ocean h = height above sea level
sea level

road3°

3°.

u � 180° � 60° � 90° � 30°b � 60°

1
2

,60°cos 60° �
1
2.

adjacent
hypotenuse

cos b �
6
12 �

1
2

b,

 a � 2108 � 623
 a2 � 108

 a2 � 62 � 122

b.u,

 b � 4.40
 b � 17 cos 75°

adjacent
hypotenuse

 cos 75° �
b

17

12

6

a

β

θ

Figure 6.2-5
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Solution

Figure 6.2-6 shows a right triangle with the road as the hypotenuse
and the opposite side h as the height above sea level.

Write a trigonometric equation that uses sine.

At one mile, the road is about 276 feet above sea level.
■

Example 6 Ladder Safety

According to the safety sticker on a 20-foot ladder, the distance from the
bottom of the ladder to the base of the wall on which it leans should be
one-fourth of the length of the ladder: 5 feet.

a. How high up the wall will the ladder reach?
b. If the ladder is in this position, what angle does it make with the

ground?

Solution

Draw the right triangle formed by the ladder, the wall, and the ground.
Label the sides and angles as shown in Figure 6.2-7.
a. Since the length of the ladder and the distance from the wall are

known, find the third side by using the Pythagorean Theorem.

The ladder will safely reach a height of a little more than 19 feet up
the wall.

b. The hypotenuse and the side adjacent to angle are known, so use
the cosine ratio.

Use the key to find that as shown in Figure 6.2-8.
■

Angles of Elevation and Depression

In many applications the angle between a horizontal line and another line
is used, such as the line of sight from an observer to a distant object. If
the line is above the horizontal, the angle is called the angle of elevation.

u � 75.5°,COS�1

cos u �
adjacent

hypotenuse
�

5
20 �

1
4

u

 h � 19.36
 h2 � 375

 h2 � 52 � 202

Simplify h � 276.33 ft
Use a calculator to evaluate sin 3° h � 5280 10.05232
Solve for h h � 5280 sin 3°

opposite
hypotenuse

sin 3° �
h

5280

11 mi � 5280 ft2

ladder
20 ft

wall
h

ground
5 ft

θ

Figure 6.2-7

Figure 6.2-8

Technology 
Tip

When using a calcula-
tor to evaluate 

trigonometric ratios, do
not round your answer
until the end of the prob-
lem. The rounding error
can be increased signifi-
cantly as other operations
are performed. It may help
to store the value in the
calculator’s memory, or to
use the entire trigonomet-
ric expression in each
calculation.
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If the line is below the horizontal, the angle is called the angle of depres-
sion.

Figure 6.2-9

Example 7 Indirect Measurement

A flagpole casts a 60-foot shadow when the angle of elevation of the sun
is as shown in Figure 6.2-10. Find the height of the flagpole.

Figure 6.2-10

Solution

A right triangle is formed by the flagpole and its shadow. The opposite
side is unknown and the adjacent side is given, so the tangent is used.

Solve for h

Use a calculator

Thus, the flagpole is about 42 feet high.
■

Example 8 Indirect Measurement

A wire needs to reach from the top of a building to a point on the ground.
The building is 10 m tall, and the angle of depression from the top of the
building to the point on the ground is How long should the wire be?22°.

h � 42.012
h � 60 tan 35°

opposite
adjacent

tan 35° �
h
60

h

60 ft

35°

35°,

Horizontal
Angle of elevation

Angle of depression



Figure 6.2-11

Solution

Figure 6.2-11 shows that the sum of the angle of depression and the angle
formed by the wall of the building and the wire is 

The wall, wire, and ground form a right triangle where the wall is the
side adjacent to and the wire is the hypotenuse. Thus,

Thus, the wire should be about 27 m long.
■

Example 9 Indirect Measurement

A person on the edge of a canal observes a lamp post on the other side
with an angle of elevation of to the top of the lamp post and an angle
of depression of to the bottom of the lamp post from eye level. The
person’s eye level is 152 cm (about 5 ft).

a. Find the width of the canal.
b. Find the height of the lamp post.

Figure 6.2-12

12°

7°152

7°
12°

 w � 26.7 m

 w �
10

cos 68°

adjacent
hypotenuse

 cos 68° �
10
w

a

a � 90° � 22° � 68°

90°.a

Wire

α Angle of depression
22°

10

428 Chapter 6 Trigonometry
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Solution

The essential information is shown in Figure 6.2-13 below. Note that 
is parallel to so CD is also 152 cm.

Figure 6.2-13

a. The width of the canal AC is adjacent to the angle, and 152 is
opposite the angle.

or about 12.38 m wide

b. The height BC can be represented in terms of the width of the canal
found in part a.

The height of the lamp post is 

■
BC � CD � 263.13 � 152 � 415.13 cm

BC � CD.

BC � AC tan 12° � 11237.942 1tan 12°2 � 263.13 cm

opposite
adjacent

tan 12° �
BC
AC

 AC �
152

tan 7° � 1237.94 cm,

opposite
adjacent

tan 7° �
152
AC

7°
7°

12°
A

E D

C

B

7°
152 152

DE,
AC

Exercises 6.2

In Exercises 1–6, find side c in the figure below by
using the given conditions.

1. b � 39cos A �
12
13

a
b

c

C

BA

2.

3.

4.

5.

6.

In Exercises 7–12, find the exact value of h without
using a calculator.

b � 4.5csc C � 1.5

a � 1.4cot A � 6

b � 8sec A � 2

a � 15tan A �
5

12

b � 12sin C �
3
4
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7.

8.

9.

10.

11.

12.

Use the figure below for Exercises 13–24.

c b

a C

A

B

20
h

60°

30°
100

h

12
45°

h

h
150

30°

h
72

60°

25

45°

h

In Exercises 13–16, find the indicated value without
using a calculator.

13.

14.

15.

16.

In Exercises 17–24, solve the triangle with the given
conditions.

17.

18.

19.

20.

21.

22.

23.

24.

In Exercises 25–28, find angle 

25.

26.

27.

3

2

θ

10

12

θ

4
3

θ

U.

m�C � 33°a � 4.2

m�A � 72°b � 3.5

m�C � 28°c � 4

m�A � 65°c � 5

m�A � 40°a � 8

m�A � 14°a � 6

m�C � 37°c � 12

m�C � 50°b � 10

Find c.m�A � 30°a � 12

Find a.m�A � 30°c � 10

Find a.m�A � 60°c � 5

Find c.m�A � 60°a � 4
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5°

28.

In Exercises 29–36, use the figure for Exercises 13–24
to find angles A and C under the given conditions.

29. 30.

31. 32.

33. 34.

35.

36.

37. A 24-ft ladder positioned against a wall forms an
angle of with the ground.
a. How high up the wall does the ladder reach?
b. How far is the base of the ladder from the

wall?

38. A guy wire stretches from the top of an antenna
tower to a point on level ground 18 feet from the
base of the tower. The angle between the wire and
the ground is How high is the tower?

39. A plane takes off at an angle of After traveling
1 mile along this flight path, how high (in feet) is
the plane above the ground? 11 mi � 5280 ft2

5°.

63°.

75°

b � 3.7 and c � 2.2

a � 2.5 and c � 1.4

a � 4 and b � 9b � 18 and c � 12

a � 5 and c � 3a � 7 and b � 10

b � 14 and c � 5a � 4 and c � 6

200

144

θ
kite string, which makes an angle of with the
horizontal. How high is the kite above the
ground?

43. Suppose that a person with a reach of 27 inches
and a shoulder height of 5 feet is standing upright
on a mountainside that makes a angle with
the horizontal, as shown in the figure below. Can
the person touch the mountain?

44. A swimming pool is 3 feet deep in the shallow
end. The bottom of the pool has a steady
downward drop of toward the deep end. If
the pool is 50 feet long, how deep is the deep
end?

45. A wire from the top of a TV tower makes an angle
of with the ground and touches the ground
225 feet from the base of the tower. How high is
the tower?

46. A plane flies a straight course. On the ground
directly below the flight path, observers 2 miles
apart spot the plane at the same time. The plane’s
angle of elevation is from one observation
point and from the other. How high is the
plane?

46°71°

2 miles2 miles

71°
46°

49.5°

12°

62°

62°

57°

40. A plane takes off at an angle of traveling at the
rate of 200 feet/second. If it continues on this
flight path at the same speed, how many minutes
will it take to reach an altitude of 8000 feet?

41. The Ohio Turnpike has a maximum uphill slope
of How long must a straight uphill segment of
the road be in order to allow a vertical rise of 450
feet?

42. Ruth is flying a kite. Her hand is 3 feet above
ground level and is holding the end of a 300-ft

3°.

6°



47. A buoy in the ocean is observed from the top of a
40-meter-high radar tower on shore. The angle of
depression from the top of the tower to the base
of the buoy is How far is the buoy from the
base of the radar tower?

48. A plane passes directly over your head at an
altitude of 500 feet. Two seconds later you observe
that its angle of elevation is How far did the
plane travel during those 2 seconds?

49. A man stands 12 feet from a statue. The angle of
elevation from eye level to the top of the statue is

and the angle of depression to the base of the
statue is How tall is the statue?

50. Two boats lie on a straight line with the base of a
lighthouse. From the top of the lighthouse, 21
meters above water level, it is observed that the
angle of depression of the nearest boat is and
the angle of depression of the farthest boat is 
How far apart are the boats?

51. A rocket shoots straight up from the launch pad.
Five seconds after lift-off, an observer 2 miles
away notes that the rocket’s angle of elevation is

. Four seconds after that, the angle of elevation
is How far did the rocket rise during those 
4 seconds?

52. From a window 35 meters high, the angle of
depression to the top of a nearby streetlight is 
The angle of depression to the base of the
streetlight is . How tall is the streetlight?

53. A 60-foot drawbridge is 24 feet above water level
when closed. When open, the bridge makes an
angle of with the horizontal.
a. How high is the tip P of the open bridge above

the water?
b. When the bridge is open, what is the distance

from P to Q?

33°

57.8°

55°.

41°.
3.5°

53° 27°

27°.
53°

15°.
30°,

42°.

6.5°.

54. A drinking glass 5 inches tall has a 2.5-inch
diameter base. Its sides slope outward at a 
angle as shown. What is the diameter of the top of
the glass?

55. In aerial navigation, directions are given in
degrees clockwise from north, called headings.
Thus east is south is and so on, as
shown below. A plane travels from an airport for
200 miles at a heading of How far west of
the airport is the plane?

56. A plane travels from an airport at a constant 300
mph at a heading of . (See Exercise 55.)
a. How far east of the airport is the plane after

half an hour?
b. How far north of the airport is the plane after

2 hours and 24 minutes?

65°

0° North

180° South

90° East270° West

300°

Distance west
of airport

300°.

180°,90°,

4° 4°

4°

QP

33°
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57. A car on a straight road passes under a bridge.
Two seconds later an observer on the bridge, 20
feet above the road, notes that the angle of
depression to the car is How fast, in miles
per hour, is the car traveling? (Note: 60 mph is
equivalent to 88 feet/second.)

58. A pedestrian overpass is shown in the figure
below. If you walk on the overpass from one end
to the other, how far have you walked?

15° 21°18 ft

200 ft

7.4°.

59. Critical Thinking A 50-ft flagpole stands on top of a
building. From a point on the ground the angle of
elevation to the top of the pole is and the
angle of elevation to the bottom of the pole is 
How high is the building?

60. Critical Thinking Two points on level ground are
500 meters apart. The angles of elevation from
these points to the top of a nearby hill are and

respectively. The two points and the ground-
level point directly below the top of the hill lie on
a straight line. How high is the hill?

67°,
52°

40°.
43°

6.3 Angles and Radian Measure

Extending Angle Measure

In geometry and triangle trigonometry, an angle is a static figure consist-
ing of two rays that meet at a point. But in modern trigonometry, which
will be introduced in the next section, an angle is thought of as being
formed dynamically by rotating a ray around its endpoint, the vertex. The
starting position of the ray is called the initial side and its final position
after the rotation is called the terminal side.

The amount the ray is rotated is the measure of the angle. Counterclock-
wise rotations have positive measure and clockwise rotations have
negative measure.

Objectives

• Use a rotating ray to extend
the definition of angle
measure to negative angles
and angles greater than

• Define radian measure and
convert angle measures
between degrees and
radians

180°

Vertex

Initial

Term
inal

Initial

Initial

Initial

Term
inal

Term
inal

Te
rm

in
al

40° 830° �43° �312°

Figure 6.3-1



An angle in the coordinate plane is said to be in standard position if its
vertex is at the origin and its initial side is on the positive x-axis.

Figure 6.3-2

Angles formed by different rotations that have the same initial and ter-
minal sides are called coterminal. (See Figure 6.3-3.) For example, and

are coterminal angles.

Example 1 Coterminal Angles

Find three angles coterminal with an angle of in standard position.

Solution

To find an angle that is coterminal with a given angle, add or subtract a
complete revolution, or To find additional angles, add or subtract
any multiple of Three possible angles are shown below.360°.

360°.

60°

360°
0°

Positive
angle

x

y

Negative
angle

x

y

x

y

60°

420°

x

y

60°

−300°

x

y

60°

780°
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Initial

Term
inal

Figure 6.3-3

θ

center

r

arc

Figure 6.3-5

60° � 21360°2 � 780°60° � 360° � �300°60° � 360° � 420°

■

Arc Length

Recall from geometry that an arc is a part of a circle and that a central
angle is an angle whose vertex is the center of the circle. The length of an
arc depends on the radius of the circle and the measure of the central
angle that it intercepts, as shown in Figure 6.3-5.u

Figure 6.3-4
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Arc length can be calculated by considering an arc as a fraction of the
entire circle. Suppose an arc in a circle of radius r has a central angle meas-

ure of . Since there are in a full circle, the arc is of the circle. 

The circumference of the circle is , so, the length of the arc is

Example 2 Finding an Angle Given an Arc Length

An arc in a circle has an arc length which is equal to the radius r. Find
the measure of the central angle that the arc intercepts.

Solution

The central angle measure is or about 57.3°.a180
p b°,

 180
p � u

 180 � up

 180r � upr

 r �
upr
180

 r � /

/

/ �
u

360 � 2pr �
upr
180

/2pr

u
360360°u

x

y

(1, 0)

P

Figure 6.3-6

■

Radian Measure

The angle found in Example 2 leads to another unit used in finding angle
measure called a radian. Because it simplifies many formulas in calculus
and physics, radians are used as a unit of angle measurement in mathe-
matical and scientific applications.

Angle measurement in radians can be described in terms of the unit cir-
cle, which is the circle of radius 1 centered at the origin, whose equation
is When an angle is in standard position, its initial side lies
on the x-axis and passes through Its terminal side intersects the unit
circle at some point P, as shown in Figure 6.3-6.

11, 02.x2 � y2 � 1.
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Consider an angle in standard position, with its terminal side rotating
around the origin. In degree measure, one full revolution produces a 
angle. The radian measure of this angle is the circumference of the unit
circle, namely Other angles can be considered as a fraction of a full
revolution, as shown in Figure 6.3-8.

2p.

360°

x

y

(1, 0)

3.75 radians

distance = 3.75

x

y

(1, 0)

−2 radians

distance = 2

P
P

Figure 6.3-7

x

y

1−1

−1

1

x

y

1−1

−1

1

x

y

1−1

−1

1

x

y

1−1

−1

1

Figure 6.3-8

Generally,
measurements in radians
are not labeled with units,
although the word radian
or the abbreviation rad
may sometimes be used for
clarity.

NOTE

Definition of
Radian Measure The radian measure of an angle is the distance traveled along

the unit circle in a counterclockwise direction by the point P,
as it moves from its starting position on the initial side to its
final position on the terminal side of the angle.

1 radian

If the vertex of an angle is the center of a circle of radius r,
then an angle of 1 radian intercepts an arc of length r.

Movement along the unit circle is counterclockwise for
positive measure and clockwise for negative measure.

� a180
P b� �� 57.3�

1 revolution 3/4 revolution 1/2 revolution 1/4 revolution

radians radians radians radians1
4 � 2p �

p
2

1
2 � 2p � p

3
4 � 2p �

3p
22p



Radian Measure of Special Angles
The special angles of and can also be considered as a frac-
tion of a full revolution. Note that

45°60°,30°,
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Radian
measurements are usually
given in terms of 
however, it is useful to
know the decimal
equivalents for common
measurements when using
a calculator.

 p6 � 0.52  p3 � 1.05

 p2 � 1.57  p4 � 0.79

 p � 3.14  2p � 6.28

p;

NOTE

90° = π
2

120° =

135° =

150° =

180° = ππ

210° =

225° =

240° = 300° =

315° =

270° =

330° =

30° =

45° =

60° =
2π
3

3π
4

5π
6

7π
6

5π
4

4π
3

3π
2

5π
3

7π
4

π
6

π
4

π
3

11π
6

0° = 360° = 2ππ

Figure 6.3-9

• so is of a complete revolution: rad

• so is of a complete revolution: rad

• so is of a complete revolution: rad45° �
1
8 � 2p �

p
4

1
845°360

8 � 45,

60° �
1
6 � 2p �

p
3

1
660°360

6 � 60,

30° �
1
12 � 2p �

p
6

1
1230°360

12 � 30,

Figure 6.3-9 shows a unit circle with radian and degree measures for
important values. The radian measures for the angles shown in the first
quadrant and on the x- and y-axes should be memorized.

As shown in Figure 6.3-9, radians corresponds to a full revolution of
the terminal side of an angle in standard position. So an angle of radian
measure t is coterminal with the angles whose radian measures are

and so on, as shown in Figure 6.3-10.

Increasing or decreasing the radian measure of an angle by an 
integer multiple of results in a coterminal angle.

Converting Between Degrees and Radians

As shown in Figure 6.3-9,

.p radians � 180°

2P

t ±  2p, t ±  4p,

2p

x

y

= 2π + 2π +16π
3

4π
3

Figure 6.3-10



Dividing both sides by shows that

which agrees with the definition of radian.

Similarly, both sides of the original equation can be divided by 180.

These two equations give the conversion factors for radians to degrees
and degrees to radians.

p
180 ˛ radians � 1°

1 radian � a180
p b° � 57.3°,

p
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To convert radians to degrees, multiply by 

To convert degrees to radians, multiply by P180.

180
P .

Radian/Degree
Conversion

To help you
remember which
conversion factor to use, it
may be helpful to notice
that radians are usually
written in terms of 

Degrees to radians: to get 
in final answer, multiply by 

Radians to degrees: to
cancel in final answer, 

multiply by 180
p

p

p
180

p

p.

NOTE

(1, 0)

x

1

1 rad

y

Figure 6.3-11

One radian,
which is illustrated in
Figure 6.3-11, is close to

There are about 
6 radians in a
complete circle.

12p � 6.28260°.

NOTE

Example 3 Converting From Radians to Degrees

Convert the following radian measurements to degrees.

a. b. c.

Solution

a. b. c.

■

Example 4 Converting From Degrees to Radians

Convert the following degree measurements to radians.

a. b. c.

Solution

a. b. c.

■

Arc Length and Angular Speed

The formula for arc length can also be written in terms of radians.

400° �
p

180
�

20p
9

220° �
p

180
�

11p
9

75° �
p

180
�

5p
12

400°220°75°

6p �
180
p � 1080°4p

9 �
180
p � 80°p

5 �
180
p � 36°

6p4p
9

p
5
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An arc with central angle measure radians has length

In other words, the arc length is the radius times the radian
measure of the central angle of the arc.

� � rU

U
Arc Length

π
2

12

6
57

48

39

210

111

Figure 6.3-12

Example 5 Arc Length

The second hand on a clock is 6 inches long. How far does the tip of the
second hand move in 15 seconds?

Solution

The second hand makes a full revolution every 60 seconds, that is, it moves
through an angle of radians. During a 15-second interval it will make

of a revolution, moving through an angle of radians 

(Figure 6.3-12), so the tip of the second hand travels along an arc with a 

central angle measure of Therefore, the distance that the tip moves in

15 seconds is the arc length

■

Example 6 Central Angle Measure

Find the central angle measure (in radians) of an arc of length 5 cm on a
circle with a radius of 3 cm.

Solution

Solve the arc length formula for .

This is a little more than one-quarter of a complete revolution, as shown
in Figure 6.3-13.

■

Linear and Angular Speed
Suppose that a wheel is rotating at a constant rate around its center, O,
and P is a point on the outer edge of the wheel. There are two ways to
measure the speed of point P, in terms of the distance traveled or in terms
of the angle of rotation. The two measures of speed are called linear speed
and angular speed.

u �
/
r �

5
3 radians

u/ � ru

� � ru � 6˛ap2 b � 3p � 9.4 inches.

p
2 .

1
4 ˛12p2 �

p
2

15
60 �

1
4

2p

x

5 cm

y

3 cm

Figure 6.3-13



Recall that the speed of a moving object is If the object is trav-

eling in a circular path with radius r, the linear speed is given by

and the angular speed is given by

where is the radian measure of the angle through which the object trav-
els in time t. Notice the relationship between linear speed and angular
speed:

Example 7 Linear and Angular Speed

A merry-go-round makes 8 revolutions per minute.

a. What is the angular speed of the merry-go-round in radians per
minute?

b. How fast is a horse 12 feet from the center traveling?
c. How fast is a horse 4 feet from the center traveling?

Solution

a. Each revolution of the merry-go-round corresponds to a central
angle of radians, so the merry-go-round travels through an angle
of radians in one minute.

b. The horse 12 feet from the center travels along a circle of radius 12.
From part a,

which is about 6.9 mph.
c. The horse 4 feet from the center travels along a circle of radius 4.

From part a,

which is about 2.3 mph.
■

linear speed � r � angular speed � 4 � 16p � 64p ft�min

linear speed � r � angular speed � 12 � 16p � 192p ft�min

angular speed �
u
t �

16p
1 � 16p radians per minute

8 � 2p � 16p
2p

linear speed � r � angular speed

u

angular speed �
angle
time �

u
t

linear speed �
arc length

time �
ru
t

distance
time .
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P

O

Figure 6.3-14

The angular
speed of an object traveling
in a circular path is the
same, regardless of its
distance from the center of
the circle. When the
angular speed of the object
stays the same, the linear
speed increases as the
object moves farther from
the center.

NOTE

The units ft/min in Example 7 can be converted to mph as
follows:

192p ft
1 min �

60 min
1 hr

�
1 mi

5280 ft
� 6.9 mi

1 hr

NOTE
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Exercises 6.3

In Exercises 1–10, find the degree and radian measure
of the angle in standard position formed by rotating
the terminal side by the given amount.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

In Exercises 11–22, convert the given radian measure
to degrees.

11. 12. 13. 14.

15. 16. 17. 18.

19. 20. 21. 22.

In Exercises 23–34, convert the given degree measure
to radians. Write your answer in terms of 

23. 24. 25. 26.

27. 28. 29. 30.

31. 32. 33. 34.

In Exercises 35–42, state the radian measure of an angle
in standard position between 0 and that is coter-
minal with the given angle in standard position.

35. 36. 37. 38.

39. 40. 41. 7 42. 18.5

In Exercises 43–46, find the radian measure of four
angles in standard position that are coterminal with
the given angle in standard position.

43. 44. 45. 46. �
9p
7�

p

6
7p
5

p

4

45p
8�

7p
5

16p
3

19p
4�

3p
4�

p

3

2P

�585°930°252°�225°

�165°135°�105°75°

36°�12°�10°6°

P.

�
41p

6
27p

5
7p
15�

5p
12

�
p

60
p

45�
5p
3

3p
4

2p
5�

p

10�
p

6
p

5  

5
36 of a circle4

5 of a circle

7
12 of a circle2

3 of a circle

1
5 of a circle1

36 of a circle

1
72 of a circle1

18 of a circle

1
24 of a circle1

9 of a circle

In Exercises 47 – 52, determine the positive radian
measure of the angle that the second hand of a clock
travels through in the given time.

47. 40 seconds 48. 50 seconds

49. 35 seconds 50. 2 minutes 15 seconds

51. 3 minutes 25 seconds 52. 1 minute 55 seconds

53. The second hand on a clock is 6 cm long. How far
does its tip travel in 40 seconds?

54. The second hand on a clock is 5 cm long. How far
does its tip travel in 2 minutes and 15 seconds?

55. If the radius of the circle in the figure is 20 cm
and what is the radian measure of the
angle u?

� � 85 cm,

x

y

θ

56. Find the radian measure of the angle in the
preceding figure if the diameter of the circle is 
150 cm and 

In Exercises 57–60, assume that a wheel on a car has
radius 36 cm. Find the angle (in radians) that the wheel
turns while the car travels the given distance.

57. 2 meters (200 cm) 58. 5 meters

59. 720 meters 60. 1 kilometer (1000 meters)

In Exercises 61–64, find the length of the circular arc
with the central angle whose radian measure is given.
Assume that the circle has diameter 10.

61. 1 radian 62. 2 radians

63. 1.75 radians 64. 2.2 radians

� � 360 cm.

u



The latitude of a point P on Earth is the degree meas-
ure of the angle between the point and the plane of
the equator, with Earth’s center as the vertex, as shown
in the figure below.

U
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78. A circular saw blade has an angular speed of
15,000 radians per minute.
a. How many revolutions per minute does the

saw make?
b. How long will it take the saw to make 6000

revolutions?

79. A circular gear rotates at the rate of 200
revolutions per minute (rpm).
a. What is the angular speed of the gear in

radians per minute?
b. What is the linear speed of a point on the gear

2 inches from the center in inches per minute?
in feet per minute?

80. A wheel in a large machine is 2.8 feet in diameter
and rotates at 1200 rpm.
a. What is the angular speed of the wheel?
b. How fast is a point on the circumference of the

wheel traveling in feet per minute? in miles per
hour?

81. A riding lawn mower has wheels that are 15
inches in diameter, which are turning at 2.5
revolutions per second.
a. What is the angular speed of a wheel?
b. How fast is the lawn mower traveling in miles

per hour?

82. A bicycle has wheels that are 26 inches in
diameter. If the bike is traveling at 14 mph, what
is the angular speed of each wheel?

83. A merry-go-round horse is traveling at 10 feet per
second when the merry-go-round is making 6
revolutions per minute. How far is the horse from
the center of the merry-go-round?

P

Equator

θ

In Exercises 65–68, the latitudes of a pair of cities are
given. Assume that one city is directly south of the
other and that the earth is a perfect sphere of radius
4000 miles. Use the arc length formula in terms of
degrees to find the distance between the two cities.

65. The North Pole: latitude north 
Springfield, Illinois: latitude north

66. San Antonio, Texas: latitude north 
Mexico City, Mexico: latitude north

67. Cleveland, Ohio: latitude north 
Tampa, Florida: latitude north

68. Rome, Italy: latitude north 
Copenhagen, Denmark: latitude north

In Exercises 69–76, a wheel is rotating around its axle.
Find the angle (in radians) through which the wheel
turns in the given time when it rotates at the given
number of revolutions per minute (rpm). Assume

and 

69. 3.5 minutes, 1 rpm 70. t minutes, 1 rpm

71. 1 minute, 2 rpm 72. 3.5 minutes, 2 rpm

73. 4.25 minutes, 5 rpm 74. t minutes, 5 rpm

75. 1 minute, k rpm 76. t minutes, k rpm

77. One end of a rope is attached to a circular drum
of radius 2 feet and the other to a steel beam.
When the drum is rotated, the rope wraps around
it and pulls the object upward (see figure).
Through what angle must the drum be rotated in
order to raise the beam 6 feet?

k 77 0.t 77 0

54.3°
42°

28°
41.5°

20°
29.5°

40°
90°



84. The pedal sprocket of a bicycle has radius 4.5
inches and the rear wheel sprocket has radius 1.5
inches (see figure). If the rear wheel has a radius
of 13.5 inches and the cyclist is pedaling at the
rate of 80 rpm, how fast is the bicycle traveling in
feet per minute? in miles per hour?
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αθSt. Louis Cleveland

away on the western horizon. (The figure is not to
scale.) Assuming that the radius of the earth is
3950 miles, how high was the plane when the
picture was taken? Hint: The sight lines from the
plane to the horizons are tangent to the earth and
a tangent line to a circle is perpendicular to the
radius at that point. The arc of the earth between
St. Louis and Cleveland is 520 miles long. Use this
fact and the arc length formula to find angle 
Your answers will be in radians. Note that 

a �
u

2   1why?2.

u.

85. A spy plane on a practice run over the Midwest
takes a picture that shows Cleveland, Ohio, on the
eastern horizon and St. Louis, Missouri, 520 miles

6.4 Trigonometric Functions

Extending the Trigonometric Ratios

Trigonometric ratios were defined for acute angles in Section 6.1. The next
step is to develop a definition of these ratios that applies to angles of any
measure.

Objectives

• Define the trigonometric
ratios in the coordinate
plane

• Define the trigonometric
functions in terms of the
unit circle

To do this, first consider an acute
angle in standard position. Choose
a point P, with coordinates (x, y), on
the terminal side, and draw a right
triangle, as shown in Figure 6.4-1.
The side adjacent to has length x
and the side opposite has length y.
The length of the hypotenuse, r, is
the distance from the origin, which
may be found by using the
Pythagorean Theorem.

 r � 2x2 � y2

 x2 � y2 � r2

u

u

u

hypotenuse
r

adjacent
x

xθ

opposite
y

y

Figure 6.4-1

P can be any
point on the terminal side
of the angle, except for the
origin, since different
choices for P generate
similar right triangles.
Thus, the value of a
trigonometric ratio depends
only on the angle.

NOTE



The trigonometric ratios can now be written in terms of x, y, and r. For
example,

Thus, the trigonometric ratios can be described without triangles by using
a point on the terminal side of the angle. More importantly, this process
can be carried out for any angle, not just acute angles. Therefore, the fol-
lowing definition applies to any angle and agrees with the previous
definition when the angle is acute.

sin u �
opposite

hypotenuse
�

y
r   and  cos u �

adjacent
hypotenuse

�
x
r

Example 1 Trigonometric Ratios in the Coordinate Plane 

Find the sine, cosine, and tangent of the angle whose terminal side
passes through the point 

Solution

Using the values and 

■

Trigonometric Functions

Trigonometric ratios have been defined for all angles. But modern appli-
cations of trigonometry deal with functions whose domains consist of real
numbers. The basic idea is quite simple: If t is a real number, then

sin t is defined to be the sine of an angle of t radians;
cos t is defined to be the cosine of an angle of t radians;

sin u �
�2
213

      cos u �
�3
213

      tan u �
�2
�3 �

2
3

r � 21�322 � 1�222 � 213,x � �3, y � �2,

1�3, �22. u,
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Let be an angle in standard position and let be any
point on the terminal side of Let r be the distance from

to the origin:

Then the trigonometric ratios of are defined as follows:

tan U �
y
x  cot U �

x
y

cos U �
x
r   sec U �

r
x

sin U �
y
r   csc U �

r
y

U

r � 2x2 � y2

(x, y)
U.

P (x, y)U
Trigonometric
Ratios in the

Coordinate
Plane

(−3, −2)

θ

x

y

Figure 6.4-2

y

r

θ

P(x, y)

x
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Trigonometric Functions of Real Numbers

Begin with a Form an angle Determine 
number t of t radians sin t, cos t, tan t

Trigonometric Ratios of Angles

and so on. Instead of starting with angles, as was done up until now, this
new approach starts with a number and only then moves to angles, as
summarized below.

Adapting earlier definitions of ratios to this new viewpoint produces the
following definition of trigonometric functions of real numbers. Use Fig-
ure 6.4-3 for reference.

Let t be a real number. Choose any point on the terminal
side of an angle of t radians in standard position. Then

where is the distance from to the origin.(x, y)r � 2x 2 � y 2

 csc t �
r
y      sec t �

r
x     cot t �

x
y

 sin t �
y
r     cos t �

x
r      tan t �

y
x

(x, y)
Trigonometric

Functions of a
Real Variable

Although this definition is essential for developing various facts about
the trigonometric functions, the values of these functions are usually
approximated by a calculator in radian mode, as shown in Figure 6.4-4.

y

x

t

r

x

(x, y)

y

Figure 6.4-3

Unless stated
otherwise, use radian mode
when evaluating
trigonometric functions of
real numbers.

NOTE

Figure 6.4-4

Trigonometric Functions and the Unit Circle

Recall that the unit circle is the circle of radius 1 centered at the origin,
whose equation is The unit circle is the basis for the most
useful description of trigonometric functions of real numbers.

Let t be any real number. Construct an angle of t radians in standard posi-
tion. Let be the point where the terminal side of this angle meets
the unit circle, as shown in Figure 6.4-5.

P1x, y2

x2 � y2 � 1.



The distance from P to the origin is 1 because the unit circle has radius 1.
Using the point and the definition of trigonometric functions of
real numbers shows the following:

sin t �
y
r �

y
1 � y    and    cos t �

x
r �

x
1 � x

P, r � 1,

446 Chapter 6 Trigonometry

Let t be a real number and let P be the point where the
terminal side of an angle of t radians in standard position
meets the unit circle. Then

and

sec t �
1
x �

1
cos t  csc t �

1
y �

1
sin t

tan t �
y
x �

sin t
cos t  cot t �

x
y �

cos t
sin t

P has coordinates (cos t, sin t)

Unit Circle
Description of
Trigonometric

Functions

The length of the
arc from to P is t.11, 02

NOTE

−1

−1

1

1

t
x

y

P(x, y)

Figure 6.4-5

Graphing Exploration

With your calculator in radian mode and parametric graphing
mode, set the range values as follows:

Then, graph the curve given by these parametric equations:

The graph is the unit circle. Use the trace to move around the circle.
At each point, the screen will display three numbers: the values of t,
x, and y. For each t, the cursor is on the point where the terminal side
of an angle of t radians meets the unit circle, so the corresponding 
x is the number cos t and the corresponding y is the number sin t.

x � cos t  y � sin t

0 � t � 2p  �1.8 � x � 1.8  �1.2 � y � 1.2



The coordinates of points on a circle of radius r that is centered at the ori-
gin can be written by using r and t with the definition of the trigonometric
ratios in the coordinate plane. See Exercise 61.

Domain and Range

By the domain convention in Section 3.1, the domain of a function is all
real numbers for which the function is defined. For any real number t, an
appropriate angle of t radians and its intersection point with the unit cir-
cle are always defined, so

the domain of the sine function and of the cosine function 
is the set of all real numbers.

The range of a function is the set of all possible outputs. Because sin t and
are the coordinates of a point on the unit circle, they take on all val-

ues between and 1 and no other values. Thus,

the range of the sine function and of the cosine function is the set of
all real numbers between and 1, that is, the interval 

The tangent function is defined as whenever that is, for 

all points on the unit circle except (0, 1) and The point (0, 1) is on 

the terminal side of an angle of radians or any angle obtained by adding 

integer multiples of (a complete circle) to it, that is,

The point (0, �1) is on the terminal side of an angle of radians or any 

angle obtained by adding integer multiples of 2 to it, that is,

Combining these facts shows that

the domain of the tangent function consists of all real numbers

except 

In contrast to sine and cosine,

the range of the tangent function is the set of all real numbers.

A proof of this fact is found in Exercise 60. Figure 6.4-6 shows that val-
ues of the tangent can be very large positives, very large negatives, or in
between.

Signs of the Trigonometric Functions

It is often important to know whether the value of a trigonometric func-
tion is positive or negative. For any real number t, the point (cos t, sin t)
is on the terminal side of an angle of t radians in standard position. The

�
P
2 � 2kP, where k � 0, �1, �2, �3, p .

p , �5p
2 , �p2 , 3p2 , 7p2 , 11p

2 , p

p

3p
2

p , �
7p
2

, �
3p
2

, 
p

2
, 

5p
2

, 
9p
2

, p

2p

p
2

10, �12.
x � 0,tan t �

y
x ,

[�1, 1].�1

�1
cos t
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Figure 6.4-6



quadrant in which this point lies determines the signs of sine and cosine,
as well as those of the other trigonometric functions, as summarized in
Figure 6.4-7.

Exact Values of Trigonometric Functions

Although a calculator is used to evaluate trigonometric functions approx-
imately, there are a few special numbers for which exact values can be 

found. Recall that and are the same as respec-

tively. Therefore, the chart on page 419 can be translated as follows.

p
3 ,p

6 , p4 , and60°45°,30°,
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t

1

1
23

�
23
3

1
1 � 1

23
1 � 23cot t

2
1 � 2

22
1 � 222

23
�

223
3sec t

2
23

�
223

3
22
1 � 222

1 � 2csc t

231
23

�
23
3tan t

1
2

1
22

�
22
2

23
2cos t

23
2

1
22

�
22
2

1
2sin t

P
3

P
4

P
6

The exact values of the trigonometric functions can also be found for any 

number that is an integer multiple of and The technique for

doing this depends on the concept of a reference angle.

Example 2 Exact Values of Trigonometric Functions

Find the exact value of the sine, cosine, and tangent functions when 

and 

Solution

If the measure of an angle is a multiple of then its terminal side lies 

on an axis. Thus, the only possible values of the sine and cosine functions

p
2 ,

2p.p
2 , p, 3p2 ,

t � 0,

p
3 .p

6 , p4 ,

sin t +
cos t −
tan t −

2
π

y

x

< t < π 2
π

sin t −
cos t −
tan t +

π < t < 2
3π

2
3π

sin t −
cos t +
tan t −

< t < 2π

sin t +
cos t +
tan t +

0 < t <

Figure 6.4-7



■

Reference Angles
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The diagram of
the unit circle shown in
Figure 6.4-8 will help you
memorize the values of sin t

and cos t for multiples of p2 .

NOTE

t sin t cos t tan t

0 0 1 0

1 0 undefined

0 0

0 undefined

0 1 02p

�13p
2

�1p

p

2

(0, 1)

(1, 0)

(0, −1)

(−1, 0)

x

y

Figure 6.4-8

For an angle in standard position, the reference angle is the
positive acute angle formed by the terminal side of and the
x-axis.

U

U
Definition of

Reference
Angle

In the following figure, the reference angle for an angle of t radians in
standard position is shown in two ways.

t¿

Definition of Reference Angle

Unit Circle with Reference Angle Placed in Quadrant I

x xt = t′

t′ = t

y

t

t′ =    − tπ

y

t′ xxt

t′ = t − π

y

t

πt′ = 2   − t

y

t′t′

x x

y

t = t′

y

t′ t′ x

y

t t
x

y

t′
t′

t′

t′
P(x, y) P(x, y)Q(−x, y) P(x, y) P(x, y)

Q(x, −y)Q(−x, −y)

t

Figure 6.4-9

of such angles are 0 and 1. The following chart shows the value of
the sine, cosine, and tangent functions for these angles between 0 and 2p.

�1,



In every case, the figure that references the unit circle illustrates the fol-
lowing fact that can be proved by using congruent triangles:

By definition, the values of the trigonometric functions for t are given by
the coordinates of Q and the values of these functions for are given by
the coordinates of P. So, these values will be the same, except for a plus
or minus sign. The correct sign is determined by the quadrant in which
the terminal side of an angle of t radians lies, as shown in Figure 6.4-7 on
page 448.

t¿

y-coordinate of Q � ± 1y-coordinate of P2
x-coordinate of Q � ± 1x-coordinate of P2
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To find the sine, cosine, or tangent of t radians,

• Sketch an angle of t radians in standard position and
determine the quadrant in which the terminal side lies.

• Find the reference angle, which has measure radians.

• Find the sine, cosine, and tangent of and append the
appropriate sign.

t�

t�

Finding
Trigonometric

Function Values

x

y

4
π 4

3π

Figure 6.4-10

x

y

3
π

3
4π

Figure 6.4-11

Example 3 Using Reference Angles

Use reference angles to find the exact value of sin t, cos t, and tan t.

a. b. c.

Solution

a. Sketch the angle, as shown in Figure 6.4-10. The terminal side is in
the second quadrant, so the reference angle is .

Because the terminal side of the angle of radians lies in the second 

quadrant, sin is positive, and cos and tan are negative.

b. Sketch the angle, as shown in Figure 6.4-11. The terminal side is in
quadrant III, so the reference angle is .

4p
3 � p �

p
3

t � p

 tan 4p3 � �tan p4 � �1

 sin 3p4 � sin p4 �
22
2   cos 3p4 � �cos p4 � �

22
2

3p
4

3p
4

3p
4

3p
4

p �
3p
4 �

p
4

p � t

t �
11p

6t �
4p
3t �

3p
4
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Thus, the sine, cosine, and tangent functions are

c. Sketch the angle, as shown in Figure 6.4-12. The terminal side is in
quadrant IV, so the reference angle is .

Thus, the sine, cosine, and tangent functions are

■

If an angle is less than 0 or greater than , it is possible to find a coter-
minal angle between 0 and by adding or subtracting multiples of .
Thus, the trigonometric functions of a real variable have the following
property.

2p2p
2p

 tan 11p
6 � �tan p6 � �

23
3

 sin 11p
6 � �sin p6 � �

1
2  cos 11p

6 � cos p6 �
23
2

2p �
11p

6 �
p
6

2p � t

 tan 3p4 � tan p3 � 23

 sin 4p3 � �sin p3 � �
23
2   cos 4p3 � �cos p3 � �

1
2

Example 4 Trigonometric Functions Where 

Find the sine, cosine, and tangent of 

Solution

can be written as Therefore, is coterminal with .

■

 tan 7p3 � tan p3 � 23

 cos 7p3 � cos p3 �
1
2

 sin 7p3 � sin p3 �
23
2

p
3

7p
3

p
3 � 2p.7p

3

7p
3 .

t 7 2P

Any trigonometric function of a real number t is equal to the
same trigonometric function of all numbers where k
is an integer.

t � 2kP,

Trigonometric
Ratios of

Coterminal
Angles

x

y

6
π

6
11π

Figure 6.4-12

x

y

3
π

3
7π

Figure 6.4-13
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Exercises 6.4

Note: Unless stated otherwise, all angles are in stan-
dard position.
In Exercises 1–6, find sin t, cos t, and tan t when the
terminal side of an angle of t radians passes through
the given point.

1. 2. 3.

4. 5. 6.

In Exercises 7–10, find sin t, cos t, and tan t when the
terminal side of an angle of t radians passes through
the given point on the unit circle.

7. 8.

9. 10.

In Exercises 11–14, identify an angle that
is coterminal with the given angle, and find the sine
and cosine of the given angle.

11. 12. 13. 14.

In Exercises 15–23,

a. Use a calculator in radian mode to find the sine,
cosine, and tangent of each number. Round your
answers to four decimal places.

b. Use the signs of the functions to identify the
quadrant of the terminal side of an angle of t
radians. If the terminal side lies on an axis,
identify which axis and whether it is on the
positive or negative side of the axis. Explain your
reasoning.

15. 16. 11 17.

18. 19. 20.

21. 22. 23.

In Exercises 24–29, sketch each angle whose radian
measure is given and find its reference angle.

24. 25. 26. 6p
5

17p
6

7p
3

�17p

179.5p

6.4p10p
3�23p

�
14p

9
7p
5

�
7p
416p9p

2
13p

6

0 �� t� �� P

10.6, �0.82a�3
5, �4

5b

a 1
210

, � 3
210

ba� 2
25

, 1
25
b

1�p, 22123, �10214, �32
1�5, �621�3, 2212, 72

27. 28. 29.

In Exercises 30–47, find the exact value of the sine,
cosine, and tangent of the number without using a cal-
culator.

30. 31. 32. 33.

34. 35. 36. 37.

38. 39. 40. 41.

42. 43. 44. 45.

46. 47.

In Exercises 48 – 53, write the expression as a 
single real number. Do not use decimal approxima-
tions.

48.

49.

50.

51.

52.

53.

In Exercises 54–59, the terminal side of an angle of t
radians lies in the given quadrant on the given line.
Find sin t, cos t, and tan t. (Hint: Find a point on the
terminal side of the angle.)

54. Quadrant III; line 

55. Quadrant IV; line through and 

56. Quadrant III; line through the origin parallel to
7x � 2y � �6

1�9, 1521�3, 52
2y � 4x � 0

sin ap3 b cos p � sin p cos ap3 b

sin a�7p
3 b cos a5p

4 b � cos a�7p
3 b sin a5p

4 b

sin a3p
4 b cos a5p

6 b � cos a3p
4 b sin a5p

6 b

cos a2p
3 b cos p � sin a2p

3 b sin p

cos ap2 b cos ap4 b � sin ap2 b sin ap4 b

sin ap6 b cos ap2 b � cos ap6 b sin ap2 b

4p�p

9p
2�

17p
2

5p
6�

25p
4

�
15p

4�
10p

3�
19p

3
11p

6

�
23p

63p�
3p
2

5p
4

11p
4

17p
3

7p
3

7p
6

�
p

7�
3p
41.75p
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57. Quadrant II; line through the origin parallel to

58. Quadrant I; line through the origin perpendicular
to 

59. Quadrant IV; line 

60. The terminal side of an angle of t radians lies on a
straight line through the origin, and therefore, has
an equation of the form where m is the
slope of the line.

y � mx,

y � �3x

3y � x � 6

2y � x � 6
61. The figure below shows an angle of t radians. Use

trigonometric functions to write the coordinates of
point P in terms of r and t.

x

y
y = mx

t

x

y

P

t

r

a. Prove that Hint: a point on the
terminal side of the angle has coordinates

b. Explain why tan t approaches infinity as t

approaches from below. Hint: What happens

to the slope of the terminal side when t is close

to 

c. Explain why tan t approaches negative infinity 

as t approaches from above. Hint: When t is 

a bit larger than is the slope of its terminal 

side positive or negative?
d. Use parts b and c to show that the range of the

tangent function is the set of all real numbers.

p

2 ,

p

2

p

2 ?

p

2

1x, mx2
m � tan t.

62. Complete the following table by writing each
value as a fraction with denominator 2 and a
radical in the numerator. You may find the
resulting pattern an easy way to remember these
function values.

0

2?
2

2?
2

2?
2

2?
2

2?
2cos t

2?
2

2?
2

2?
2

2?
2

2?
2sin t

P
2

P
3

P
4

P
6t

63. Find the domain and range of the cosecant
function.

64. Find the domain and range of the secant function.

65. Find the domain and range of the cotangent
function.

66. Critical Thinking Using only the definition and no
calculator, determine which number is larger:
sin(cos 0) or cos(sin 0).
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When dealing with powers of trigonometric functions,

exponents (other than ) are written 
between the function symbol and the variable.

For example,

Furthermore,

as illustrated in Figure 6.5-2.

sin t3  means sin 1t32  not 1sin t23 or sin3 t,

1cos t23  is written  cos3t.

�1

6.5 Basic Trigonometric Identities

The algebra of trigonometric functions is just like that of other functions.
They may be added, subtracted, composed, etc. However, two notational
conventions are normally used with trigonometric functions.

Parentheses can be omitted whenever no confusion can result.

Figure 6.5-1 shows, however, that parentheses are needed to distinguish

cos 1t � 32  and  cos t � 3.

Objectives

• Develop basic trigonometric
identities

Figure 6.5-1

Most calculators
automatically insert an
opening parenthesis when
a trigonometric function
key is pushed. The display

is interpreted as
. If you want cos

you must insert a
parenthesis after the 5:
cos 152 � 3 .

5 � 3,
cos 15 � 3 2
cos 15 � 3

NOTE

Technology 
Tip

Calculators do not 
use the convention of 

writing an exponent
between the trigonometric
function and its argument.
In order to obtain 
you must enter sin 142^3.

sin3 4,

Figure 6.5-2

Identities

Trigonometric functions have numerous relationships that can be
expressed as identities. An identity is an equation that is true for all val-



Section 6.5 Basic Trigonometric Identities 455

ues of the variables for which every term of the equation is defined. For
example,

is an identity because it is true for all possible values of a and b.

The unit circle description of trigonometric functions (see the box on page
446) leads to the following quotient identities.

1a � b22 � a2 � 2ab � b2

tan t �
sin t
cos t     cott �

cos t
sin t

Quotient
Identities

Example 1 Quotient Identities

Simplify the expression below.

Solution

By the quotient identity,

■

Reciprocal Identities

The reciprocal identities follow immediately from the definitions of the
trigonometric functions.

tan t cos t �
sin t
cos t ˛ cos t � sin t

tan t cos t

 csc t �
1

sin t   sec t �
1

cos t   cot t �
1

tan t

 sin t �
1

csc t   cos t �
1

sec t   tan t �
1

cot t

Reciprocal
Identities

Example 2 Reciprocal Identities

Given that and find csc t and sec t.

Solution

By the reciprocal identities,

■

csc t �
1

sin t �
1

0.28 � 3.57  sec t �
1

cos t �
1

0.96 � 1.04

cos t � 0.96,sin t � 0.28

CAUTION

An identity may not be
true for a value of the
variable that makes a
term of the equation
undefined. For example,
if then 
while cot t is undefined. 

Thus, for
t � 0.

tan t �
1

cot t

tan t � 0t � 0,
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Pythagorean Identities

For any real number t, the coordinates of the point P where the terminal
side of an angle of t radians meets the unit circle are (cos t, sin t), as shown
in Figure 6.5-3. Since P is on the unit circle, its coordinates must satisfy

which is the equation of the unit circle. That is,

This identity, which is usually written is called the
Pythagorean identity. It can be used as follows to derive two other iden-
tities, which are also called Pythagorean identities.

Divide by 

Simplify

Similarly, dividing both sides of by shows that

1 � cot2 t � csc2 t

sin2 tsin2 t � cos2 t � 1

 tan2 t � 1 � sec2 t

cos2 t  sin2 t
cos2 t

�
cos2 t
cos2 t

�
1

cos2 t

 sin2 t � cos2 t � 1

sin2 t � cos2 t � 1,

cos2 t � sin2 t � 1

x2 � y2 � 1,

 1 � cot2 t � csc2 t

 tan2 t � 1 � sec2 t

 sin2 t � cos2 t � 1
Pythagorean

Identities

x

1

0 1−1

−1

y
P(cos t, sin t)

t

Figure 6.5-3

In addition to the version shown above, the following forms of the
Pythagorean identity are also commonly used.

Example 3 Pythagorean Identities

Simplify the expression below.

Solution

By the quotient and Pythagorean identities,

■

Periodicity Identities

Let t be any real number. Construct two angles in standard position of
measure t and radians, as shown in Figure 6.5-4. Since both oft � 2p

tan2 t cos2 t � cos2 t �
sin2 t
cos2 t

˛ cos2 t � cos2 t � sin2 t � cos2 t � 1

tan2 t cos2 t � cos2 t

 cos2 t � 1 � sin2 t
 sin2 t � 1 � cos2 t



In both cases, the sine is the y-coordinate of P, so

.

In addition, the terminal side of the angle is the same for measures of t,
and so on. Thus,

Similarly in both cases, the cosine is the x-coordinate of P, so

The identities above show that sine and cosine functions repeat their val-
ues at regular intervals. Such functions are called periodic. A function is
said to be periodic if there exists some constant k such that

for every number t in the domain of f. The smallest value of k that has
this property is called the period of the function f.

Since the tangent function is the quotient of the sine and cosine functions,
it must also be true that However, there is a number
smaller than that has this property. Figure 6.5-5 shows the angles t and

A rotation of radians is the same as a rotation of so the
image of the point (x, y) is Thus,

tan 1t � p2 �
�y
�x �

y
x � tan t

1�x, �y2. 180°,pt � p.
2p

tan t � tan 1t � 2p2.

f 1t2 � f 1t � k2

cos t � cos 1t ± 2p2 � cos 1t ± 4p2 � cos 1t ± 6p2 � p

sin t � sin 1t ± 2p2 � sin 1t ± 4p2 � sin 1t ± 6p2 � p

t ± 6p,t ± 4p,t ± 2p,

sin t � sin 1t � 2p2
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(cos t, sin t)

x

P

t

y

(cos (t + 2π), sin (t + 2π))

t + 2π x

P

y

Figure 6.5-4

xt + π

y

t

(x, y)

(−x, −y)

Figure 6.5-5

Calculator Exploration

Use your calculator to verify the following:

 tan 1 � tan 11 � p2 � tan 11 � 5p2
 cos 4 � cos 14 � 2p2 � cos 14 � 6p2
 sin 3 � sin 13 � 2p2 � sin 13 � 4p2

these angles have the same terminal side, the point P where the terminal
side intersects the unit circle is the same for both angles.



Example 4 Periodicity Identities

Find the exact value of 

Solution

By the periodicity identity for sine,

■

Negative Angle Identities

Let t be any real number and construct two angles in standard position
of measure t and radians, as shown in Figure 6.5-6.�t

sin 13p
6 � sin ap6 �

12p
6 b � sin ap6 � 2pb � sin p6 �

1
2

sin 13p
6 .
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The sine and cosine functions are periodic with period 
For every real number t,

The tangent function is periodic with period For every
number t in the domain of the tangent function,

tan (t � P) � tan t

P.

sin (t � 2P) � sin t  and  cos (t � 2P) � cos t

2P.
Periodicity

Identities

x

y (cos t, sin t)

(cos (−t), sin (−t))

t
−t

−1

−1 1

1 P

Q

Figure 6.5-6

Since the point Q is the reflection of the point P across the x-axis, the 
x-coordinates of P and Q are the same, and the y-coordinates are oppo-
sites of each other. Thus,

Also,

tan 1�t2 �
sin 1�t2
cos 1�t2 �

�sin t
cos t � �

sin t
cos t � �tan t

cos t � cos1�t2  and  sin t � �sin1�t2



Example 5 Negative Angle Identities

Find the exact value of and of 

Solution

By the negative angle identities,

■

Other Identities

Let t be any real number. Figure 6.5-7 shows the angles of t and 
radians in standard position. The terminal side of the angle of t radians
meets the unit circle at P, and the terminal side of the angle of radi-
ans meets the unit circle at Q. Congruent triangles can be used to prove
what the figure illustrates:

The y-coordinates of P and Q are the same, and 
their x-coordinates are opposites.

This leads to the following identities.

p � t

p � t

sin a�p6 b � �sin p6 � �
1
2  and  cos a�p6 b � cos p6 �

23
2

cos a�p6 b .sin a�p6 b
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 tan(�t) � �tan t
 cos(�t) � cos t
 sin(�t) � �sin t

Negative Angle
Identities

x
π − t

y

tt

P(x, y)Q(−x, y)

Figure 6.5-7

 tan t � �tan(P � t)
 cos t � �cos(P � t)
 sin t � sin(P � t)

Identities
Involving P � t

Example 6 Identities Involving 

Find the exact value of 

Solution

By the identity 

■

sin a5p
6 b � sin a6p

6 �
p
6 b � sin ap �

p
6 b � sin ap6 b �

1
2

sin 1p � t2 � sin t,

sin a5p
6 b.

P �� t

The identity
is used in

solving basic trigonometric
equations. (See Section 8.3.)

sin t � sin1p � t2
NOTE
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Quotient Identities:

Reciprocal Identities:

Pythagorean Identities:

Periodicity Identities:

Negative Angle Identities:

Identities Involving :

tan t � �tan(P � t)cos t � �cos(P � t)sin t � sin(P � t)

P � t

tan (�t) � �tan tcos(�t) � cos tsin (�t) � �sin t

tan(t � P) � tan tcos(t � 2P) � cos tsin (t � 2P) � sin t

1 � cot2 t � csc2 ttan2 t � 1 � sec2 tsin2 t � cos2 t � 1

cot t �
1

tan tsec t �
1

cos tcsc t �
1

sin t

tan t �
1

cot tcos t �
1

sec tsin t �
1

csc t

cot t �
cos t
sin ttan t �

sin t
cos t

Summary of
Identities

Exercises 6.5

In Exercises 1–4, use the quotient and reciprocal iden-
tities to simplify the given expression.

1. cot t sin t 2. tan t cot t

3. csc t sin t 4. cot t sec t

In Exercises 5–8, use the Pythagorean identities to sim-
plify the given expression.

5.

6.

7.

8.

In Exercises 9–14, the value of one trigonometric func-

tion is given for . Use quotient, reciprocal, 

and Pythagorean identities to find the values of the

0 6 t 6 p2

 sin 2 ˛t �  cos 2 ˛t  sin 2 t
 sin 2 t

 csc 2 ˛t �  cot 2 ˛t
 sin 2 t

1 � sec2
˛ t

 sin 2 ˛t �  cot 2 ˛t  sin 2  t

remaining five trigonometric functions. Round your
answers to four decimal places.

9. 10.

11. 12.

13. 14.

In Exercises 15–25, use basic identities and algebra to
simplify the expression. Assume all denominators are
nonzero.

15.

16.

17.

18.

19. a4 cos2 t
sin2 t

b a sin t
4 cos t

b2

1tan t � 22 1tan t � 32 � 16 � tan t2 � 2 tan t

sin t
tan t

1 sin t �  cos t22
1 sin t � cos t2 1 sin t �  cos t2

 cot t � 1.8479 csc t � 6.2474

 sec t � 2.5846 tan t � 3.6294

 cos t � 0.4167 sin t � 0.3251
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20.

21.

22.

23.

24.

25.

Recall that a function is even if

and a function is odd if

for every value of x in the domain of f. In Exercises
26–32, use the negative angle identities to determine
whether the function is even, odd, or neither.

26. 27.

28. 29.

30. 31.

32.

In Exercises 33–36, use the Pythagorean identities to
find sin t for the given value of cos t. Make sure that
the sign is correct for the given quadrant.

33.

34.

35.

36.

In Exercises 37–44, and . Use basic

identities and the signs of the trigonometric functions
in each quadrant to find each value.

37. 38. sin 1t � 10p2sin 1�t2

0 66 t 66 p2sin t �
3
5

3p
2 6 t 6 2pcos t �

2
25

0 6 t 6 p2cos t �
1
2

p

2 6 t 6 pcos t � �
3
210

p 6 t 6 3p
2cos t � �0.5

f 1t2 �  t � cos t

f 1t2 �  t � tan tf 1t2 �  t sin t

f 1t2 �  sec tf 1t2 �  tan t

f 1t2 �  cos tf 1t2 �  sin t

f(�x) � �f(x)

f(x) � f(�x)

2sin3 t cos t � 2cos t

1 � tan2 t
1 � tan2 t

� 2 sin2 t

1
cos t � sin t tan t

sin2 t � 2 sin t � 1
sin t � 1

cos2 t � 4 cos t � 4
cos t � 2

5 cos t
sin2 t

�
sin2 t � sin t cos t

sin2 t � cos2 t
39. 40.

41. 42.

43. 44.

In Exercises 45–50, and . Use 

basic identities and the signs of the trigonometric
functions in each quadrant to find each value.

45. 46.

47. 48.

49. 50.

In Exercises 51–54, it is given that

Use basic identities to find each value.

51. 52.

53. 54.

In Exercises 55–60, use the Pythagorean identities to
determine if it is possible for a number t to satisfy
the given conditions.

55.

56.

57.

58.

59.

60.

61. Use the periodicity identities for sine, cosine, and
tangent to write periodicity identities for cosecant,
secant, and cotangent.

62. Use the negative angle identities for sine, cosine,
and tangent to write negative angle identities for
cosecant, secant, and cotangent.

cos t �
8

17 and tan t �
15
8

sin t � 1 and tan t � 1

sin t �
1
22

 and cos t �
1
22

sin t � �1 and cos t � 1

sin t � �2 and cos t � 1

sin t �
5

13 and cos t �
12
13

tan �15p
8sin 17p

8

tan p8cos p8

sin 
p
8 �

32 � 22
2

tan 14p � t2sin 14p � t2
cos 1�t2cos 12p � t2
tan tsin t

p 66 t 66 3p
2cos t � �

2
5

sin 1p � t2tan 12p � t2
cos 1�t2tan t

cos tsin 12p � t2
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For a given acute angle 

cot u �
adjacent

opposite
sec u �

hypotenuse

adjacent
csc u �

hypotenuse

opposite

tan u �
opposite

adjacent
cos u �

adjacent

hypotenuse
sin u �

opposite

hypotenuse

u:

To convert radians to degrees, multiply by 

To convert degrees to radians, multiply by 

Quotient Identities:

Reciprocal Identities:

Pythagorean Identities:

1 � cot2 t � sec2 ttan2 � 1 � sec2 tsin2 t � cos2 t � 1

cot t �
1

tan tsec t �
1

cos tcsc t �
1

sin t

tan t �
1

cot tcos t �
1

sec tsin t �
1

csc t

cot t �
cos t
sin ttan t �

sin t
cos t

p
180.

180
p .

2

2

1 12222
22
2

22
245°

23
3

223
3231

2
23
260°

23
223

3
23
3

23
2

1
230°

cot Usec Ucsc Utan Ucos Usin UU
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1. Write in decimal form.

2. Write in DMS form.

3. Which of the following statements about the angle is true?

a. b.

c. d.

e.

In Exercises 4–9, use the right triangle in the figure to find each ratio.

4. 5. 6.

7. 8. 9.

10. Find the length of side h in the triangle, given that angle A measures 
and the distance from C to A is 25.

40°

cot usec ucsc u

tan ucos usin u

sin u �
4
3

sin u �
4
5tan u �

3
5

cos u �
5
4sin u �

3
4

u

10.5625°

41° 6¿ 54–

5

4 3

θ

7

4
θ

B

C

h

A

Periodicity Identities:

Negative Angle Identities:

Identities Involving :

tan t � �tan1p � t2cos t � �cos1p � t2sin t � sin1p � t2
p � t

tan 1�t2 � �tan 1t2cos1�t2 � cos tsin1�t2 � �sin t

tan1t ± p2 � tan tcos1t ± 2p2 � cos tsin1t ± 2p2 � sin t

Important Facts 
and Formulas



In Exercises 11–14, solve triangle ABC.

11.

12.

13.

14.

15. From a point on level ground 145 feet from the base of a tower, the angle
of elevation to the top of the tower is How high is the tower?

16. A pilot in a plane at an altitude of 22,000 feet observes that the angle of
depression to a nearby airport is How many miles is the airport from
the point on the ground directly below the plane?

17. A lighthouse keeper 100 feet above the water sees a boat sailing in a
straight line directly toward her. As she watches, the angle of depression to
the boat changes from to How far has the boat traveled during this
time?

18. 19.

20. 21.

22. 23.

24. Find a number between 0 and such that an angle of radians 

in standard position is coterminal with an angle of radians in

standard position.

25. Through how many radians does the second hand of a clock move in 2
minutes and 40 seconds?

26. 10 revolutions per minute radians per minute

27. radians per minute revolutions per minute

28. If the terminal side of an angle of t radians in standard position passes
through the point then 

29. If the terminal side of an angle of t radians in standard position passes
through the point then 

30. If the terminal side of an angle of t radians in standard position passes
through the point (1.2, 3.5), then 

In Exercises 31–42, give the exact values.

31. 32. 33.

34. 35. 36. sin a�7p
4 btan 8p3cos 3p4

sin 7p6sin1�13p2cos 47p
2

sin t � ___ ? .

cos t � ___ ? .16, �82,

tan t � ___ ? .1�2, 32,

� ___ ?4p

� ___ ?

�
23p

3

u2pu

�135° � ___ ? radians220° � ___ ? radians

36° � ___ ? radians�
11p

4  radians � ___ ? degrees

17p
12  radians � ___ ? degrees9p

5  radians � ___ ? degrees

40°.25°

26°.

57.3°.

a � 3  c � 3

A � 56°  a � 11

C � 35°  a � 12

A � 40°  b � 10
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Section 6.2

Section 6.3

Section 6.4

c

b

a

A C

B
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37. 38. 39.

40. 41. 42.

43. The value of cos t is negative when the terminal side of an angle of t
radians in standard position lies in which quadrants?

In Exercises 44–46, express as a single real number (no decimal approximations
allowed).

44. 45.

46.

47. Write entirely in terms of sin t and cos t, then simplify.

48.

49. Which of the following could possibly be a true statement about a real
number t?
a.

b.

c.

d.

e.

50. If and then 

51. If and the terminal side of an angle of t radians in standard 

position lies in the third quadrant, then cos 

52. Simplify .

53. If 

54. Which of the statements (i)–(iii) are true?
(i)
(ii)
(iii)

a. (i) and (ii) only
b. (ii) only
c. (i) and (iii) only
d. all of them
e. none of them

tan 1�x2 � �tan x
cos 1�x2 � �cos x
sin 1�x2 � �sin x

sin a�101p
2 b � �1, then sin a�105p

2 b � ?

tan 1t � p2
sin 1t � 2p2

t � ___ ? .

sin t � �
4
5

cos t � ?sin t �
5

13 ,p

2 6 t 6 p

sin t �
3
5 and cos t �

4
5

sin t �
p

2  and cos t � 1 �
p

2

sin t � �1 and cos t � 1

sin t �
1
2 and cos t �

22
2

sin t � �2 and cos t � 1

S3 sin a p
5500b T 2 � S3 cos a p

5500b T 2 � ?

tan t
cot t

sin ap2 b � sin 0 � cos 0

asin p6 � 1b2

cos 3p4  sin 5p6 � sin 3p4  cos 5p6

csc 5p2sin p3sin a�11p
6 b

sec 2p3cos a�p6 bcot 4p3



55. Suppose is a real number. Consider the right triangle with sides as shown
in the figure. Then:
a.
b.
c.
d.
e. none of the above

56. Determine the following segment lengths in terms of a single trigonometric
function of t.
a. OR b. PR c. SQ d. OQ

x � 21cos u � sin u2
x � 4
x � 2
x � 1

u

Chapter Review 467

x

2 cos θ

2 sin θ

x

1

y

t

P

R S

Q

O
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Optimization with Trigonometry

Optimization problems involve finding a solution that is either a maxi-
mum or a minimum value of a function. Calculus is needed to find exact
solutions to most optimization problems, but tables or graphs can often
be used to find approximate solutions.

Example 1 Maximum Area

A gutter is to be made from a strip of metal 24 inches wide by bending
up the sides to form a trapezoid, as shown in Figure 6.C-1.

a. Express the area of the cross-section of the gutter as a function of the
angle t.

b. For what value of t will this area be as large as possible?

Solution

a. The cross-section of the gutter is a trapezoid, shown in Figure 6.C-2.
Figure 6.C-1

The bases are parallel, so
these alternate interior
angles are equal.8 8

b2

b1 = 8

h

x

t

t

Figure 6.C-2

The area of a trapezoid is 

Thus, the area of the cross-section is

.

b. To find the value of t that makes the area be as large as possible, 

first notice that t must be between 0 and By examining a 

table of values, it is possible to estimate the maximum value of A
over this interval.

p
2 � 1.57.

A �
8 sin t18 � 8 � 218 cos t2 2

2 � 4 sin t116 � 16 cos t2 � 64 sin t11 � cos t2

 So x � 8 cos t.           So h � 8 sin t.

 cos t �
x
8.           sin t �

h
8.

 The top base b2 � 8 � 2x, where   The height  is h, where

h1b1 � b22
2  .
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A good starting interval for the table is The table in 

Figure 6.C-3 shows the highest value at about 1.05, or 4p
12 �

p
3 .

p
12 � 0.26.

Trigonometric
functions often have
maxima and minima at
fractional multiples of It
is a good idea to try these
values as increments for a
table.

p.

NOTE

Figure 6.C-4Figure 6.C-3

6 ft

– t

8 ft

t
d1

d2

2
π

Figure 6.C-5

It is possible to confirm this value or get a better estimate by using a 

table with a smaller step size, such as Figure 6.C-4 con-

firms that appears to be the value of t that corresponds to the largest

area, about 
■

Example 2 Maximum Length

Two corridors meet at a right angle. One corridor is 6 ft wide, and the
other is 8 ft wide. A ladder is being carried horizontally along the corri-
dor. What is the maximum length of a ladder that can fit around the
corner?

Solution

The length of the longest ladder that fits around the corner is the same
as the shortest length of the red segment in Figure 6.C-5 as it pivots about
the corner. Let the part of the segment from the corner to the opposite
wall of the 6-ft corridor be and the part to the wall of the 8-ft corridor
be Then the desired length is 

For the angle t in Figure 6.C-5,

The function that describes the desired length is L �
6

sin t �
8

sin Qp2 � tR .

 d2 �
8

sinQp2 � tR d1 �
6

sin t  

 sinap2 � tb �
8
d2

 sin t �
6
d1

d1 � d2.d2.
d1,

83.1 in2.

p
3

p
144 � 0.02.
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To find the minimum of the function, note that t is between 0 and 

Construct a table with an increment of then use the minimum value 

to construct a table with an increment of The minimum appears to 

be at which corresponds to a length of about 19.7 ft.t � 0.74,

p
144.

p
12,

p
2 .

Figure 6.C-6

t2

statue
24 ft

pedestal
8 ft

t1

d

t eye level
5 ft

Figure 6.C-8

■

In Examples 1 and 2, an area and a length were represented in terms of
an angle to find the optimal solution. In the following example, the angle
is the quantity to be maximized.

Example 3 Maximum Viewing Angle

The best view of a statue is where the viewing angle is a maximum. In Fig-
ure 6.C-7, the height of the statue is 24 ft and the height of the pedestal is
8 ft. Find the distance from the statue where the viewing angle is optimal.

eye level
5 ft

t

Figure 6.C-7

Solution

In Figure 6.C-8, the angle The important quantities are oppo-
site and adjacent to the angles, so the tangent function is used to describe
the relationship.

t � tan˛

�1 
27
d

� tan˛

�1 
3
d

 t1 � tan˛

�1 27
d
  t2 � tan˛

�1 3
d

 tan t1 �
27
d
        tan t2 �

3
d

t � t1 � t2.
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To create a table, first notice that Start with a large increment, such
as 5 ft, and narrow the increment to refine your estimate, as shown in
Figure 6.C-9.

d 7 0.

Figure 6.C-9

The best distance to view the statue is at about 9 ft away. The viewing
angle at this distance is about 0.93 radians, which is about 

■
53°.

Exercises

Estimate the maximum value of the given function 

between 0 and by using tables with increments of

and 

1. 2.

3.

4.

5. The cross section of a tunnel is a semicircle with
radius 10 meters. The interior walls of the tunnel
form a rectangle.

f 1t2 � 2 cos t �
1

1 � sin t

f 1t2 � 3 sin t � sinap2 � tb
f 1t2 � sin t � 2 cos tf 1t2 � sin t cos t

P

144.P

12

P

2

a. Express the area of the rectangular cross-section
of the tunnel opening as a function of angle t.

b. For what value of t is the cross-sectional area of
the tunnel opening as large as possible? What are
the dimensions of the tunnel opening in this case?

6. A 30-ft statue stands on a 10-ft pedestal. Find the
best distance to view the statue, assuming eye level
is 5 ft (see Example 3).

7. Two towns lie 10 miles apart on opposite sides of a
mile-wide straight river, as shown. A road is to be
built along one side of the river from town A to
point X, then across the river to town B. The cost of
building on land is $10,000 per mile, and the cost
of building over the water is $20,000 per mile.
a. Express the cost of building the road as a

function of the angle t.
b. Find the minimum cost of the road.

y

t

10 10

x

1 mi

road

10 mi

X

t

B

A
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Graphs
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Stay tuned for more!

Radio stations transmit by sending out a signal in the form of an electromagnetic wave
that can be described by a trigonometric function. The shape of this signal is modified
by the sounds being transmitted. AM radio signals are modified by varying the
“height,” or amplitude, of the waves, whereas FM signals are modified by varying the
frequency of the waves. The signal displayed in the photo is from an AM radio station
found at 900 on the broadcast dial. See Exercise 65 of Section 7.3.
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7.1 Graphs of the Sine, Cosine, and Tangent Functions

7.2 Graphs of the Cosecant, Secant, and Cotangent

Functions

7.3 Periodic Graphs and Amplitude

7.4 Periodic Graphs and Phase Shifts

7.4.A Excursion: Other Trigonometric Graphs

Chapter Review

can do calculus Approximations with Infinite

Series

Chapter Outline
Interdependence of Sections

7.2

7.1 7.3 7.4

Graphs of trigonometric functions often make it very easy to see the

essential properties of these functions, particularly the fact that they

repeat their values at regular intervals. Because of the repeating, or peri-

odic, nature of trigonometric functions, they are used to model a variety

of phenomena that involve cyclic behavior, such as sound waves, elec-

tron orbitals, planetary orbits, radio transmissions, vibrating strings,

pendulums, and many more.•

7.1 Graphs of the Sine, Cosine,
and Tangent Functions

Although a graphing calculator will quickly sketch the graphs of the sine,
cosine, and tangent functions, it will not give you much insight into why
these graphs have the shapes they do and why these shapes are impor-
tant. So the emphasis in this section is the connection between the
functions’ definitions and their graphs.

Using radians and the unit circle, you learned in Chapter 6 that trigono-
metric functions can be defined as functions of real numbers. Using this
definition, you will see that the graphs of trigonometric functions are
directly related to angles in the unit circle.

Graph of the Sine Function

Consider an angle of t radians in standard position. Let P be the point
where the terminal side of the angle meets the unit circle. Then the 
y-coordinate of P is the number sin t. As t increases, the graph of 
can be sketched from the corresponding y-coordinates of P.

f 1t2 � sin t

Objectives

• Graph the sine, cosine, and
tangent functions

• State all values in the
domain of a basic
trigonometric function that
correspond to a given value
of the range

• Graph transformations of
the sine, cosine, and
tangent graphs

> >

>
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Change Movement sint
in t of point P (y-coordinate of P) Corresponding graph

from from (1, 0) to (0, 1) increases from 0 to 1

from from to decreases from 1 to 0

from from to decreases from 0 to 

from from to increases from to 0�111, 0210, �123p
2  to 2p

�110, �121�1, 02p to 3p2

1�1, 0210, 12p

2  to p

0 to p2

(1, 0)

(0, 1)
P

t

t

(−1, 0)

(0, 1)

P

t(−1, 0)

(0, −1)
P

t

(0, −1)

(1, 0)

P

3π
2

π π 2π
2

1

−1

y

t

3π
2

π π 2π
2

1

−1

y

t

3π
2

π π 2π
2

1

−1

y

t

3π
2

1

−1
π π 2π
2

y

t

CAUTION

Throughout this chapter, the independent variable used for
trigonometric functions will be t to avoid any confusion with the x
and y that are part of the definition of these functions. However,
using a graphing calculator in function mode, you must enter x as
the independent variable.



Your graphing calculator can provide a dynamic view of the graph of the
sine function and its relationship to points on the unit circle.

Section 7.1 Graphs of the Sine, Cosine, and Tangent Functions 475

To complete the graph of the sine function, note that as t goes from to
the point P on the unit circle retraces the path it took from 0 to so

the same curve will repeat on the graph. This repetition occurs each units
along the horizontal axis, therefore the sine function has a period of 
That is, for any real number t,

sin 1t ± 2p2 � sin t.

2p.
2p

2p,4p,
2p

Graph of the Cosine Function

Let P be the point where the terminal side of an angle of t radians in stan-
dard position meets the unit circle. Then the x-coordinate of P is the
number To obtain the graph of the same process asf 1t2 � cos1t2,cos t.

Graph of the
Sine Function

Graphing Exploration

With your graphing calculator in parametric mode, set the viewing
window as shown below, with a t-step of 0.1.

On the same screen, graph the two functions given below.

Use the trace feature to move the cursor along the first graph, which
is the unit circle. Stop at a point, and note the values of t and y.

Use the up or down key to move the cursor to the second graph,
which is the graph of the sine function. The value of t will remain
the same. What are the x- and y-coordinates of this point?

How does the y-coordinate of the new point compare with the 
y-coordinate of the original point on the unit circle?

X2 � t, Y2 � sin tX1 � cos t, Y1 � sin t

�2.5 � y � 2.5�
p
3 � x � 2p0 � t � 2p

−4π

t

0

1
h(t) = sin t

−1

π 2π 3π 4π−2π−3π −π

y



As the value of t increases, the point P on the unit circle retraces its path
along the unit circle, so the graph of repeats the same curve
at intervals of length Because the cosine function also has a period of

for any number t,

cos1t ± 2p2 � cos t.

2p,
2p.

f 1t2 � cos 1t2
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Change Movement cos t
in t of point P (x-coordinate of P) Corresponding graph

from from (1, 0) to (0, 1) decreases from 1 to 0

from from (0, 1) to decreases from 0 to 

from from to increases from to 0

from from to (1, 0) increases from 0 to 110, �123p
2  to 2p

�110, �121�1, 02p to 3p2

�11�1, 02p

2  to p

0 to p2
1

−1

3π
2

π 2ππ
2

y

t

1

−1

3π
2

π 2ππ
2

y

t

1

−1

3π
2

π 2ππ
2

y

t

1

−1

3π
2

π 2ππ
2

y

t
t

(0, −1)

(1, 0)

P

t(−1, 0)

(0, −1)
P

t

(−1, 0)

(0, 1)
P

(1, 0)

(0, 1)
P

t

that used for the sine function is followed, except the x-coordinate is
observed. The following chart illustrates the graph of the cosine function.



The graphs of the sine and cosine functions visually illustrate two basic
facts about these functions. Because the graphs extend infinitely to the
right and to the left,

the domain of the sine and cosine functions is the set 
of all real numbers.

Also, the y-coordinate of every point on these graphs lies between 
and 1 (inclusive), so that

the range of the sine and cosine functions is the interval 

You can use the period of the function to state all values of t for which
or is a given number, as shown in Examples 1 and 2.

Example 1 Finding All t-values

State all values of t for which is 

Solution

The sine function oscillates between and 1 and has a period of (i.e.,
it repeats the pattern every units on the horizontal axis), so there are an
infinite number of t-values for which sin t is These points occur every

units on the horizontal axis, and a few are highlighted in red on the graph
shown in Figure 7.1.1.y � sin t

2p
�1.

2p
2p�1

�1.sin t

cos tsin t

[�1, 1].

�1
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Graph of the
Cosine Function

Figure 7.1-1

t

1

0

3π
2

−1

π 2π 3π 4π−4π −3π −2π −π

y

2π 2π 2π

−4π 0

1
h(t) = cos t

−1

π 2π 3π 4π−2π−3π −π

t

y



On the interval highlighted in red on the graph above, the graph

of has only one point, , at which the y-coordinate is

Therefore, all values of t for which is can be expressed as 

where k is any integer.

■

Example 2 Finding All t-values

State all values of t for which is 

Solution

The cosine function repeats its pattern of y-values at intervals of 

so there are an infinite number of t-values for which is The graph of

shown in Figure 7.1-2 highlights a few points with a y-coordinate

of 1
2.

y � cos t

1
2.cos t

2p,

1
2.cos t

t �
3p
2 � 2kp,

�1sin t�1.

a3p
2 , �1by � sin t

30, 2p2,
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Figure 7.1-2

y

t

0

1

−1

π 2π 3π 4π−4π −π−2π−3π

1
2y =

5π
3

π
3

1

−1

−1

1

(cos t, sin t)

x

P

t

y

Figure 7.1-3

On the interval highlighted in red on the graph above, the graph

of has two points, at which the y-coordinate

is Therefore, all values of t for which is can be expressed as 

or where k is any integer.

■

Graph of the Tangent Function

To determine the shape of the graph of a connection between
the tangent function and slope can be used. As shown in Figure 7.1-3, the
point P where the terminal side of an angle of t radians in standard posi-
tion meets the unit circle has coordinates This point and the
point (0, 0) can be used to compute the slope of the line containing the ter-
minal side.

1cos t, sin t2.

f 1t2 � tan t,

5p
3 � 2kp,t �

p
3 � 2kp

1
2cos t1

2.

ap3 , 12b and a5p
3 , 12b,y � cos t

30, 2p2,



When the terminal side of the angle is vertical, so its slope is not

defined. The graph of the tangent function has vertical asymptotes at the
values of t for which the function is undefined.

To complete the graph of the tangent function, note that as t goes from

the terminal side goes from almost vertical with negative slope

to almost vertical with positive slope, exactly as it does from 

So the graph repeats this pattern at intervals of length p.

�
p
2  to  p2 .

p
2   to 3p2 ,

t � ± p2 ,
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Change Movement of tan t
in t terminal side (terminal side slope) Corresponding graph

from horizontal
upward toward increases from 0
vertical in the positive direction

from horizontal
downward toward decreases from 0
vertical in the negative directionfrom 0 to �p2

from 0 to p2

π
2

π− 2t

t

π
2

π− 2

The graph of can be sketched by noting the slope of the ter-
minal side of an angle of t radians, as t takes different values.

f 1t2 � tan t

slope �
sin t � 0
cos t � 0 �

sin t
cos t � tan t



Notice that the domain of the tangent function is all real numbers except

odd multiples of The range of the tangent function is all real numbers.

Because the tangent function has a period of for any number t in its
domain,

Example 3 Finding All t-values

State all values of t for which 

Solution

The tangent function repeats its pattern of y-values at intervals of so there
are an infinite number t-values for which The graph of 
shown in Figure 7.1-4 highlights a few points with a y-coordinate of �1.

y � tan ttan t is �1.
p,

tan t is �1.

tan1t ± p2 � tan t.

p,

p
2 .
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y

t
0

2

π

πππ

−π 2π

−2

7π
4

3π
4− 5π

4

−2π

y = −1

y = tan t

π
4−

Figure 7.1-4

Graph of the
Tangent

Function
h(t) = tan t

π

2

4

−2

−4

−π

t

y

π
2

− π
2

0
2π−2π 3π

2
− 3π

2

Technology 
Tip

Most calculators have a
window setting that 

automatically rescales the
horizontal axis in frac-
tional units of when 
in radian mode. On TI
models, select ZTRIG
in the ZOOM menu, 
and on Casio, select 
F3 (V-Window) then 
F2 (TRIG) from GRAPH
mode.

p

On the interval , highlighted in red on the graph above, the graph

of has only one point, at which the y-coordinate isa�p4 , �1b,y � tan t

S�p2 , p2 b



Therefore, all values of t for which is can be expressed as 

where k is any integer.

■

Basic Transformations of Sine, Cosine, and Tangent

The graphical transformations (such as shifting and stretching) that were
considered in Section 3.4 also apply to trigonometric graphs.

Example 4 Vertical Stretch

List the transformation needed to change the graph of into
the graph of Graph both equations on the same screen.

Solution

Because the graph of h is the graph of f after a vertical stretch
by a factor of 4. Both graphs are identified in Figure 7.1-5.

■

Example 5 Reflection and Vertical Stretch

Graph on the interval 

Solution

The graph of g is the graph of reflected across the x-axis and

compressed vertically by a factor of , as shown in Figure 7.1-6.1
2

f 1t2 � sin t

3�2p, 2p 4 .g 1t2 � �
1
2 sin t

h 1t2 � 4 � f 1t2,

h 1t2 � 4 cos t.
f 1t2 � cos t

t � �
p
4 � kp,

�1tan t�1.
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f(t) = cos t
h(t) = 4 cos t

−4

−2π 2π

4

Figure 7.1-5

f(t) = sin t

g(t) = − sin t1
2

π 2π

1

−1

−π−2π

t

y

Figure 7.1-6
■

Example 6 Vertical Shift

Graph on the interval 

Solution

The graph of h is the graph of shifted up 5 units.f 1t2 � tan t

3�3p, 3p 4 .h 1t2 � tan t � 5



■

Even and Odd Functions

Trigonometric functions can be classified as odd or even as determined
by their symmetry.

Even Functions
A graph is symmetric with respect to the y-axis if the part of the graph on
the right side of the y-axis is the mirror image of the part on the left side
of the y-axis.
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y

t

4

2

0

6

−2

8

π 3π−2π 2π−3π −π

Figure 7.1-7

For a complete
discussion of symmetry
and odd and even
functions, see Excursion
3.4.A.

NOTE

A function f whose graph is symmetric with respect to the y-axis is called
an even function.

Graphing Exploration

1. For each pair of functions f and g below, answer the following
questions.

and
and
and

• Is f symmetric with respect to the y-axis?
• Does the graph of g appear to coincide with the graph of 

2. If a graph is symmetric with respect to the y-axis, describe the
graph after a reflection across the y-axis.

f?

g 1t2 � tan 1�t2f 1t2 � tan t
g 1t2 � sin 1�t2f 1t2 � sin t
g 1t2 � cos 1�t2f 1t2 � cos t

A function f is even if

for every x in the domain of f.

The graph of an even function is symmetric with respect to
the y-axis.

f (�x) � f(x)

Even Function



For example, is an even function because

for every t in the domain of 

Odd Functions
If a graph is symmetric with respect to the origin, then whenever (x, y) is on
the graph, is also on the graph. A function f whose graph is sym-
metric with respect to the origin is called an odd function.

1�x, �y2

f 1t2 � cos t.cos 1�t2 � cos t

f 1t2 � cos t
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A function f is odd if

for every x in the domain of f.

The graph of an odd function is symmetric with respect to
the origin.

f(�x) � �f(x)

Odd Function

For example, and are odd functions because

for every t in the domain of 
for every t in the domain of g 1t2 � tan t.tan 1�t2 � �tan t

f 1t2 � sin tsin 1�t2 � �sin t

g1t2 � tan tf 1t2 � sin t

Summary of the Properties of Sine, Cosine, and Tangent Functions

Function Symbol Domain Range Period Even/Odd

sine all real numbers all real numbers from odd
to 1, inclusive

cosine all real numbers all real numbers from even
to 1, inclusive

tangent all real numbers except all real numbers odd

odd multiples of p2

pf 1t2 � tan t

2p�1f 1t2 � cos t

2p�1f 1t2 � sin t

Exercises 7.1

In Exercises 1–6, graph each function on the given
interval.

1.

2.

3.

4.

5. g 1t2 � cos t; S 7p6 , 7p2 T
f 1t2 � sin t; 3�5p, �3p 4
h 1t2 � tan t; 3p, 2p 4
g 1t2 � cos t; 3p, 3p 4
f 1t2 � sin t; 32p, 6p 4

6.

7. For what values of t on the interval is

8. For what values of t on the interval is

9. What is the maximum value of 

10. What is the minimum value of f 1t2 � sin t?

g 1t2 � cos t?

cos t � 0?
3�2p, 2p 4

sin t � 1?
3�2p, 2p 4

h 1t2 � tan t; S 5p3 , 3p T



11. For what values of t on the interval 
does the graph of have vertical
asymptotes?

12. What is the y-intercept of the graph of

13. What is the y-intercept of the graph of 

14. What is the y-intercept of the graph of

15. For what values of t on the interval
increasing?

16. For what values of t on the interval 
decreasing?

17. For what values of t on the interval is
tan t greater than 1?

18. For what values of t on the interval is
tan t less than 0?

19. For what values of t on the interval 
increasing?

In Exercises 20–33, find all the exact t-values for which
the given statement is true.

20. 21.

22. 23.

24. 25.

26. 27.

28. 29.

30. 31.

32. 33.

In Exercises 34–43, list the transformations that change
the graph of f into the graph of g. State the domain and
range of g.

34.

35. f 1t2 � cos t;  g 1t2 � �cos t

f 1t2 � cos t;  g 1t2 � cos t � 2

tan t � 23cos t � �1

cos t � �
22
2tan t � �

23
3

sin t �
1
2sin t � 1

cos t �
23
2cos t � 0

sin t � �
23
2tan t � 1

cos t � �
1
2sin t � 0

sin t �
22
2tan t � 0

h 1t2 � tan t
3p, 2p 4  is 

3�2p, 2p 4

3�2p, 2p 4
g 1t2 � cos t

3�3p, �p 4  is 

3�p, p 4  is f 1t2 � sin t

h 1t2 � tan t?

cos t?g 1t2 �
f 1t2 � sin t?

h 1t2 � tan t
3�2p, 2p 4
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36.

37.

38.

39.

40.

41.

42.

43.

In Exercises 44– 48, sketch the graph of each function.

44. 45.

46. 47.

48.

In Exercises 49–54, match a graph to a function. Only
one graph is possible for each function.

49. 50.

51. 52.

53. 54. f 1t2 � �cos t � 1g 1t2 � 3 tan t � 1

f 1t2 � �2.5 sin th 1t2 � �sin t � 1

g 1t2 � 2.5 cos th 1t2  � �2 tan t

f 1t2 � 3 sin t �
1
2

f 1t2 � �
1
4 cos tf 1t2 � 4 tan t

f 1t2 � 5 sin t � 1f 1t2 � �2 cos t

f 1t2 � sin t;  g 1t2 � sin t � 3

f 1t2 � cos t;  g 1t2 � 5 cos t � 3

f 1t2 � sin t;  g 1t2 � 3 sin t � 2

f 1t2 � sin t;  g 1t2 � �2 sin t

f 1t2 � cos t;  g 1t2 � 3 cos t

f 1t2 � tan t;  g1t2 � �tan t

f 1t2 � tan t;  g 1t2 � tan t � 5

f 1t2 � sin t;  g 1t2 � �3 sin t

�2π

3

�3

2π

�2π 2π

�3

3

a.

b.
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55. Fill the blanks with “even” or “odd” so that the
resulting statement is true. Then prove the
statement by using an appropriate identity.
Excursion 3.4.A may be helpful.
a. is an ___ function.
b. is an ___ function.
c. is an ___ function.
d. is an ___ function.
e. is an ___ function.

In Exercises 56–59, find tan t, where the terminal side
of an angle of t radians lies on the given line.

56. 57.

58. 59. y � 11xy � 0.32x

y � 1.4xy � 1.5x

g 1t2 � t � tan t
f 1t2 � t sin t
h 1t2 � tan t
g 1t2 � cos t
f 1t2 � sin t

60. Scientists theorize that the average temperature at
a specific location fluctuates from cooler to
warmer and then to cooler again over a long
period of time. The graph shows a theoretical
prediction of the average summer temperature for
the last 150,000 years for a location in Alaska.

a. Find the highest and lowest temperature
represented.

b. Over what time interval does the temperature
repeat the cycle?

c. What is the estimated average summer
temperature at the present time?

61. A rotating beacon is located at point P, 5 yards
from a wall. The distance d, as measured along 
the wall, where the light shines is given by

where t is time measured in seconds since the
beacon began to rotate. When the light is
aimed at point A. When the beacon is aimed to 
the right of A, the distance d is positive, and when
it is aimed to the left of A, the value of d is
negative.

Graph the function and estimate the value of d for
the following times.
a. b.
c. d.
e. Determine the position of the beacon when

and discuss the corresponding value
of d for that value of t.
t � 0.25

t � 1.4t � 0.7
t � 0.5t � 0

P

A

d

5 yds

t � 0,

d � 5 tan 2pt

Years Ago

85

70

55

60

65

80

75

−50000−100000−150000

Tem
perature

�2π

�3

3

2π

�π π

�3

3

�2π 2π

�3

3

�π π

�3

3

c.

d.

e.

f.



Because and are reciprocals, is not defined when 
that is, when t is an integer multiple of Therefore, the domain of

is all real numbers except integer multiples of and the graph
of has vertical asymptotes at integer multiples of p.f 1t2 � csc t

p,f 1t2 � csc t
p.

sin t � 0;csc tcsc tsin t
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7.2 Graphs of the Cosecant, Secant, and
Cotangent Functions

The graphs of that were developed in
Section 7.1 are closely related to the graphs of the reciprocal functions

that are studied in this section.

Graph of the Cosecant Function

The general shape of the graph of can be determined by using 

the graph of the sine function and the fact that csc t �
1

sin t .

f 1t2 � csc t

y � csc t, y � sec t, and y � cot t

y � cos t, and y � tan ty � sin t,Objectives

• Graph the cosecant,
secant, and cotangent
functions

• Graph transformations of
the cosecant, secant, and
cotangent graphs

Graphing Exploration

Graph the two functions below on the same screen in a viewing
window with and 

How are the graphs alike and how are they different?

f 1 t2 � sint  g 1 t2 �
1

sint

�4 � y � 4�2p � t � 2p

Graph of the
Cosecant
Function y = csc t

2

4

−2

−4

t

y

−π π−2π 2π

y = sin t

Notice that as the graph of increases to a height of 1, the graph
of decreases to a height of 1, and as the graph of 
decreases to a height of the graph of increases to a heightf 1t2 � csc t�1,

y � sin tf 1t2 � csc t
y � sin t



of The range of is all real numbers greater than or equal
to 1 or less than or equal to The period of the cosecant function is 

Example 1 Reflection and Vertical Stretch

Graph 

Solution

First consider the graph of which is the graph of 
stretched vertically by a factor of 3 and reflected across the horizontal
axis. The relationship between the graph of and that of

is similar to that between as shown
in Figure 7.2-1.

y � csc t and y � sin t,h 1t2 � �3 csc t
y � �3 sin t

y � sin ty � �3 sin t,

h 1t2 � �3 csc t.

2p.�1.
f 1t2 � csc t�1.
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y

t
0

4 h(t) = −3 csc t

y = −3sin t

8

−8

−4

3π
2

− 3π
2

−2π −π 2πππ
2

− π
2

Figure 7.2-1
■

Graph of the Secant Function

The graph of is related to the cosine graph in the same way
that the graph of is related to the sine graph.f 1t2 � csc t

f 1t2 � sec t

Graphing Exploration

Graph the two functions below on the same screen in a viewing
window with and 

How are the graphs alike and how are they different?

f 1t2 � cos t  g 1t2 �
1

cos t

�4 � y � 4.�2p � t � 2p

Because and are reciprocals, is not defined when 

that is, when t is an odd multiple of Therefore, the domain of 

is all real numbers except odd multiples of and the range 

of is all real numbers greater than or equal to 1 or less than
or equal to The period of the secant function is 2p.�1.

f 1t2 � sec t

p
2 ,f 1t2 � sec t

p
2 .

cos t � 0;sec tsec tcos t
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Example 2 Vertical Stretch and Vertical Shift

Graph 

Solution

First graph which is the graph of stretched 
vertically by a factor of 2 and shifted down 3 units. The graphs of

and are related in the same way as the
graphs of and as shown in Figure 7.2-2.y � cos t,y � sec t

y � 2 cos t � 3g 1t2 � 2 sec t � 3

y � cos ty � 2 cos t � 3,

g 1t2 � 2 sec t � 3.

■

Graph of the Cotangent Function

Because the graph of can be obtained by graph-

ing the quotient

The cotangent function is not defined when , and this occurs
whenever t is an integer multiple of Therefore the domain of
f(t) cot t consists of all real numbers except integer multiples of and
the range of f(t) cot t is the set of real numbers. The graph of 
has vertical asymptotes at integer multiples of p.

f 1t2 � cot t�
p,�

p.
sin t � 0

y �
cos t
sin t .

f 1t2 � cot tcot t �
cos t
sint ,

Graph of the
Secant Function g(t) = sec t

y = cos t
2

4

−2

−4

−π−2π

t

y

π 2π

−2π 2π

y

t

−2
0

2
4
6

−8
−10

−6
−4

−π π

g(t) = 2 sec t − 3

y = 2 cos t − 3

Figure 7.2-2
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Notice that as the graph of increases, the graph of 
decreases, and as the graph of decreases, the graph of 
increases. The period of the cotangent function is 

Example 3 Reflection, Vertical Stretch, and Horizontal Shift

Graph 

Solution

The graph of is the graph of after a hori-

zontal shift of units to the right, a reflection across the horizontal axis, 

and a vertical stretch by a factor of 3. The graph of 

is shown with the graph of in Figure 7.2-3 below.y � cot t

k 1t2 � �3 cotat �
p
4 b

p
4

y � cot tk 1t2 � �3 cotat �
p
4 b

k 1t2 � �3 cotat �
p
4 b.

p.
f 1t2 � cot ty � tan t
f 1t2 � cot ty � tan t

■

Even and Odd Functions

The fact that the cosecant, secant, and cotangent functions are reciprocals
of the sine, cosine, and tangent functions, respectively, can be used to
determine whether the functions are even or odd.

Graph of the
Cotangent

Function

−2π 2π

y

t
0

2

4

−4

−2

−π ππ
2

−3π
2

− 3π
2

π
2

y = tan t 

f(t) = cot t

y

t
2

0

4
6
8

−6
−8

−4
−2−π−2π 2ππ

y = cot t

k(t) = −3 cot ( )t −
4
π

Figure 7.2-3
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The secant function is an even function, as shown below.

The cosecant and cotangent functions are odd functions.

 cot 1�t2 �
cos 1�t2
sin1�t2 �

cos t
�sin t � �

cos t
sin t � �cot t 

 csc 1�t2 �
1

sin1�t2 �
1

�sin t � �
1

sin t � �csc t

sec 1�t2 �
1

cos1�t2 �
1

cos t � sec t

Summary of the Properties of Secant, Cosecant, and Cotangent Functions

Function Symbol Domain Range Period Even/Odd

secant all real numbers except all real numbers less even

odd multiples of 
than or equal to or
greater than or equal to 1

cosecant all real numbers except all real numbers less odd
multiples of than or equal to or

greater than or equal to 1

cotangent all real numbers except all real numbers odd
multiples of p

pf 1t2 � cot t

�1p

2pf 1t2 � csc t

�1p

2

2pf 1t2 � sec t

Exercises 7.2

In Exercises 1–10, describe the transformations that
change the graph of or

into the graph of the given function.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

In Exercises 11–17, state the rule of a function g whose
graph is the given transformation of the graph of f.

j 1t2 � �
1
4 sec1t2v 1t2 � p csc t

s 1t2 � 5 � cot 1t � 22q 1t2 � sec 1�t2 � 8

k 1t2 � �2 csc tp 1t2 �
1
2 sec t � 1

r 1t2 � �2 cot 1t2m 1t2 � csc1t2 � 4

q 1t2 � 5 cot 1t � 32s 1t2 � 3 sec t � 2

h(t) � cot t
f(t) � csc t, g(t) � sec t,

11. stretched vertically by a factor of 3
and shifted 1 unit to the left

12. compressed vertically by a factor of 0.5
and shifted 1 unit up

13. reflected across the horizontal axis and

compressed vertically by a factor of 

14. reflected across the vertical axis and
shifted down 2 units

15. shifted units to the right and 5 units

down

16. compressed vertically by a factor 
of 0.75
f 1t2 � csc t

p

2f 1t2 � csc t

f 1t2 � cot t

1
4

f 1t2 � sec t

f 1t2 � csc t

f 1t2 � sec t
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17. reflected across the vertical axis and
across the horizontal axis

In Exercises 18–21, match graph a, b, c, or d with each
function.

y

t
2

0

4

6

−4

−6

−2
−1π 1ππ

2
− π

2

y

t
2

0

4

6

−4

−6

−2
−1π 1ππ

2
− π

2

y

t
2

0

4

6

−4

−6

−2
−1π 1ππ

2
− π

2

y

t
2

0

4

6

−4

−6

−2
−1π 1ππ

2
− π

2

f 1t2 � cot t 18. 19.

20. 21.

In Exercises 22–25, match graph a or b with each 
function.

f 1t2 � 2 cot t � 1f 1t2 � 2 cot t � 1

f 1t2 �
1
2 cot t � 1f 1t2 �

1
2 cot t � 1

a.

b.

c.

d.

y

t1
2

0

4
3

5

−3
−4
−5

−1
−2

−1π 1ππ
2− − π

4− 3π
4

3π
4

π
4

π
2

y

t1
2

0

4
3

5

−3
−4
−5

−1
−2

−1π 1ππ
2− − π

4− 3π
4

3π
4

π
4

π
2

a.

b.

y

t1
2

0

4
3

5

−3
−4
−5

−1
−2

1ππ
2− − π

4
3π
4

5π
4

3π
2

π
4

π
2

a.

22. 23.

24. 25.

In Exercises 26–29, match graph a or b with each 
function.

f 1t2 � �csc 1�t2f 1t2 � csc 1�t2
f 1t2 � csc tf 1t2 � �csc t



26. 27.

28. 29.

In Exercises 30–33, match graph a or b with each 
function.

f 1t2 � �sec 1t2f 1t2 � sec 1t2
f 1t2 � sec 1�t2f 1t2 � �sec 1�t2
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30. 31.

32. 33.

In Exercises 34–38, graph at least one cycle of the given
function.

34. 35.

36. 37.

38.

39. Critical Thinking Show graphically that the
equation sec has infinitely many solutions,

but none between 

40. Critical Thinking A rotating beacon is positioned 5
yards from a wall at P. In the figure, the distance
a is given by 

where t is the number of seconds since the beacon
began to rotate.

a. Use the graph of a as a function of t to find a
for the following times.

b. For what values of t is 
c. How fast is the beacon rotating?

a � 5?

t � 0  t � 0.75  t � 1

a � 5 0 sec 2pt 0 ,

�
p

2  and p2 .

t � t

f 1t2 � �3 sec 1t � p2
f 1t2 �

3
4  csc t

2f 1t2 � 5 cscat � p2 b
f 1t2 � �cot 3t � 4f 1t2 � sec 2t

f 1t2 � cot 1t2f 1t2 � �cot 1t2
f 1t2 � cot 1�t2f 1t2 � �cot 1�t2y

t1
2

0

4
3

5

−3
−4
−5

−1
−2

1ππ
2− − π

4
3π
4

5π
4

3π
2

π
4

π
2

b.

y

t1
2

0

4
3

5

−3
−4
−5

−1
−2

−1π 1ππ
2− − π

4− 3π
4

3π
4

π
4

π
2

a.

y

t1
2

0

4
3

5

−3
−4
−5

−1
−2

−1π 1ππ
2− − π

4− 3π
4

3π
4

π
4

π
2

b.

A

d

5 yds
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7.3 Periodic Graphs and Amplitude

A surprisingly large number of physical phenomena can be described by
functions like the following:

In this section and in the next, the graphs of such functions will be ana-
lyzed. All of these functions are periodic and their graphs consist of a
series of identical waves. A single wave of the graph is called a cycle. The
length of each cycle is the period of the function.

f 1t2 � 5 sin 13t � 42    and    g 1t2 � �4 cos 10.5t � 12 � 3

Objectives

• State the period and
amplitude (if any) given the
function rule or the graph of
a sine, cosine, or tangent
function

• Use the period and
amplitude (if any) to sketch
the graph of a sine, cosine,
or tangent function

0 2π

�2

2

sine cycle

0 2π

�2

2

cosine cycle

Figure 7.3-1

Figure 7.3-2

Every cycle for the sine function resembles the graph of from
as shown in Figure 7.3-1.

• beginning at a point midway between its maximum and minimum
value

• rising to its maximum value
• falling to its minimum value
• returning to the beginning point

Every cycle repeats the same pattern.

0 to 2p,
f 1t2 � sin t

Similarly, every cycle for the cosine function resembles the graph of
from 0 to as shown in Figure 7.3-2.2p,g 1t2 � cos t



• beginning at its maximum value
• falling to its minimum value
• returning to the beginning point

Again, every cycle repeats the same pattern.

Period

Before proceeding to the discussion about functions that have different
periods, it will be helpful to consider functions of the form

where b is a constant. The constant b changes the period of the sine or
cosine function. Its effect on the graph is to increase or decrease the length
of each cycle.

f 1t2 � sin bt  and  g 1t2 � cos bt
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The exploration above suggests the following rule.

If then the graph of either

makes b complete cycles between and each function

has a period of 2P
b

.

0 and 2P,

f(t) � sin bt  or  g(t) � cos bt

b 77 0,
Period of 

sin bt and 
cos bt

The graph of completes one cycle as t takes on values from
Similarly, the graph of completes one cycle as 3t takes

on values from 

.

Therefore, the graph of completes one cycle as t takes on val-

ues from as shown in Figure 7.3-3.0 to 2p3 ,

g 1t2 � sin 3t

 When 3t � 2p, t must be 2p3

 When 3t � 0, t must be 0.

0 to 2p.
g 1t2 � sin 3t0 to 2p.

h 1t2 � sin ty

t
0

g(t) = sin 3t
1

−1

π
3

2π
3

4π
3

5π
3

π 2π

Figure 7.3-3

Graphing Exploration

Graph each function below, one at a time, in a viewing window
with Answer the questions that follow for each func-
tion.

Determine the number of complete cycles between 0 and 

Find the period, or length of one complete cycle. Hint: Use division.

2p.

f 1t2 � cos 4t  h 1t2 � sin 5t

0 � t � 2p.



Example 1 Determining Period

Determine the period of each function.

a.

b.

Solution

a. The function has a period of as shown in
Figure 7.3-4.

2p
b

�
2p
3 ,k 1t2 � cos 3t

f 1t2 � sin t
2

k 1t2 � cos 3t
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k(t) = cos 3t

π
3

π

1

−1

t

y

2π

1 cycle 1 cycle 1 cycle

3
2π5π

3
4π
3

f(t) = sin

−1π

1

−1

t

y

−2π

t
2

1 cycle

2π1π

Figure 7.3-4

b. Rewrite The function 

has a period of as shown in Figure 7.3-5.2p
b

�
2p
1
2

� 4p,

f 1t2 � sina1
2 tbf 1t2 � sin t

2 as f 1t2 � sina1
2 tb.

Figure 7.3-5
■



The exploration above suggests the following rule.
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Period of
tan bt 

Example 2 Determining Period

Determine the period of each function.

a. b.

Solution

a. The function has a period of It completes one

cycle between as shown in Figure 7.3-6.�
p
4  and p4 ,

p

b
�
p
2 .k 1t2 � tan 2t

f 1t2 � tan t
3k 1t2 � tan 2t

y

t

2

0

4

−4

−2
π
4

−π
2

− π
4

π
2

k(t) = tan 2t

Figure 7.3-6

Graphing Exploration

Graph each function below, one at a time, in a viewing window

with Answer the questions that follow for each function.

Determine the number of complete cycles between 

Find the period, that is, the length of one complete cycle.

�
p
2  and p2 .

f 1t2 � tan 3t  g 1t2 � tan 4t

�
p
2 � t �

p
2 .

If then the graph of

makes b complete cycles between and the

function has a period of p
b

.

�
p
2  and p2 ,

f(t) � tan bt

b 77 0,

CAUTION

A calculator may not produce an accurate graph of or
for large values of b. For instance, the graph of

has 50 complete cycles between 0 and but that is not what
your calculator will show. (try it!)

2p,

f 1t2 � sin 50t

g 1t2 � cosbt
f 1t2 � sinbt



b. Rewrite as as The function has a period

of as shown in Figure 7.3-7.

■

Amplitude

Recall from Section 3.4 that multiplying the rule of a function by a posi-
tive constant has the effect of stretching or compressing its graph
vertically.

Example 3 Vertical and Horizontal Stretches or Compressions

Graph each function.

a. b.

Solution

a. The function is the function multiplied
by 7. Consequently, the graph of g is the graph of k (see Example 1a)
stretched vertically by a factor of 7.

As Figure 7.3-8 shows, stretching the graph affects only the height of
the waves in the graph, not the period of the function. So the period

of g is the same as that of namely 

b. The function is the function multiplied by

Consequently, the graph of h is the graph of f (see Example 1b)

vertically compressed by a factor of The period of h is the same

as the period of f, namely 

■

As the graphs in Example 3 illustrate, vertically stretching or compress-
ing the graph affects only the height, not the period of the function.

The graph of in Example 3 reaches a maximum value of 
7 units above the horizontal axis and a minimum value of 7 units below
the horizontal axis. In general, the graph of or 
reaches a distance of units above and below the horizontal axis, and
is said to have an amplitude of The graph of g(t) � 7 cos 3t has an
amplitude of 7.

0 a 0 .0 a 0 g 1t2 � a cos btf 1t2 � a sin bt

g 1t2 � 7 cos 3t

2p
b

�
2p
1
2

� 4p.

1
3.

1
3.

f 1t2 � sin t
2h 1t2 �

1
3 sin t

2

2p
b

�
2p
3 .k 1t2 � cos 3t,

k 1t2 � cos 3tg 1t2 � 7 cos 3t

h 1t2 �
1
3 sin t

2g 1t2 � 7 cos 3t

p

b
�
p
1
3

� 3p,

f 1t2 � tan a1
3 tb.f 1t2 � tan t

3

Section 7.3 Periodic Graphs and Amplitude 497

y

t
0

2

4

−4

π−π
2−3π

2− 3π
2

π π
2

t
3f(t) = tan

Figure 7.3-7

g(t) = 7 cos 3t

k(t) = cos 3t

−π −−

7

−7

t

y

1

π
3

π
3

2π π
3

2π
3

Figure 7.3-8

Figure 7.3-9

y

t

1

−1

−π

1
3

− 1
3

0
π 2π−2π

t
2

t
2

f(t) = sin

1
3h(t) = sin
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Example 4 Determining Amplitude and Period

Determine the amplitude and period of Then graph f on

the interval 

Solution

The amplitude of is and the period of

is So the graph of f consists of cycles that 

are long and rise and fall between the heights of and 2. To graph 

this function, be sure to notice that its graph is the reflection of
across the horizontal axis, as shown in Figure 7.3-10.

■

Although the graph of any function can be vertically stretched or com-
pressed, amplitude only applies to bounded periodic functions.

h 1t2 � 2 sin 4t

�2p
2

2p
b

�
2p
4 �

p
2 .f 1t2 � �2 sin 4t

0 a 0 � 0�2 0 � 2,f 1t2 � �2 sin 4t

S�p2 , p2 T .
f 1t2 � �2 sin 4t.

y

t

1

0

2

−2

π
2− π

4− π
2

π
4

f(t) = −2 sin 4t

h(t) = 2 sin 4t

Figure 7.3-10

Exercises 7.3

In Exercises 1–15, state the amplitude (if any) and
period of each function.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. f 1t2 �
1
3 tan pt

4

f 1t2 � 2 sin 2pt
3f 1t2 � 5 cos 1.7t

f 1t2 � �
1
2 tan 3tf 1t2 �

1
2 sin 3t

f 1t2 � �tan 0.4tf 1t2 � �0.3 sin t
3

f 1t2 � 1.2 cos 0.5tf 1t2 � 5 tan 2t

f 1t2 � �3 sin tf 1t2 � 4 cos t

f 1t2 � 2.5 tan tf 1t2 � cos 3t

f 1t2 � sin 2tf 1t2 � �cos t

16. a. What is the period of 
b. For what values of t (with ) is

c. For what values of t (with ) is

d. For what values of t (with ) is

17. a. What is the period of 
b. For what values of t (with ) is

c. For what values of t (with ) is

d. For what values of t (with ) is

18. a. What is the period of 

b. For what values of t (with ) is

f 1t2 � 0?

�
1
2 � t �

1
2

f 1t2 � tan pt?

f 1t2 � �1?
0 � t � 2

f 1t2 � 1?
0 � t � 2

f 1t2 � 0?
0 � t � 2

f 1t2 � cos pt?

f 1t2 � �1?
0 � t � 1

f 1t2 � 1?
0 � t � 1

f 1t2 � 0?
0 � t � 1

f 1t2 � sin 2pt?

If and then each of the functions

or

has an amplitude of and a period of 2p
b

.00 a 00
g(t) � a cos btf(t) � a sin bt

b 77 0,a � 0
Amplitude 

and Period  
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In Exercises 39–44, sketch at least one cycle of the
graph of each function.

39. 40.

41. 42.

43. 44.

In Exercises 45–50, match a graph to a function. Only
one graph is possible for each function.

f 1t2 � tan pt
2f 1t2 � 3.5 sin 2pt

f 1t2 � �0.8 cos ptf 1t2 � 2 tan 3t

f 1t2 �
2
3 sin 2tf 1t2 � 4 cos t

2

�2π 2π

�5

5

�2π 2π

�5

5

c. For what values of t (with ) is

d. For what values of t (with ) is

In Exercises 19–38, describe the transformations that
change the graph of f into the graph of g. State the
amplitude (if any) and the period of g.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38. f 1t2 � cos t; g1t2 �
5
3 cos pt

3

f 1t2 � tan t; g1t2 �
1
3 tan pt

f 1t2 � sin t; g1t2 � �2 sin 3pt
5

f 1t2 � cos t; g1t2 �
2
5 cos 8t

f 1t2 � cos t; g1t2 � 3 cos 6t

f 1t2 � tan t; g1t2 � �2 tan 0.2t

f 1t2 � tan t; g1t2 � �2 tan t
2

f 1t2 � sin t; g1t2 � 5 sin 2t

f 1t2 � sin t; g1t2 � 4 sin t
2

f 1t2 � tan t; g1t2 �
1
3 tan t

f 1t2 � cos t; g1t2 �
1
2 cos t

f 1t2 � sin t; g1t2 � 3 sin t

f 1t2 � cos t; g1t2 � cos 2.6t

f 1t2 � sin t; g1t2 � sin 1.6t

f 1t2 � sin t; g1t2 � sin 1�t2
f 1t2 � tan t; g1t2 � tan 1�t2
f 1t2 � cos t; g1t2 � cos 1�t2
f 1t2 � cos t; g1t2 � cos 8t

f 1t2 � tan t; g1t2 � tan 3t

f 1t2 � sin t; g1t2 � sin 5t

f 1t2 � �1?

�
1
2 � t �

1
2

f 1t2 � 1?

�
1
2 � t �

1
2

a.

�2π 2π

�10

10c.

�2π 2π

�5

5d.

b.
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45. 46.

47. 48.

49. 50.

In Exercises 51–56, write an equation for a sine func-
tion with the given information.

51.

52.

53.

54.

55.

56.

In Exercises 57–59, state the rule of a sine function
whose graph appears to be identical to the given graph.

57.

π
2

2

−2

0
t

y

amplitude � 6, period �
1
2

amplitude �
3
2, period � 4

amplitude � 1, period � 2

amplitude � 1.8, period �
3p
2

amplitude �
1
2, period �

p

2

amplitude � 2, period � 4p

f 1t2 � 3 tan 2t f 1t2 � 5 tan t
3

f 1t2 � �3 sin t
2f 1t2 � 3 cos t

2

f 1t2 � �3 cos 2tf 1t2 � 3 sin 2t

58.

59.

In Exercises 60–64, state all local minima and maxima
of the function on the given interval.

60.

61.

62.

63.

64.

65. The current generated by an AM radio transmitter
is given by a function of the form

where is
the location on the broadcast dial and t is
measured in seconds. For example, a station at
900 on the AM dial has a function of the form

Sound information is added to this signal by
modulating A, that is, by changing the amplitude
of the waves being transmitted. AM means
amplitude modulation. For a station at 900 on the
dial, what is the period of function 

66. Find the function f, its period, and its frequency
for a radio station at 1440 on the dial. (See
Exercise 65.)

f ?

f 1t2 � A sin 2000p19002 t � A sin 1,800,000pt

550 � m � 1600f 1t2 �  A sin 2000 pmt,

f 1t2 � 3 sin 2pt; �1.5 � t � 1.5

f 1t2 � sin t
3; �2p � t � p

f 1t2 � cos t
2; �2p � t � p

f 1t2 � cos 3t; 0 � t � p

f 1t2 � sin 2t; 0 � t � p

2π
5

5

−5

0

t

y

2π
3

3

−3

0
t

y

�2π 2π

�5

5e.

�2π 2π

�10

10f.
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y = cos t

k(t) = −2 cos t + 3

π 2π

1

2

3

4

5

−1−π−2π

t

y

Figure 7.4-1

7.4 Periodic Graphs and Phase Shifts

In Section 7.3, you studied graphs of functions of the form

and

and learned how the constants a and b affect the amplitudes and periods
of the functions. In this section, you will consider functions of the form

and

where a, b, c, and d are constants, and you will determine how these con-
stants affect the graphs of the functions.

Vertical Shifts

Recall from Section 3.4 that adding a constant to the rule of a function
shifts the graph vertically. Example 1 illustrates a vertical shift in combi-
nation with a reflection and a change in amplitude.

Example 1 Reflection, Vertical Stretch, and Vertical Shift

Describe the graph of Then graph k on the interval

Solution

The graph of is the graph of reflected
across the horizontal axis, vertically stretched by a factor of 2, and shifted
3 units upward, as shown in Figure 7.4-1.

g 1t2 � cos tk1t2 � �2 cos t � 3

3�2p, 2p 4 . k 1t2 � �2 cos t � 3.

g 1t2 � a cos1bt � c2 � df 1t2 � a sin1bt � c2 � d

g 1t2 � a cos btf 1t2 � a sin bt

Objectives

• State the period, amplitude,
vertical shift, and phase
shift given the function rule
or graph of a sine or cosine
function

• Use graphs to determine
whether an equation could
possibly be an identity

After the vertical shift, the graph of is vertically cen-
tered on the horizontal line 

■
y � 3.

k 1t2 � �2 cos t � 3

5910ac07_472-519  6/29/06  4:59 PM  Page 501
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Phase Shifts

Recall from Section 3.4 that when the independent variable t in the rule
of a function is replaced by , where c is a constant, the graph is shifted
horizontally. For periodic functions, the number c is the phase shift asso-
ciated with the graph.

Example 2 Phase Shift

Describe the graph of each function.

a. b.

Solution

a. The graph of is the graph of shifted to 

the left units, as shown in Figure 7.4-2.p
2

f 1t2 � sin tg1t2 � sinat �
p
2 b

h1t2 � cosat �
2p
3 bg1t2 � sinat �

p
2 b

t � c

y

t

1

0

−1

−π−2π π 2π

2
πg(t) = sin( )t + 2

π
2
π

f(t) = sin t

�

Figure 7.4-2

When the graph of is shifted to become the graph of 

the cycle of f that begins at becomes a cycle 

of g that begins at Thus, g has a phase shift of 

b. The graph of is the graph of shifted to 

the right units, as shown in Figure 7.4-3. 2p
3

f 1t2 � cos th 1t2 � cosat �
2p
3 b

�
p
2 .t � �

p
2 .

t � 0g 1t2 � sinat �
p
2 b,

f 1t2 � sin t

y

t

1
3

0

−1

−π−2π π

2π

2π

h(t) = cos( )t −

3
2π

f(t) = cos t

Figure 7.4-3
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The cycle of that begins at becomes a cycle of 

that begins at Thus, the function h has a 

phase shift of 

■

Combined Transformations

Now that you are familiar with the effects of various transformations on
the sine and cosine functions, you are ready for some examples that simul-
taneously include changes in amplitude, period, and phase shift.

Example 3 Combined Transformations

State the amplitude, period, and phase shift of 

Solution

Rewrite the function rule.

When the rule of f is written in this form, you can see that it is obtained

from the rule of by replacing t with Therefore, the

graph of f can be obtained by horizontally shifting the graph of k to the

left units, as shown in Figure 7.4-4.5
2

t �
5
2.k 1t2 � 3 sin 2t

f 1t2 � 3 sin 12t � 52 � 3 sin c2at �
5
2b d

f 1t2 � 3 sin 12t � 52.

2p
3 .

t �
2p
3 .h1t2 � cos at �

2p
3 b

t � 0f 1t2 � cos t
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The cycle of k that begins at becomes a cycle of f that begins at

so the function f has a phase shift of 

The amplitude of f is 3 and its period is 

■

2p
2 � p.

�
5
2.t � �

5
2 ;

t � 0

y

t
2

0

4

−4

−2−6 −4 642

k(t) = 3 sin 2tf(t) = 3 sin (2t + 5)

−
2
5

Figure 7.4-4



The procedure that is used in Examples 1–3 can be used to analyze any
function whose rule is of the form

First rewrite the function rule as follows.

Thus, the graph of f is obtained from the graph of by shift-

ing it d units vertically and units horizontally. The cycle of k that 

begins at becomes the cycle of f that begins at so f has phase 

shift The amplitude of both f and k is and both have period 

A similar analysis applies to the function .g1t2 � a cos1bt � c2 � d

2p
b

.0 a 0c
b

.

t �
c
b

,t � 0

c
b

k 1t2 � a sin bt

f 1t2 � a sin1bt � c2 � d � a sin c bat �
c
b
b d � d

f 1t2 � a sin1bt � c2 � d.
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If and then each of the functions

and

has the following characteristics:

phase shift �
c
b

    vertical shift � d

period �
2p
b

amplitude � 00 a 00

g(t) � a cos(bt � c) � df(t) � a sin(bt � c) � d

b 77 0,a � 0
Combined

Transformations

Example 4 Combined Transformations

Describe the graph of 

Solution

Identify the amplitude, period, vertical shift and phase shift.

The graph of shown in Figure 7.4-5, is vertically
centered on the horizontal line The waves reach a maximum of 
2 units above that horizontal line and a minimum of 2 units below that 

horizontal line. The graph begins a cosine wave at and completes 

one cycle in units.

■

2 p
3

t �
4
3

y � �1.
g1t2 � 2 cos13t � 42 � 1,

phase shift �
c
b

�
4
3     vertical shift � �1

amplitude 0 a 0 � 2    period �
2p
b

�
2p
3

g1t2 � 2 cos13t � 42 � 1

g1t2 � 2 cos13t � 42 � 1.

�2π 2π

�3.5

2.5

Figure 7.4-5
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Example 5 Combined Transformations

Identify the amplitude, period, vertical shift, and phase shift of

Then graph at least one complete cycle of f.

Solution

The function rule is of the form with 

and 

The waves of the graph are vertically centered on the horizontal line 
reaching a maximum of 7 and a minimum of The graph begins a sine
wave at and completes one cycle in units. The graph of 

f is the graph of reflected across the horizontal line 

as shown in Figure 7.4-6.
■

Example 6 Identifying Graphs

Find a sine function and a cosine function whose graphs look like the
graph shown in Figure 7.4-7.

Solution

This graph appears to have an amplitude of 2 and to be centered verti-
cally on the horizontal axis. The period appears to be so 
Therefore, the graph looks like the graph of or 
shifted horizontally.

The graph of intercepts the x-axis at The graph in

Figure 7.4-7 intercepts the x-axis at so it looks like the graph of

shifted units to the right. Therefore, this graph closely

resembles the graph of 

At the graph of reaches its maximum of 2. The graph 

in Figure 7.4-7 reaches its maximum of 2 at so it looks like the 

graph of shifted units to the right. Therefore, this graph 

closely resembles the graph of 

■

k 1t2 � 2 cos at �
3p
4 b.

3p
4g 1t2 � 2 cos t

t �
3p
4 ,

g1t2 � 2 cos tt � 0,

h 1t2 � 2 sinat �
p
4 b.

p
4f 1t2 � 2 sin t

t �
p
4 ,

t � 0.f 1t2 � 2 sin t

g1t2 � 2 cos tf 1t2 � 2 sin t
b � 1.2p,

y � 3,

y � 4 sina t
2 � 1b � 3

4p � 12.6t � �2
�1.

y � 3

phase shift �
c
b

�
�1

1
2

� �2   vertical shift � 3

amplitude 0 a 0 � 0�4 0 � 4  period �
2p
b

�
2p
1
2

� 4p

d � 3.c � �1,

a � �4, b �
1
2,a sin1bt � c2 � d,f 1t2

�4 sina t
2 � 1b � 3.f 1t2 �
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y

t
0

8

6

4

2

−2
−4−6−8 2 4 6 8 10

t
2 1)(y = 4 sin + 3+

t
2 1)(f(t) = −4 sin + 3+

Figure 7.4-6

−4

−2π 2π

4

2

−2
π
4

3π
4

Figure 7.4-7
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Graphs and Identities

Graphing calculators can be used to determine equations that could pos-
sibly be identities. A calculator cannot prove that such an equation is an
identity, but it can provide evidence that it might be one. On the other
hand, a calculator can prove that a particular equation is not an identity.

Example 7 Possible Identities

Which of the following equations could possibly be an identity?

a. b.

Solution

a. If is an identity, then

and 

are equivalent functions and have the same graph. The graphs of f
and g, shown in Figure 7.4-8 are obviously different. Therefore, 

is not an identity.

b. In Figure 7.4-9, the graphs of

and 

appear to coincide on the interval Comparing a table of
values for f and g, shown in Figure 7.4-10, also supports the idea 

that and are equivalent functions.g 1t2 � sin tf 1t2 � cos Qp2 � tR
3�2p, 2p 4 .

g1t2 � sin tf 1t2 � cos Qp2 � tR

cos Qp2 � tR � sin t

g 1t2 � sin tf 1t2 � cos Qp2 � tR
cos Qp2 � tR � sin t

cos ap2 � tb � sin tcos ap2 � tb � sin t
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g(t) = sin t

f(t) = cos (  + t)
−4

−2π 2π

4

π
2

Figure 7.4-8

This evidence strongly suggests that the equation 

is an identity, but does not prove it. Therefore, 

could possibly be an identity.
■

cos Qp2 � tR � sin t

cos Qp2 � tR � sin t

−4

4

−2π 2π

Figure 7.4-9 Figure 7.4-10

Identities are
proved algebraically in
Chapter 9.

NOTE



Example 8 Possible Identities

Which of the following equations could possibly be an identity?

a. b.

Solution

a. Rewrite f as and compare its graph with the graph of 

The graphs of f and g, shown in Figure 7.4-11 are 

obviously different. Therefore, is not an identity. 

However, it does appear from the graph that could 

possibly be an identity.

b. In Figure 7.4-12a, the graphs of and appear 

to coincide. Comparing a table of values for f and g, shown in 

Figure 7.4-12b, also supports the idea that and 

are equivalent functions for all values of t for which f is
defined; that is, all values of t except those that make tan t � 0.
g 1t2 � cos t

f 1t2 �
sin t
tan t

g 1t2 � cos tf 1t2 �
sin t
tan t

cot t
cos t � csc t

cot t
cos t � sin t

g 1t2 � sin t.

f 1t2 �

1
tan t
cos t

sin t
tan t � cos tcot t

cos t � sin t
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�2π

�1.5

1.5

2π

g(t) = sin tf(t) =
cot t
cos t

Figure 7.4-11

�2π

�1.5

1.5

2π

Figure 7.4-12a Figure 7.4-12b

Therefore, could possibly be an identity for tan 

■

t � 0.sin t
tan t � cos t

CAUTION

Do not assume that two graphs that look the same on a calculator
screen actually are the same. Depending on the viewing window,
two graphs that are actually quite different may appear identical. 
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Exercises 7.4

In Exercises 1–20, state the amplitude, period, phase
shift, and vertical shift of the function.

1. 2.

3. 4.

5. 6.

7.

8.

9.

10.

11. 12.

13.

14.

15. 16.

17. 18.

19.

20.

In Exercises 21–30, state the rule of a sine function with
the given amplitude, period, phase shift, and vertical
shift, respectively.

21. 22. 1, 2, 3, 4

23. 24.

25. 26. 1, 5, 0, 3

27. 28.

29. 30. 1, 1, �1, �15
2, 1.8, 0.2, 0

2, 8p, 1, 16, 5p
3 , 0, �1

0.5, 2.5, 1.5, �0.6

8, 1
2, 2

3, 42
3, 3p, �

2p
3 , �2

3, p4 , p5 , 0

h1t2 � �4 � sina t
3 �

p

4 b

k1t2 � 3 cosap t
3 � 1b � 5

m1t2 � 4 cos 1t � 52 � 2s1t2 � 7 � cos 2pt

f 1t2 � 3 � 2 cos 14t � 12g1t2 � 97 cos 114t � 52
c 1t2 � �cosa3t

2 �
p

3 b � 5

d1t2 � �3 sina2t �
5p
4 b

h1t2 � 16sina2t
3 � 4bq 1t2 � �7 sinA7t �

1
7 B

p 1t2 � �5 sina t
4 � 3b � 1

h1t2 � �4 cosa3t �
p

6 b � 1

f 1t2 � 4.5 sin 112t � 62 � 5

p1t2 � 6 cos 13p t � 12
g 1t2 � 3 sin 12t � p2k 1t2 � sin 1t � p2 � 4

k 1t2 � cosa2pt
3 bf 1t2 � �5 sin 2t

m1t2 � 7 cos 1t � 32h1t2 � cos 1t � 12

In Exercises 31–40,

a. State the rule of a function of the form
whose graph appears to be

identical to the given graph.
b. State the rule of a function of the form

whose graph appears to be
identical to the given graph.

31.

32.

33.

34.

35.

36.

−3.5 π
3

π

3.5

y

t

5π
16

− π
8

π
4

1
2

1
2

y

t

3π
4

1

−1 π
4

π
2

y

t

3π
2

1

−1 π π
2

y

t

2

18

−18
0

t

y

π
5

12

−12

0
t

y

f 1t2 � a cos 1bt � c2 � d

f 1t2 � a sin 1bt � c2 � d
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37.

38.

39.

40.

In Exercises 41–48, sketch the graph of at least one
cycle of the function.

41. 42.

43. 44.

45. 46. p1t2 � 3 cos 13t � p2h1t2 � 3 sina2t �
p

2 b
q1t2 �

2
3 cos 32 tp1t2 � �

1
2 sin 2t

y 1t2 � �2 cos 3tk1t2 � �3 sin t

y t
0

−4

−2

−6

−8

−10

π−π

y

t

10

8

6

4

2

0 π 2π

y t
0

−2

−4

−6

−8

−10

π
2

π
4

y

t
0

6

4

2

−2

−4

3π4π
3

47.

48.

In Exercises 49–52, graph the function over the inter-
val and determine the location of all local
maxima and minima.

49. 50.

51.

52.

53. Describe the graph of 

In Exercises 54–57, use graphs to determine whether the
equation could possibly be an identity or is definitely
not an identity.

54. 55.

56. 57.

In Exercises 58 – 61, graph f in a viewing window
with Use the trace feature to determine
constants a, b, and c such that the graph of f appears
to coincide with the graph of 

58.

59.

60.

61.

In Exercises 62–63, explain why there could not possi-
bly be constants a, b, and c such that the graph of

coincides with the graph of f.

62.

63. f 1t2 � sin 2t � cos 3t

f 1t2 � 2 sin 13t � 12 � 3 cos 14t � 12
g1t2 � a sin1bt � c2

f 1t2 � 2 sin t � 5 cos t

f 1t2 � 2 sin 13t � 52�3 cos 13t � 22
f 1t2 � 3 sin 14t � 22 � 2 cos14t � 12
f 1t2 � �3 sin t � 2 cos t

g1t2 � a sin1bt � c2.
�2p�� t �� 2p.

tan t � cotap2 � tbsec t � csc t
1 � tan t

� csc t

sin t
1 � cos t

� cot tcos t

cos at �
p

2 b
� cot t

f 1t2 � sin2 t � cos2 t.

h1t2 �
1
2 cosap2  t �

p

8 b � 1

f 1t2 � �2 sin 13t � p2
g1t2 � 2 sina2t

3 �
p

9 bf 1t2 �
1
2 sinat �

p

3 b

(0, 2p),

g1t2 � 5 cosat �
p

3 b � 2

f 1t2 � �sin 12t � 32 � 1
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7.4.A Excursion: Other Trigonometric Graphs

A graphing calculator enables you to explore with ease a wide variety of
trigonometric functions.

Objectives

• Write a sine function whose
graph looks like the graph
of another given sinusoidal
function

• Find viewing windows for
the graphs of other
trigonometric functions

Graphing Exploration

Graph each function on the same screen in a viewing window with

How do the two graphs compare? Do they appear to coincide?

g1t2 � cos t  f 1t2 � sinat �
p
2 b

0 � t � 2p.

Graphing Exploration

1. Graph in a viewing window
with . Does the function appear to be periodic?

2. Using the calculator’s minimum and maximum finders, deter-
mine the approximate amplitude of this function.

3. Using the calculator’s zero finder, estimate the period of this
function (find the length of a complete cycle).

4. What is the smallest positive t-value at which a sine cycle begins?

5. Use the information from Questions 2–4 to write a function of the
form whose graph looks very much like the
graph of Graph the new func-
tion on the same screen with g. Do the graphs appear to coincide?

g1t2 � �2 sin1t � 72 � 3 cos1t � 22.
f 1t2 � a sin1bt � c2

�2p � t � 2p
g1t2 � �2 sin1t � 72 � 3 cos1t � 22

The exploration above suggests that the equation

is an identity and that the graph of the cosine function can be obtained
by horizontally shifting the graph of the sine function. This is true, and
it will be proved in Section 9.2. Consequently, every cosine function, such
as can be expressed as a sine function of the form

The shape of the graph of such a function is called
a sinusoid.

Other Sinusoidal Graphs

The exploration below suggests that other trigonometric functions can be
expressed in the form f 1t2 � a sin 1bt � c2.

f 1t2 � a sin1bt � c2 � d.
g1t2 � 3 cos 14t � 52 � 6,

cos t � sin at �
p
2 b
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The results of the preceding graphing exploration suggest that the 
graph of looks like the graph of

These results illustrate the following facts.

sin1t � 2.602.f 1t2 � 4.95
g1t2 � �2 sin1t � 72 � 3 cos1t � 22

If b, d, k, r, and s are constants, then the graph of the function

g(t) � d sin(bt � r) � k cos(bt � s)

is a sinusoid and there are constants a and c such that

d sin(bt � r) � k cos(bt � s) � a sin(bt � c).

Sinusoidal
Graphs

Example 1 Sinusoidal Graphs

Find a sine function whose graph looks like the graph of

Solution

The graph of is shown in Figure 
7.4.A-1.

By using a graphing calculator’s minimum and maximum finders with
the graph of you see that g has an
amplitude of approximately 3.94.

The function g has period because this is the period of both 

and The function has period . 

So 

By using a graphing calculator’s zero finder, you can see that a sine cycle
in the graph of g begins at approximately so the phase shift

is approximately Find c.

Substitute 3 for b

Therefore, and the graph of

looks like the graph of

■
g1t2 � 4 sin13t � 22 � 2 cos13t � 42.

f 1t2 � 3.94 sin13t � 2.522
a � 3.94, b � 3, c � 2.52,

c � 2.52
�c � �2.52

�
c
3 � �0.84

�
c
b

� �0.84

�0.84.�
c
b

t � �0.84,

b � 3.

2p
3�

2p
b

f 1t2 � a sin1bt � c2cos13t � 42.
sin13t � 222p

3

g1t2 � 4 sin13t � 22 � 2 cos13t � 42,

g1t2 � 4 sin13t � 22 � 2 cos13t � 42

g1t2 � 4 sin13t � 22 � 2 cos13t � 42.

�5

�2π 2π

5
�0.84 3.94

Figure 7.4.A-1



Other Trigonometric Graphs

In Example 1, the variable t has the same coefficient b in both the sine and
cosine terms of the function’s rule. When this is not the case, the graph will
consist of waves of varying size and shape, as shown in Figure 7.4.A-2.

512 Chapter 7 Trigonometric Graphs

Example 2 Finding a Viewing Window

Find a viewing window for one complete cycle of

Solution

A graph of f in a viewing window with includes so many
cycles that the calculator cannot display an accurate graph, as shown in
Figure 7.4.A-3.

Instead, find the period of f by using the following method:

The period of h is The period of g is 

The period of f is the least common multiple of 0.02 and 0.05, which 
is 0.10.

Therefore, the viewing window with in Figure 7.4.A-4 shows
one complete cycle of 

■

Damped and Compressed Trigonometric Graphs

Suppose a weight hanging from a spring is set in motion by an upward
push. No spring is perfectly elastic, and friction acts to slow the motion
of the weight as time goes on. Consequently, the graph showing the height
of the weight above or below its equilibrium point at time t will consist
of waves that get smaller and smaller as t gets larger. Many other phys-
ical situations can be described by functions whose graphs consist of
waves of diminishing or increasing heights. Other situations, such as

f 1t2 � 4 sin 100pt � 2 cos 40pt.
0 � t � 0.10

2p
40p �

1
20 � 0.05.2p

100p �
1

50 � 0.02.

Let h1t2 � 4 sin 100pt    and    g1t2 � 2 cos 40pt.

�2p � t � 2p

f 1t2 � 4 sin 100p t � 2 cos 40pt.

2π�2π

6

�6

2π�2π

6

�6

2π�2π

6

�6

Figure 7.4.A-2

h 1t2 � 2 sin 2t � 3 cos 3 tg 1t2 � �2 sin13 t � 52 � 4 cos1 t � 22f 1t2 � sin 3 t � cos 2 t

Figure 7.4.A-3

2π�2π

6

�6

Figure 7.4.A-4

�6

0 0.10

6
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Figure 7.4.A-5

sound waves in FM radio transmission, are modeled by functions whose
graphs consist of waves of uniform height and varying frequency. 

Example 3 Analyzing a Damped Graph

Analyze the graph of 

Solution

Graph f in a viewing window with and  as
shown in Figure 7.4.A-5.

Recall that Multiply each term of the inequality by t con-
sidering the cases and (Remember to reverse the inequality
sign when )

when
when

In graphical terms, this means that the graph of f(t) t cos t lies between
the straight lines y t and y t, with the waves growing larger or
smaller to fit the space between the lines. The graph touches the lines 
y t and y t exactly when t cos t t, that is, when cos t 1. This
occurs when t 0 k , where k is an integer.

Therefore, the graph of f(t) t cos t consists of waves that diminish in
amplitude as t approaches 0 from both negative and positive values, and
the waves are bounded by the lines y t.

■
� ±

�

p��
� ±� ±� ��

� ��
�

t 6 0�t � t cos t � t
t � 0�t � t cos t � t

t 6 0.
t 6 0.t � 0

�1 � cos t � 1.

�35 � y � 35,�35 � t � 35

f 1t2 � t cos t.

35

−35

−35 35

Graphing Exploration

Illustrate the analysis of the graph f(t) by graphing 
f(t) t cos t, y t, and y t on the same screen.� ���

� t cos t

Example 4 Analyzing a Damped Graph

Analyze the graph of g(t)

Solution

No single viewing window gives a completely readable graph of g. To 
the left of the y-axis, the graph gets quite large; but to the right, it 
almost coincides with the t-axis. To get a better mental picture, note 
that for every t. To find the bounds of multiply each
term of the known inequality by 

Therefore, the graph of g lies between the graphs of the exponential func-
tions and The graph of g will consist of sine wavesy � 0.5t.y � �0.5t

 �0.5t � 0.5t sin t   �0.5t  for every t
 �1 � sin t   �1

0.5t.�1 � sin t � 1
0.5t sin t,0.5t 7 0

� 0.5t sin t.

Figure 7.4.A-6

t

y

y = 0.5t

y = −0.5t

not to scale



Consider what happens to the graph between t � , and t � 0.

As t goes from to , sin goes from sin to sin , that is 

from sin to sin Therefore, the graph of f makes one complete sine 

wave for . Similarly, for , the graph of f makes another 

complete sine wave. The same pattern continues so that the graph of f

makes a complete wave for , for , and so on. A sim-

ilar phenomenon occurs as t takes values between and 0. Conse-�
1
2

1
8� t �

1
10

1
6� t �

1
8

1
4� t �

1
6

1
2� t �

1
4

4p.2p

ap1
4
bap1

2
bapt b1

4
1
2

1
2
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Graphing Exploration

Find viewing window ranges that clearly show the graph in Exam-
ple 4 when t is in the following domains.

2p � t � 4p0 � t � 2p�2p � t � 0

rising and falling between the graph of the exponential functions 
and as indicated in Figure 7.4.A-6 (which is not to scale).

■
y � 0.5t,�0.5t

y �

1.5

−1.5

−76 76

1.5

−1.5

−0.5 0.5

Figure 7.4.A-7a Figure 7.4.A-7b

Example 5 Oscillating Behavior

Analyze the graph of f(t) sin .

Solution

Using a wide viewing window, it is clear that the t-axis is an asymptote 

of the graph of f(t) sin , as shown in Figure 7.4.A-7a. Near the ori-

gin, however, the graph is not readable, even in a very narrow viewing
window like Figure 7.4.A-7b.

apt b�

apt b�
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quently, the graph of f near 0 oscillates infinitely often between and
1, with the waves becoming more and more compressed as t gets closer
to 0, as indicated in Figure 7.4.A-8. Because the function is not defined at

the left and right halves of the graph are not connected.t � 0,

�1

Figure 7.4.A-8
■

Graph oscillates
infinitely often here

f(t) = sin (π/t)1

−1

−1 1

t

y

Exercises 7.4.A

In Exercises 1–6, find a sine function whose graph
looks like the graph of the given function f.

1.

2.

3.

4.

5.

6.

In Exercises 7–16, find a viewing window that shows
a complete graph of the function.

7. g(t) (5 sin 2t)(cos 5t) 8. h(t)

9. f(t) cos 2t

10.

11. h1t2 � sin 300t � cos 500t

g1t2 � sin¢ t
3 � 2≤ � 2 cos¢ t

4 � 2≤
�

t
2�

� esin t�

f 1t2 � 0.3 sin 12t � 42 � 0.4 cos 12t � 32
f 1t2 � �5 sin 13t � 22 � 2 cos 13t � 12
f 1t2 � 3 sin12t � 12 � 4 cos12t � 32
f 1t2 � 2 sin 4t � 5 cos 4t

f 1t2 � 3 sin t � 2 cos t

f 1t2 � sin t � 2 cos t

12.

13.

14.

15.

16.

In Exercises 17�24, describe the graph of the function
verbally, including such features as asymptotes, unde-
fined points, amplitude and number of waves between
0 and 2 . Find viewing windows that illustrate the
main features of the graph.

17. g(t) 18. h(t)

19. f(t) cos t 20. g(t) e sin 

21. h(t) sin t 22. f(t) t sin 

23. h(t) 24. h(t) � ln 0 sin t � 1 0� ln 0 cos t 0

1
t�

1
t�

2pt
�

t2

8
�20 t 0�

cos 2t
1 � t2�� sin et

P

g1t2 � 6 sin 0.05pt � 2 cos 0.04pt

f 1t2 � 4 sin 0.2pt � 5 cos 0.4pt

h1t2 � 4 sin 1600pt � 32 � 6 cos 1500pt � 32
g1t2 � �5 sin 1250pt � 52 � 2 cos1400pt � 72
f 1t2 � 3 sin 1200t � 12 � 2 cos1300t � 22
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If and then each of the functions 
and has:

vertical shift d

If then the function has period p
b

.h1t2 � tan btb 7 0,

phase shift c
b

period 2p
b

,amplitude 0 a 0 ,
g 1t2 � a cos1bt � c2 � d

f 1t2 � a sin1bt � c2 � db 7 0,a Z 0
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1. Which of the following is not true about the graph of 
a. It has no sharp corners.
b. It crosses the horizontal axis more than once.
c. It rises higher and higher as t gets larger.
d. It is periodic.
e. It has no vertical asymptotes.

In Exercises 2–4, graph each function on the given interval.

2. 3.

4.

In Exercises 5–7, find all the exact t-values for which the given statement is true.

5. 6.

7.

In Exercises 8–10, list the transformations that change the graph of f into the
graph of g. State the domain and range of g.

8. 9.

10.

In Exercises 11–13, sketch the graph of each function.

11. 12.

13.

14. Which of the following functions has the graph shown below between 
and 

a.

b.

c.

d.

e.

15. Between (and including) 0 and the function has .
a. 3 zeros and is undefined at 2 places
b. 2 zeros and is undefined at 3 places
c. 2 zeros and is undefined at 2 places
d. 3 zeros and is defined everywhere
e. no zeros and is undefined at 3 places

  ?  h1t2 � tan t2p,

p 1x2 � 21 � sin2 x

k 1x2 � 0 cos x 0
h 1x2 � e sin x, if x � 0

sin 1�x2, if x 6 0

g 1x2 � cos x � 1

f 1x2 � e sin x, if x � 0
cos x, if x 6 0

p?
�p

k1t2 � 2 sin t � 3

h1t2 � tan t � 4g1t2 � �3 cos t

f 1t2 � cos t g1t2 � cosa�1
2 tb � 1

f 1t2 � tan t g1t2 � �tan 2tf 1t2 � sin t g1t2 � �
1
2 sin t

tan t � �23

sin t � �
1
2cos t � 1

h1t2 � tan t 32p, 3p 4
g1t2 � cos t S�5p, �7p

2 Tf 1t2 � sin t S 7p2 , 7p T

f 1t2 � sin t?

π
2

π

1

−1
−−π

t

y

π
2
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16. Which of the statements i–iii are true?
i. The sine function is an odd function.
ii. The cosine function is an odd function.
iii. The tangent function is an odd function.

a. i and ii only
b. ii only
c. i and iii only
d. all of them
e. none of them

17. Which of the following functions has the graph shown at left?
a.

b.

c.
d.
e.

18. Which of the following is true about ?
a.

b.

c. Its graph has no asymptotes.
d. It is a periodic function.
e. It is never negative.

In Exercises 19–21, sketch the graph of each function.

19

20.

21.

In Exercises 22–23, complete the statement with “odd” or “even.”

22. The cosecant function is an function.

23. The secant function is an function.

24. Let 

a. What is the largest possible value of 
b. Find the smallest positive number t such that 

25. Sketch the graph of 

26. Sketch the graph of on the interval 

27. Sketch the graph of on the interval 

28. What is the period of the function 

29. If for how many values of t with is it true
that g1t2 � 1?

0 � t � 2pg1t2 � 20 sin1200t2,
g1t2 � sin 4pt?

0 � t � 2p.f 1t2 � sin 4t

�2p � t � 2p.f 1t2 � �
1
2 sin 2t

g1t2 � �2 cos t.

f 1t2 � 0.
f 1t2?

f 1t2 �
3
2 sin 5t.

h1t2 � �csc a1
2 tb

f 1t2 � 3 sec t � 2

g1t2 � cot t � 2

sec t �
1

sin t

sec102 � 0
sec t

p1t2 � �tan t
k1t2 � 3 tan t
h1t2 � 1 � tan t

g 1t2 � tanat �
p

2 b
f 1t2 � tan t

Section 7.2

π

2

−π

t

y

−2

π
2

π
2

−

Section 7.3
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30. What is the period of 

31. Which of the following statements is true?
a. The amplitude of is 2.

b. The period of 

c. The period of is 

d. The amplitude of is 3.

32. What are the amplitude, period, and phase shift of the function

33. State the rule of a sine function with amplitude 8, period 5, and phase 
shift 14.

34. State the rule of a sine function with amplitude 3, period and phase 

shift 

35. State the rule of a periodic function whose graph from to 
closely resembles the graph at left.

In Exercises 36–38, sketch the graph of at least one cycle of each function.

36. 37.

38.

In Exercises 39–42, determine graphically whether the given equation could
possibly be an identity.

39. 40.

41. 42.

In Exercises 43 and 44, find a sine function whose graph looks like the graph
of the given function.

43.

44.

In Exercises 45 and 46, find a viewing window that shows a complete graph of
the function.

45.

46. g1t2 � �5 sin1400pt � 12 � 2 cos1150pt � 62
f 1t2 � 3 sin1300t � 52 � 2 cos1500t � 82

f 1t2 � �5 sin15t � 32 � 2 cos15t � 22
f 1t2 � 6 sin14t � 72 � 5 cos14t � 82

cos 2t �
1

1 � 2 sin2 t
sin t � sin 3t
cos t � cos 3t � �tan t

tan t
2 �

sin t
1 � cos t

cos t � sin at �
p

2 b

g1t2 � 4 cosa2t
3 b � 5

g1t2 � �sina1
3 t � pbf 1t2 �

1
2 cos 12t � p2 � 3

t � 2pt � 0

p

3 .

p,

h1t2 � 13 cos114t � 152?

k1t2 � �3 tan t

p

2 .h1t2 � 3 tan 2t

g1t2 � �
1
2 cos 2t is 4p.

f 1t2 � 3 sin 2t � 1

f 1t2 � �tana t
2b?

Section 7.4

Section 7.4.A

π

1

2

t

y

−1
−2

2π
5

4π
5

6π
5

8π
5

2π
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5

�5

3�3

C H A P T E R

7

Approximations with Infinite Series

In the Chapter 1 Can Do Calculus, it was shown that the infinite geo-

metric series when This section

will investigate certain functions that can be represented by an infinite
series, a topic considered in depth in calculus.

Example 1 Representing a Function as a Series

Write as an infinite series. 

Solution

The expression is in the form where and Because

■

To confirm that graph

and on the same screen, as shown in

Figure 7.C-1 where is drawn with a heavy line.
The graphs of the function and the series are very close when but
they diverge when When more terms are used
in graphing the series, the series approximates the function more closely
when The set of all values of x for which the series converges to

the function is called the interval of convergence. The function has 

interval of convergence It is not defined when and
when the infinite series does not converge to a single value.

Other Types of Series

Many interesting functions that can be represented by a series include the
product of all the integers from 1 to n. Such a product is written as n!,
which is read “n factorial.”

0! is defined to be the number 1.
n! � 1 � 2 � 3 � 4 p 1n � 22 1n � 12n

x � �1
x � 1,�1 6 x 6 1.

1
1 � x

0x 0 6 1.

x 6 �1 and when x 7 1.
0x 0 6 1,

y � 1 � x � x2 � x3 � x4

y � 1 � x � x2 � x3 � x4y �
1

1 � x

1
1 � x � 1 � x � x2 � x3 � . . . when 0 x 0 6 1,

1
1 � x � 1 � x � x2 � x3 � . . . , when 0 x 0 6 1.

a
1 � r � a � ar � ar 

2 � ar3 � . . . when 0 r 0 6 1,

r � x.a � 1a
1 � r ,1

1 � x

f 1x2 �
1

1 � x

0 r 0 6 1.a � ar � ar 

2 � ar3 � . . . �
a

1 � r

Figure 7.C-1

Technology 
Tip

The factorial feature is
found in the PROB (or 

PRB) submenu of the
MATH or OPTN menu on
most calculators.
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Example 2 A Series that Approximates a Function

Find a function that is approximated by the following series in the inter-
val 

Solution

Begin by graphing the function formed by the first five terms of the series,
as shown in Figure 7.C-2a. Next graph the functions formed by first six
terms of the series and then the first seven terms, as shown in Figures
7.C-2b and 7.C-2c.

The graph of the series is beginning to resemble the graph of the sine
function. To test the hypothesis that the series converges to the sine func-
tion, graph both the sine function and the function formed by series on
the same screen using several terms of the series. In Figure 7.C-2d, the
series is displayed with the heavier line, and is shown as the
lighter line. In calculus it will be shown that the infinite series converges
to the sine function, and the interval of convergence is the entire set of
real numbers.

y � sin x

x �
x3

3! �
x5

5! �
x7

7! �
x9

9! � p � 1�12n�1 
x2n�1

12n � 12!

� p � x � p.

■

Exercises

Find an infinite geometric series that represents the
given function, and state the interval of convergence.

1. 2.

3. 4. y �
�3

1 � 2x
y �

�2
1 � x

y �
3

1 � 2x
y �

2
1 � 3x

Find a function that is approximated by the following
series. State the interval of convergence.

5.

6.

7. 1 � x �
x2

2! �
x3

3! �
x4

4! � p

1 � 1x � 12 � 1x � 122 � 1x � 123 � 1x � 124 � p

1 �
x2

2! �
x4

4! �
x6

6! � p

1

�1

15�15

Figure 7.C-2d

10

�10

10�10

Figure 7.C-2a

10

�10

10�10

Figure 7.C-2b

10

�10

10�10

Figure 7.C-2c
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Round and round we go!

Trigonometric functions are used to analyze periodic phenomena, because simple
harmonic motion models circular motion or any phenomenon that is “back and forth.’’
Some examples of simple harmonic motion include a vibrating prong of a tuning fork, a
buoy bobbing up and down in water, seismic and ocean waves, spring-mass systems, a
piston in a running engine, a particle of air during the passage of a simple sound wave,
or a turning Ferris wheel. See Exercise 1 of Section 8.4.

Solving Trigonometric
Equations

C H A P T E R

8
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8.1 Graphical Solutions to Trigonometric Equations

8.2 Inverse Trigonometric Functions

8.3 Algebraic Solutions of Trigonometric Equations

8.4 Simple Harmonic Motion and Modeling

8.4.A Excursion: Sound Waves

Chapter Review

can do calculus Limits of Trigonometric Functions

Chapter Outline
Interdependence of Sections

There are two kinds of trigonometric equations. Identities, which will

be studied more in Chapter 9, are equations that are valid for all val-

ues of the variable for which the equation is defined, such as

In this chapter, conditional equations will be studied. Conditional equations
are valid only for certain values of the variable, such as

If a trigonometric equation is conditional, solutions are found by using
techniques similar to those used to solve algebraic equations. Graphs were
used to solve some simple trigonometric equations in Chapter 7. This
chapter will extend graphical solution techniques and introduce analytic
solution methods.

Graphical solution methods are presented in 8.1. Inverse trigonometric
functions are discussed in Section 8.2. Methods that use inverse functions,
basic identities, and algebra to solve trigonometric equations are consid-
ered in Section 8.3. Skills from the Sections 8.1 through 8.3 are applied to
problem-solving and real-world applications in Section 8.4.

sin x � 0,  cos x �
1
2,  and  3 sin2 x � sin x � 2.

sin2 x � cos2 x � 1  and  cot x �
1

tan x .

8.1

8.2 8.3 8.4> >

In Chapter 7, the variable t was used for trigonometric
functions to avoid confusion with the x’s and y’s that appear in their
definitions. Now that you are comfortable with these functions, the
letter x, or occasionally y, will be used for the variable. Unless
otherwise stated, all trigonometric functions in this chapter are
considered as functions of real numbers, rather than functions of angles
in degree measure.

NOTE
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8.1 Graphical Solutions to Trigonometric
Equations

Any equation involving trigonometric functions can be solved graphi-
cally. To solve trigonometric equations graphically, the same methods of
graphical solutions are used here as have been used previously to solve
polynomial equations, except that trigonometric equations typically have
an infinite number of solutions. These solutions are systematically deter-
mined by using the periodicity of the function.

Basic Trigonometric Equations

An equation that involves a single trigonometric function set equal to a
number is called a basic equation. Some examples include the following:

Examples 1 and 2 show how they can be solved graphically.

Example 1 The Intersection Method

Solve 

Solution

The equation can be solved by graphing and on the
same screen and finding intersection points. The x-coordinate of every
such point is a number whose tangent is 2; or a solution of Fig-
ure 8.1-1 indicates that there are infinitely many intersection points, so
the equation has an infinite number of solutions.

tan x � 2.

Y2 � 2Y1 � tan x

tan x � 2.

sin x � 0.39,  cos x � 0.5,  and  tan x � �3

Objectives

• Solve trigonometric
equations graphically

• State the complete solution
of a trigonometric equation

x

y

π
2

−π

2

−2

4

−π
2

−2π 2ππ 3π 4π−3π
2

3π
2

5π
2

7π
2

One period

Figure 8.1-1



The function completes one cycle on the interval 

and there is one solution of in this interval. Using the intersec-
tion finder on a graphing calculator gives the approximate solution in this
interval.

Because the graph of repeats its pattern to the left and to the
right, the other solutions will differ from this first solution by multiples
of the period of the tangent function. The other solutions are

and so on. All solutions can be expressed as

where k is any integer.
■

Example 2 The x-Intercept Method

Solve 

Solution

Rewrite the equation as

Recall from Section 2.1 that the solutions of this equation are the x-intercepts
of the graph of

The graph of f is shown in Figure 8.1--3. The function has a period of 
and the viewing window can be modified to show one period of

Figures 8.1-4a and 8.1-4b show that there are two
zeros of f on the interval so the equation has two solutions on that
interval.

The calculator’s zero finder calculates the zeros:

x � 5.4351x � 3.9897

30, 2p 4 ,f 1x2 � sin x � 0.75.

2p

f 1x2 � sin x � 0.75.

sin x � 0.75 � 0.

sinx � �0.75

sin x � �0.75.

1.1071 � kp,

1.1071 ± p,  1.1071 ± 2p,  and  1.1071 ± 3p,

p,

f 1x2 � tan x

x � 1.1071

tan x � 2

a�p2 , p2 b,f 1x2 � tan x
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�5

π
2�

5

π
2

Figure 8.1-2

�1

2π�2π

3

Figure 8.1-3

�1

2π0

3

�1

2π0

3

Figure 8.1-4a Figure 8.1-4b

Solutions in this
chapter are often rounded,
but the full decimal
expansion given by the
calculator is used in all
computations. The symbol

is used rather than
even though these
calculator solutions are
approximations of the
actual solutions.

��

NOTE



Because the graph repeats its pattern every the other solutions will
differ from these two by multiples of the period of 
Therefore, all solutions of are

where k is any integer.
■

Other Trigonometric Equations

The procedures in Examples 1 and 2 can be used to solve any trigono-
metric equation graphically.

Example 3 The x-intercept Method

Solve  

Solution

Both sine and cosine have period so the period of
is at most The graph of f, which is shown

in two viewing windows in Figure 8.1-5, does not repeat its pattern over
any interval of less than so you can conclude that f has a period 
of 2p.

2p,

2p.f 1x2 � 3 sin2 x � cos x � 2
2p,

3 sin2 x � cos x � 2 � 0.

x � 3.9897 � 2kp  and  x � 5.4351 � 2kp,

sin x � �0.75
f 1x2 � sin x � 0.75.2p,

2p,

526 Chapter 8 Solving Trigonometric Equations

Figure 8.1-5a
Figure 8.1-5b

2

�4

�2π 4π

2

�4

0 2π

The function f makes one complete period on the interval as shown
in Figure 8.1-5b. The equation has four solutions between 0 and 
namely, the four x-intercepts of the graph in that interval. A graphical zero
finder shows these four solutions.

Because the graph repeats its pattern every all solutions of the equa-
tion are given by

where k is any integer.
■

x � 5.1616 � 2kp,x � 3.8373 � 2kp,
x � 2.4459 � 2kp,x � 1.1216 � 2kp,

2p,

x � 1.1216  x � 2.4459  x � 3.8373  x � 5.1616

2p,
30, 2p2,

Technology 
Tip

Enter on a cal-
culator as

or 31sin1x2 22.
31sin x22
3 sin2 x



The solution methods in Examples 1 through 3 depend only on knowing
the period of a function and all the solutions of the equation in one period.
A similar procedure can be used to solve any trigonometric equation
graphically.
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Solving
Trigonometric

Equations
Graphically 

1. Write the equation in the form 

2. Determine the period p of f.

3. Graph f over an interval of length p.

4. Use a calculator’s zero finder to determine the 
x-intercepts of the graph in this interval.

5. For each x-intercept u, all of the numbers

where k is any integer

are solutions of the equation.

u � kp

f(x) � 0.

In Example 1, for example, p was In Examples 2 and 3, p was 

Example 4 Solving Any Trigonometric Equation

Solve 

Solution

First rewrite the equation

Next, determine the period of Recall from Section 

7.3 that has a period of which is also the period of 

Therefore, the period of f is Figure 8.1-6 shows the graph of

f on the interval an interval of length 

Even without the graph, it can be easily verified that there is an x-intercept
at 0.

Using the calculator’s zero finder gives the other x-intercepts of the graph
of f on this interval.

Because f has a period of all solutions of the equation 
are

where k is any integer.
■

x � �1.1503 � kp,  x � 0 � kp,  and  x � 1.1503 � kp,

tan x � 3 sin 2xp,

x � �1.1503  and  x � 1.1503

f 102 � tan 0 � 3 sin 12 � 02 � 0

p.a�p2 , p2 b,
p.y � tan x.

2p
2 � p,y � 3 sin 2x

f 1x2 � tan x � 3 sin 2x.

tan x � 3 sin 2x � 0

tan x � 3 sin 2x.

2p.p.

�3

3

π
2�

π
2

Figure 8.1-6



Trigonometric Equations in Degree Measure

Some real-world applications of trigonometric equations require solutions
to be expressed as angles in degree measure. The graphical solution pro-
cedure is the same, except that you must set the mode of your calculator
to “degree.”

Example 5 Trigonometric Equations in Degree Measure

Solve 

Solution

The period of the function is and Fig-
ure 8.1-7 shows the graph of f on the interval 

A graphical zero finder determines the approximate x-intercepts.

Using the fact that the period of f is all solutions of the equation are

where k is any integer.
■

u � 223.33° � 360°k  and  u � 316.67° � 360°k,

360°,

u � 223.33°  and  u � 316.67°

30°, 360°2. 360°,f 1u2 � 2 sin2u � 3 sin u � 3

2 sin2u � 3 sin u � 3 � 0.
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�5

3600

3

Figure 8.1-7

Exercises 8.1

In Exercises 1–12, solve the equation graphically.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12. csc2x � sec x � 1

sin3x � 2 sin2 x � 3 cos x � 2 � 0

sec x � tan x � 3

cos4x � 3 cos3x � cos x � 1

tan x � 3 cos x

cos3x � 3 cos x � 1 � 0

2 cos2x � sin x � 1 � 0

tan x � 5 sin x � 1

sin2 2x � 3 cos 2x � 2 � 0

3 sin32x � 2 cos x

5 sin 3x � 6 cos 3x � 1

4 sin 2x � 3 cos 2x � 2

13. Use the graph of the sine function to show the
following.

a. The solutions of are 

and 

b. The solutions of are 

14. Use the graph of the cosine function to show the
following.

a. The solutions of are 

b. The solutions of are 
± 5p, . . . .±3p,x � ± p,

cos x � �1

± 6p, . . . .± 4p,± 2p,x � 0,
cos x � 1

x �
�p

2 , �5p
2 , �9p

2 , . . . .

x �
3p
2 , 7p2 , 11p

2 , p  and

sin x � �1

x �
�3p

2 , �7p
2 , �11p

2 , . . . .

x �
p

2 , 5p2 , 9p2 , p

sin x � 1



In Exercises 15–18, approximate all solutions of the
given equation in .

15. 16.

17. 18.

In Exercises 19–28, find all angles with 
that are solutions of the given equation.

19. 20.

21. 22.

23.

24.

25. 26.

27.

28. sin2u � 3 sin u � 10

4 cos2u � 4 cos u � 1 � 0

2  sin2u � 1tan2u � 3 � 0

4 cos2u � 4 cos u � 3 � 0

2 sin2  u � 3 sin u � 1 � 0

cot u � �2.4cos u � �0.42

tan u � 69.4tan u � 7.95

0� �� U 66 360�U

tan x � 17.65tan x � 5

cos x � 0.958sin x � 0.119

(0, 2p)
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At the instant you hear a sonic boom from an airplane
overhead, your angle of elevation to the plane is 
given by the equation 

where m is the Mach number for the speed of the plane
(Mach 1 is the speed of sound, Mach 2.5 is 2.5 times
the speed of sound, etc.). In Exercises 29–32, find the
angle of elevation (in degrees) for the given Mach
number. Remember that an angle of elevation must be
between and 

29. 30.

31. 32.

33. Critical Thinking Under what conditions (on the
constant) does a basic equation involving the sine
and cosine function have no solutions?

34. Critical Thinking Under what conditions (on the
constant) does a basic equation involving the
secant and cosecant function have no solutions?

m � 2.4m � 2

m � 1.6m � 1.1

90�.0�

sin A �
1
m

A

8.2 Inverse Trigonometric Functions

Many trigonometric equations can be solved without graphing. Non-
graphical solution methods make use of the inverse trigonometric functions
that are introduced in this section.

Recall from Section 3.6 that a function cannot have an inverse function
unless its graph has the following property.

No horizontal line intersects the graph more than once.

You have seen that the graphs of trigonometric functions do not have this
property. However, restricting their domains can modify the trigonometric
functions so that they do have inverse functions.

Inverse Sine Function

The restricted sine function is when its domain is restricted to 

the interval Its graph in Figure 8.2-1 shows that for each num-

ber v in the interval there is exactly one number u in the interval 

such that sin u � v.S�p2 , p2 T
3�1, 1 4 ,

S�p2 , p2 T .
f 1x2 � sin x,

Objectives

• Define the domain and
range of the inverse
trigonometric functions

• Use inverse trigonometric
function notation

Other ways of
restricting the domains of
trigonometric functions are
possible. Those presented
here for sine, cosine, and
tangent are the ones
universally agreed upon by
mathematicians.

NOTE
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x

y

v

u
π

−1

−

1

(u, v) = (u, sin u)

2
π
2

Figure 8.2-1

Because the graph of the restricted sine function passes the Horizontal
Line Test, it has an inverse function. This inverse function is called the
inverse sine (or arcsine) function and is denoted by

or 

It is convenient to think of a value of an inverse trigonometric function 

as an angle; represents an angle in the interval whose 

sine is Since then 

The graph of the inverse sine function, shown in Figure 8.2-2, is readily
obtained from a calculator. Because is the inverse of the
restricted sine function, its graph is the reflection of the graph of the
restricted sine function across the line .y � x

g1x2 � sin�1 x

sin�1 
23
2 �

p
3 .sin p3  �

23
2 ,23

2 .

S�p2 , p2 Tsin�1 
23
2

g(x) � arcsin x.g(x) � sin�1 x

π�2

�2 2

π
2

Figure 8.2-2

The domain of is the interval and its range is the 

interval S�p2 , p2 T .
3�1, 1 4 ,g1x2 � sin�1 x

For each v with 

is the unique number u in the interval whose 

sine is v; that is,

sin�1 v � u  exactly when  sin u � v.

S�P2 , P2 Tsin�1 v

�1 �� v �� 1,
Inverse Sine

Function



The inverse sine function can be evaluated by using the key (some-
times labeled ASIN) on a calculator. For example,

For many special values, however, you can evaluate the inverse sine func-
tion without using a calculator.

Example 1 Special Values

Evaluate:

a. b.

Solution

a. is the number in the interval whose sine is From 

your study of special values, you know that . Because is 

in the interval , .

b. because and is in the 

interval .

■

S�p2 , p2 T
�
p
4sin a�p4 b � �

22
2sin�1a�22

2 b � �
p
4

sin�1 12 �
p
6S�p2 , p2 T

p
6sin p6 �

1
2

1
2.S�p2 , p2 Tsin�1 12

sin�1a�22
2 bsin�1 12

sin�11�0.672 � �0.7342  and  sin�1 0.42 � 0.4334.

SIN�1
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CAUTION

The notation is not exponential notation. It does not mean 

or For instance, Example 1 shows that 

but this is not equivalent to

asin 12b�1 �
1

sin 12
� 1

0.4794 � 2.0858.

sin�1 12 �
p
6 � 0.5236,

1
sinx .1sin x2�1

sin�1 x

Suppose and Then by definition of the inverse

sine function, and Therefore,

This shows that the restricted sine function and the inverse sine function
have the usual composition properties of other inverse functions.

sin�11sin u2 � sin�1 1v2 � u  and  sin1sin�1 v2 � sin1u2 � v.

sin u � v.�
p
2 � u �

p
2

sin�1 v � u.�1 � v � 1

Technology 
Tip

If you attempt to use a
calculator to evaluate 

the inverse sine function at
a number not in its
domain, such as ,
you will get an error 
message.

sin�1122

Technology 
Tip

Unless otherwise noted,
make sure your calcula-
tor is in radian mode.
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sin(sin�1 v) � v  if  �1 �� v �� 1

sin�1(sin u) � u  if  �
p
2 �� u ��

p
2

Properties of
Inverse Sine

Example 2 Composition of Inverse Functions

Explain why is true but is not true.

Solution

You know that so by substitution

because is in the interval .

Although is also by substitution

,

not , because is not in the interval .

■

Inverse Cosine Function

The restricted cosine function is when its domain is restricted
to the interval Its graph in Figure 8.2-3 shows that for each number
v in the interval , there is exactly one number u in the interval 
such that cos u � v.

30, p 43�1, 1 430, p 4 . f 1x2 � cos x,

S�p2 , p2 T5p
6

5p
6

sin�1asin 5p6 b � sin�1a1
2b �

p
6

1
2,sin 5p6

S�p2 , p2 Tp
6

sin�1asinp6 b � sin�1a1
2b �

p
6

sin p6 �
1
2,

sin�1asin 5p6 b �
5p
6sin�1asin 

p
6 b �

p
6

x

y

v

u

π

−1

1

(u, v) = (u, cos u)

Figure 8.2-3



Because the graph of the restricted cosine function passes the horizontal
line test, it has an inverse function. This inverse function is called the
inverse cosine (or arccosine) function and is denoted by

or 

The graph of the inverse cosine function, which is the reflection of the
graph of the restricted cosine function (Figure 8.2-3) across the line 
is shown in Figure 8.2-4.

y � x,

g(x) � arccos x.g(x) � cos�1 x
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�

�2 2

π

π
2

Figure 8.2-4

The domain of is the interval and its range is 30, p 4 .3�1, 1 4g1x2 � cos�1 x

For each v with 

is the unique number u in the interval whose
cosine is v; that is,

cos�1v � u  exactly when  cos u � v.

[0, P]cos�1 v

�1 �� v �� 1,
Inverse Cosine

Function

The properties of the inverse cosine function are similar to the properties
of the inverse sine function.

cos(cos�1v) � v  if  � 1 �� v �� 1

cos�1(cos u) � u  if  0 �� u �� p
Properties of

Inverse Cosine

Example 3 Evaluating Inverse Cosine Expressions

Evaluate the following.

a. b. c. cos�11�0.632cos�1 0cos�1 12



Solution

a. because is the unique number in the interval 

whose cosine is 

b. because and 

c. The command on a calculator shows that

■

Example 4 Equivalent Algebraic Expressions

Write as an algebraic expression in v.

Solution

Let , where . Construct a right triangle containing 

an angle of u radians where , as shown in Figure 

8.2-5. By the Pythagorean Theorem, the length of the side opposite u is 
. By the definition of sine,

Therefore, 
■

Inverse Tangent Function

The restricted tangent function is when its domain is restricted

to the interval Its graph in Figure 8.2-6 shows that for every real

number v, there is exactly one number u between and such that

tan u � v.

p
2�

p
2

Q�p2 , p2 R.
f 1x2 � tan x,

sin1cos�1 v2 � 21 � v2.

sin u �
opposite

hypotenuse
�
21 � v2

1 � 21 � v2

21 � v2

cos u �
adjacent

hypotenuse
� v

0 � u � pcos�1 v � u

sin1cos�1 v2

cos�11�0.632 � 2.2523.
COS�1

0 �
p
2 � p.cos p2 � 0cos�1 0 �

p
2

1
2.

30, p 4p
3cos�1 12 �

p
3
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π
2

(u, v) = (u, tan u)v

−

x

u

y

π
2

Figure 8.2-6

u

v

1−v2 1

Figure 8.2-5

CAUTION

does not mean 

1cos x2�1 or 1
cosx .

cos�1



Because the graph of the restricted tangent function passes the horizon-
tal line test, it has an inverse function. This inverse function is called the
inverse tangent (or arctangent) function and is denoted

or 

The graph of the inverse tangent function, which is the reflection of the
graph of the restricted tangent function (Figure 8.2-6) across the line 
is shown in Figure 8.2-7.

y � x,

g(x) � arctan x.g(x) � tan�1 x
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π�2

�10 10

π
2

Figure 8.2-7

For each real number v,

is the unique number u in the interval whose 

tangent is v; that is,

tan�1v � u  exactly when  tan u � v.

a�P2 ,  P2 btan�1v

Inverse Tangent
Function

for every real number v.tan(tan�1v) � v

tan�1(tan u) � u  if  �P2 6 u 6 P2

Properties of
Inverse Tangent

The properties of the inverse tangent function are similar to the proper-
ties of the inverse sine and inverse cosine functions.

Example 5 Evaluating Inverse Tangent Expressions

Evaluate:

a. b. tan�1 136tan�1 1

CAUTION

does not mean 

.1tan x2�1 or 1
tan x

tan�1

The domain of is the set of all real numbers and its range 

is the interval a�p2 , p2 b.
g1x2 � tan�1 x



Solution

a. because is the unique number in the interval 

such that 

b. The key on a calculator shows that 

Example 6 Exact Values

Find the exact value of 

Solution

Let Then and 

Because is positive, u must be between 0 and . Draw a right

triangle containing an angle of u radians whose tangent is .

The hypotenuse has length Therefore,

■

cosatan�1 25
2 b � cos u �

adjacent
hypotenuse

�
2
3.

222 � 115 22 � 24 � 5 � 3.

tan u �
opposite
adjacent

�
25
2

25
2

p
2tan u �

25
2

�
p
2 6 u 6 p2 .tan u �

25
2tan�1 25

2 � u.

cosatan�1 25
2 b .

tan�111362 � 1.5634.TAN�1

tan p4 � 1.

Q�p2 , p2 Rp
4tan�1 1 �

p
4
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u

2

3 5

Figure 8.2-8

Exercises 8.2

In Exercises 1–14, find the exact value without using
a calculator.

1. 2. 3.

4. 5. 6.

7. 8.

9. 10. sin�1 23
2sin�1 a�22

2 b

cos�1 23
2tan�1 23

3

tan�11cos�11sin�11�12
tan�11�12cos�10sin�11

11. 12.

13. 14.

In Exercises 15–24, use a calculator in radian mode to
approximate the functional value.

15. 16.

17. 18. sin�11�0.7952tan�11�3.2562
cos�10.76sin�10.35

sin�1a�1
2bcos�1a�1

2b

cos�1a�22
2 btan�1A�23 B



19. Hint: the answer is not 7.

20. 21.

22. 23.

24.

25. Given that find the exact value 

of cos u and tan u.

26. Given that find the exact value of 

sin u and sec u.

In Exercises 27–42, find the exact functional value
without using a calculator.

27. 28.

29. 30.

31. 32.

33. (See Exercise 19.)

34.

35.

36.

37. (See Example 6.)

38. 39.

40. 41.

42.

In Exercises 43–46, write the expression as an algebraic
expression in v, as in Example 4.

43. 44. cot Acos�1 v BcosAsin�1 v B

sin Scos�1a23
13 b T

tan Ssin�1 a 5
13b Tcos Ssin�1 a23

5 b T
cos S tan�1 a�3

4b Ttan Ssin�1 a3
5b T

sin Scos�1a3
5b T

tan�1 S tan a�4p
3 b T

cos�1 Scos a�p6 b T
cos�1acos 5p4 b

sin�1asin 2p3 b

cos�1atan 
7p
4 bsin�1 acos 

7p
6 b

tan�1 1cos p2cos�1asin 
4p
3 b

cos�1asin 
p

6 bsin�1 1cos 02

u � tan�1a4
3b,

u � sin�1 a�23
2 b,

tan�11tan 12.42
cos�1Ccos1�8.52Dsin�1Csin1�22D
tan�1Ctan1�42Dcos�11cos 3.52

sin�11sin 72
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45. 46.

In Exercises 47–50, graph the function.

47.

48.

49.

50.

51. A model plane 40 feet above the ground is flying
away from an observer.

a. Express the angle of elevation of the plane as
a function of the distance x from the observer
to the plane.

b. What is when the plane is 250 feet from the
observer?

52. Show that the restricted secant function, whose
domain consists of all numbers x such that 

and , has an inverse function.

Sketch its graph.

53. Show that the restricted cosecant function, whose
domain consists of all numbers x such that 

and has an inverse function. 

Sketch its graph.

54. Show that the restricted cotangent function,
whose domain is the interval has an inverse
function. Sketch its graph.

55. a. Show that the inverse cosine function actually
has the two properties listed in the box on
page 533.

b. Show that the inverse tangent function actually
has the two properties listed in the box on
page 535.

10, p2,

x � 0,�
p

2 � x �
p

2

x �
p

20 � x � p

u

u

x

Observer

40

θ

k 1x2 � sinAsin�1 x B
h 1x2 � sin�1 Asin x B
g 1x2 � tan�1 x � p

f 1x2 � cos�1Ax � 1 B

sinA2 sin�1v BtanAsin�1v B
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8.3 Algebraic Solutions of Trigonometric Equations

Trigonometric equations were solved graphically in Section 8.1. In this
section you will learn how to use algebra with inverse trigonometric func-
tions and identities to solve trigonometric equations.

Recall from Section 8.1 that equations such as

are called basic equations. Algebraic solution methods for basic equations
are illustrated in Examples 1 through 3.

Example 1 Solving Basic Cosine Equations

Solve cos x � 0.6.

sin x � �0.75, cos x � 0.6, and tan x � 3

Objective

• Solve trigonometric
equations algebraically

56. Critical Thinking A 15-foot-wide highway sign is
placed 10 feet from a road, perpendicular to the
road. A spotlight at the edge of the road is aimed at
the sign, as shown in the figure below.

a. Express as a function of the distance x from
point A to the spotlight.

b. How far from point A should the spotlight be
placed so that the angle is as large as
possible?

u

u

Sign10

Spotlight

θ

A

57. Critical Thinking A camera on a 5-foot-high tripod
is placed in front of a 6-foot-high picture that is
mounted 3 feet above the floor, as shown in figure
below.

a. Express angle as a function of the distance x
from the camera to the wall.

b. The photographer wants to use a particular 

lens, for which How far 

should she place the camera from the wall to
be sure the entire picture will show in the
photograph?

u � 36° ap5  radiansb.

u

x

6 ft

3 ft

5 ft

θ



Solution

The graphs of and in Figure 8.3-1 show that there are
just two solutions (intersection points) on the interval which is
one full period of the cosine function.

The definition of the inverse cosine function states that

is the number in the interval whose cosine is 0.6.

Using the inverse cosine function, is one solution
of on the interval The second solution can be found
by using the identity with 

Therefore, the solutions of on the interval are

Because the interval is one complete period of the cosine func-
tion, all solutions of are given by

where k is any integer.
■

Example 2 Solving Basic Sine Equations

Solve 

Solution

The definition of the inverse sine function states that

Using the inverse sine function, is the solu-

tion of on the interval A second solution can be 

found by using the identity with 

Therefore, is also a solution of 
and all solutions are given by

where k is any integer.

Recall that there are an infinite number of solutions to many trigonometric
equations. Figure 8.3-2 indicates that there are two solutions in the inter-
val : and . The solution can
be found by letting in the solution .

■
x � 3.9897 � 2kpk � �1

x � �2.2935x � �0.8481x � �2.29353�p, p 4

x � �0.8481 � 2kp  and  x � 3.9897 � 2kp,

sin x � �0.75,x � p � 1�0.84812 � 3.9897

sin 3p � 1�0.84812 4 � sin 13.98972 � �0.75

x � �0.8481.sin 1p � x2 � sin x,

S�p2 , p2 T.sinx � �0.75

x � sin�11�0.752 � �0.8481

sin�11�0.752 is the number in the interval S�p2 , p2 T  whose sine is �0.75.

sin x � �0.75.

x � 0.9273 � 2kp  and  x � �0.9273 � 2kp,

cos x � 0.6
3�p, p 4

x � cos�10.6 � 0.9273  and  x � �cos�10.6 � �0.9273

3�p, p 4cos x � 0.6

cos 1�0.92732 � cos 0.9273 � 0.6

x � 0.9273.cos 1�x2 � cos x,
3�p, p 4 .cos x � 0.6

x � cos�10.6 � 0.9273

30, p 4cos�10.6

3�p, p 4 ,Y2 � 0.6Y1 � cos x
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�2

π�π

2

Figure 8.3-1

�1.5

π�π

1.5

Figure 8.3-2



Example 3 Solving Basic Tangent Equations

Solve 

Solution

The definition of the inverse tangent function states that

is the number in the interval whose tangent is 3.

Using the inverse tangent function, is the solution of 

on the interval Because is one full period 

of the tangent function, all solutions are given by

where k is any integer.
■

The solution method used in Examples 1–3 is summarized in the fol-
lowing table, where k is any integer.

x � 1.2490 � kp,

a�p2 , p2 ba�p2 , p2 b .tan x � 3

x � tan�1 3 � 1.2490

a�p2 , p2 btan�1 3

tan x � 3.
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Solutions of Basic Trigonometric Equations

Equation Possible values of c Solutions

and

no solution

and

no solution

all real numbers x � tan�1 c � kptan x � c

c 7 1 or c 6 �1

x � p � 2kpc � �1

x � 0 � 2kp � 2kpc � 1

x � �cos�1 c � 2kp

x � cos�1 c � 2kp�1 6 c 6 1cos x � c

c 7 1 or c 6 �1

x � �
p

2 � 2kpc � �1

x �
p

2 � 2kpc � 1

x � 1p � sin�1 c2 � 2kp

x � sin�1 c � 2kp�1 6 c 6 1sin x � c

�5

π�π

5

Figure 8.3-3



Example 4 Using the Solution Algorithm

Solve 

Solution

First rewrite the equation as an equivalent basic equation.

Then solve the basic equation using the inverse cosine function. One solu-
tion is in Quadrant I.

The other solution on the interval is in Quadrant IV.

All solutions are given by

where k is any integer.
■

Example 5 Solving Basic Equations with Special Values

Solve exactly, without using a calculator.

Solution

Because is one solution of on the in-

terval . Another solution is in Quadrant II.

Therefore, the exact solution is given by

where k is any integer.
■

Sometimes trigonometric equations can be solved by using substitution
to make them into basic equations.

u �
p
4 � 2kp  and  u �

3p
4 � 2kp,

u � p �
p
4 �

3p
4

3�p, p 4
sin u �

22
2u �

p
4sin p4 �

22
2 ,

sin u �
22
2

x � 1.4455 � 2kp  and  x � �1.4455 � 2kp,

x � �cos�1 18 � �1.4455

3�p, p 4
x � cos�1 1

8 � 1.4455

 cos x �
1
8

 8 cos x � 1 � 0

8 cos x � 1 � 0.
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Example 6 Using Substitution and Basic Equations

Solve exactly, without using a calculator.

Solution

First, let and solve the basic equation From Exam-

ple 5, you know the complete exact solution of is given by

where k is any integer.

Because each of these solutions leads to a solution of the original
equation. Substitute for u, and solve for x.

and

Therefore, all solutions of are given by

where k is any integer.
■

Algebraic Techniques

Many trigonometric equations can be solved algebraically—by using 
factoring, the quadratic formula, and basic identities to write an equiva-
lent equation that involves only basic equations, as shown in the following
examples.

Example 7 Factoring Trigonometric Equations

Find the solutions of in the interval 

Solution

Let .

Substitution 3u2 � u � 2 � 0
 3 sin2 x � sin x � 2 � 0

u � sin x

3�p, p 4 .3 sin2 x � sin x � 2 � 0

x �
p
8 � kp  and  x �

3p
8 � kp,

sin 2x �
22
2

 x �
3p
8 � kp x �

p
8 � kp

 2x �
3p
4 � 2kp 2x �

p
4 � 2kp

 u �
3p
4 � 2kp u �

p
4 � 2kp

2x
u � 2x,

u �
p
4 � 2kp  and  u �

3p
4 � 2kp,

sin u �
22
2

sin u �
22
2 .u � 2x,

sin 2x �
22
2
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This quadratic equation can be solved by factoring.

Substituting for u results in two basic equations.

or

If , then

or

If , then 

Therefore, the solutions of are

and

where k is any integer.

Figure 8.3-4 indicates that there are three solutions in the interval 
which is marked with vertical lines. The solution is outside 
the interval, but the corresponding solution within the interval can be
found by letting in Within , the solu-
tions are

and

■

Example 8 Factoring Trigonometric Equations

Solve 

Solution

Write an equivalent equation as an expression equal to zero, and factor.

or

 x � 0 � 2kp or x � p � 2kp
 cos x � ±1

 2cos2x � 21
cos2 x � 1 x � 0 � kp

 cos2 x � 1 � 0 tan x � 0
 tan x 1cos2x � 12 � 0

 tan x cos2x � tan x � 0

tan x cos2x � tan x.

x �
p
2 .x � �0.7297,x � 3.8713 � 2p � �2.4119,

3�p, p 4x � 3.8713 � 2kp.k � �1

x � 3.8713
3�p, p 4 ,

x � 3.8713 � 2kp,x �
p
2 � 2kp,x � �0.7297 � 2kp,

3 sin2 x � sin x � 2 � 0

x �
p
2 � 2kpsin x � 1

 � 3.8713 � 2kp � �0.7297 � 2kp

 x � p � sin�1 a�2
3b x � sin�1 a�2

3b
sin x � a�2

3b
sin x � 1sin x � �

2
3

sin x

 u � �
2
3  or  u � 1

 13u � 22 1u � 12 � 0
 3u2 � u � 2 � 0
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CAUTION

cos2 x � 1 � sin2 x

−3

2π−2π

3

Figure 8.3-4



More simply stated, the solution of x is

where k is any integer. The graphs of and are
shown in Figure 8.3-5.

■

Many trigonometric equations can be solved if trigonometric identities
are used to rewrite the original equation, as shown in Examples 9 and 10.

Example 9 Identities and Factoring

Solve 

Solution

Use the Pythagorean identity to rewrite the equation in terms of the sine
function.

Factor the left side and solve.

 10 sin2x � 3 sin x � 1 � 0
 �10 � 10 sin2x � 3 sin x � 9 � 0
 �1011 � sin2x2 � 3 sin x � 9 � 0

 �10 cos2x � 3 sin x � 9 � 0

�10 cos2 x � 3 sin x � 9 � 0.

Y2 � tan xY1 � tan x cos2 x

x � 0 � kp � kp,

tan x cos2 x � tan
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�5

15

π�2
3π
2

Figure 8.3-6

�2

2π0

2

Figure 8.3-5

 � 3.3430 � 2kp

 x � p � 1�0.20142 � 2kp

 x � �0.2014 � 2kp

 x � sin�1a�1
5b

 sin x � �
1
5

 5 sin x � 1 � 0

 � 5p
6 � 2kp

 x � p �
p
6 � 2kp

 x �
p
6 � 2kp

 x � sin�1a1
2b

 sin x �
1
2

 2 sin x � 1 � 0
12 sin x � 12 15 sin x � 12 � 0

or

or or

Therefore, all solutions of are

where k is any integer. The graph of shown
in Figure 8.3-6 confirms the solution.

■

Example 10 Identities and Quadratic Formula

Solve sec2 x � 5 tan x � �2.

Y1 � �10 cos2x � 3 sin x � 9

x � �0.2014 � 2kp,  and  x � 3.3430 � 2kp,

x �
p
6 � 2 kp,  x �

5p
6 � 2kp,

�10 cos2 x � 3 sin x � 9 � 0
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Exercises 8.3

In Exercises 1–8, find the exact solutions.

1. 2.

3. 4.

5. 6.

7. 8.

In the following exercises, find exact solutions if pos-
sible and approximate solutions otherwise. When a
calculator is used, round to four decimal places.

Use the following information in Exercises 9–12.

When a light beam passes from one medium to another
(for instance, from air to water), it changes both its speed
and direction. According to Snell’s Law of Refraction,

sin u1

sin u2
�

v1
v2

 ,

csc x � 222 sin x � 1 � 0

sin x � 02 cos x � �23

tan x � 1tan x � �23

2 cos x � 22sin x �
23
2

where is the speed of light in the first medium, its
speed in the second medium, the angle of incidence,
and the angle of refraction, as shown in the figure. 

The number is called the index of refraction. 

9. The index of refraction of light passing from air to
water is 1.33. If the angle of incidence is , find
the angle of refraction.

38°

2θ

1θ

Angle of incidence

Incident ray,
speed v1

Angle of refraction

Refracted ray,
speed v2

v1
v2

u2

u1

v2v1

π�2
3π
2

�10

20

Figure 8.3-7

Solution

Use a Pythagorean identity to rewrite the equation in terms of the tan-
gent function.

Use the quadratic formula to solve for tan x.

or

Therefore, the solution set of is

and

where k is any integer. The graphs of and 
in Figure 8.3-7 confirm the solution.

■

Y2 � �2Y1 � sec2 x � 5 tan x

x � �1.3424 � pk,x � �0.6089 � pk

sec2x � 5 tan x � �2

 � �1.3424 � kp � �0.6088 � kp

 x � tan�11�4.30282 x � tan�11�0.69722
 tan x �

�5 � 213
2 � �4.3028 tan x �

�5 � 213
2 � �0.6972

tan x �
�5 ± 252 � 4112 132

2112 �
�5 ± 213

2

 tan2x � 5 tan x � 3 � 0
 11 � tan2x2 � 5 tan x � 2 � 0

 sec2x � 5 tan x � 2 � 0
 sec2x � 5 tan x � �2



10. The index of refraction of light passing from air to
ordinary glass is 1.52. If the angle of incidence is

find the angle of refraction.

11. The index of refraction of light passing from air to
dense glass is 1.66. If the angle of incidence is ,
find the angle of refraction.

12. The index of refraction of light passing from air to
quartz is 1.46. If the angle of incidence is , find
the angle of refraction.

In Exercises 13–32, find all the solutions of each equa-
tion.

13. 14.

15. 16.

17. 18.

19.

20. 21.

22. 23.

24. 25.

26. 27.

28. 29.

30. 31.

32.

In Exercises 33–53, use factoring, the quadratic for-
mula, or identities to solve the equation. Find all
solutions in the interval 

33.

34.

35.

36.

37.

38. 39. cos x csc x � 2cos xtan x cos x � cos x

cot x cos x � cos x

3 sin2x � 2 sin x � 5

2 tan2x � 5 tan x � 3 � 0

5 cos2x � 6 cos x � 8

3 sin2x � 8 sin x � 3 � 0

[0, 2p).

5 sin 
x
4 � 4

4 tan 
x
2 � 82 tan 4x � 16

5 cos 3x � �35 sin 2x � 2

tan 3x � �232 sin 
x
3 � 1

2 cos 
x
2 � 22cos 2x �

22
2

sin 2x � �
23
2csc x � 5.27

sec x � �2.65cot x � �3.5

cot x � 2.3 SHint: cot x �
1

tan x .T
tan x � �12.45tan x � �0.237

cos x � �0.371cos x � �0.564

sin x � �0.682sin x � �0.465

50°

24°

17°,
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40.

41.

42.

43.

44. 45.

46. 47.

48. 49.

50.

51.

52.

53.

54. The number of hours of daylight in Detroit on
day t of a non-leap year (with being January
1) is given by the following function.

a. On what days of the year are there exactly 11
hours of daylight?

b. What day has the maximum amount of
daylight?

55. A weight hanging from a spring is set into motion
moving up and down. Its distance d (in
centimeters) above or below the equilibrium point
at time t seconds is given by 

At what times during the first 2 seconds is the
weight at the equilibrium position 

In Exercises 56–59, use the following information.

When a projectile (such as a ball or a bullet) leaves its
starting point at angle of elevation with velocity v, the
horizontal distance d it travels is given by the equation 

where d is measured in feet and v in feet per second.
Note that the horizontal distance traveled may be the
same for two different angles of elevation, so that some
of these exercises may have more than one correct
answer.

d �
v2

32 sin 2u,

u

1d � 02?

d � 51sin 6 t � 4 cos 6 t2.

d1t2 � 3 sin S 2p365 1t � 802 T � 12

t � 0

2 tan2x � tan x � 5 � sec2x

cos2x � sin2x � sin x � 0

sec2 x � tanx � 3

9 � 12 sin x � 4 cos2x

sec2x � 2 tan2x � 06 sin2x � 4 sin x � 1

2 tan2x � 1 � 3 tan x4 cos2x � 2 cos x � 1

tan2x � 1 � 3 tan xcos2x � 5 cos x � 1

sin2x � 2 sin x � 2 � 0

25 sin x cos x � 5 sin x � 20 cos x � 4

Hint: One factor is tan x � 5.
4 sin x tan x � 3 tan x � 20 sin x � 15 � 0

tan x sec x � 3 tan x � 0
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d

a

θ
d

b

8.4 Simple Harmonic Motion and Modeling

In Section 7.4, graphs of functions of the form

were studied; and the constants a, b, c, and d were examined to see how
they affect the graphs of the functions. In this section, trigonometric func-
tions of this form are used to model real-world phenomena.

Recall that if then each of the functions

has the following characteristics.

 vertical shift � dphase shift � �
c
b

 period �
2p
b

amplitude � 0 a 0

f 1t2 � a sin1bt � c2 � d  and  g1t2 � a cos1bt � c2 � d

a � 0 and b 7 0,

f 1t2 � a sin1bt � c2 � d  and  g1t2 � a cos1bt � c2 � d,

Objective

• Write a sinusoidal function
whose graph resembles a
given graph

• Write a sinusoidal function
to represent a given simple
harmonic motion, and use
the function to solve
problems

• Find a sinusoidal model for
a set of data, and use the
model to make predictions

56. If muzzle velocity of a rifle is 300 feet per second,
at what angle of elevation (in radians) should it 
be aimed in order for the bullet to hit a target 
2500 feet away?

57. Is it possible for the rifle in Exercise 56 to hit a
target that is 3000 feet away? At what angle of
elevation would it have to be aimed?

58. A fly ball leaves the bat at a velocity of 98 miles
per hour and is caught by an outfielder 288 feet
away. At what angle of elevation (in degrees) did
the ball leave the bat?

59. An outfielder throws the ball at a speed of 
75 miles per hour to the catcher who is 200 feet
away. At what angle of elevation was the ball
thrown?

60. In an alternating current circuit, the voltage is
given by the formula

V � Vmax � sin12pft � f2,

where is the maximum voltage, f is the
frequency (in cycles per second), t is the time in
seconds, and is the phase angle.
a. If the phase angle is 0, solve the voltage

equation for t.
b. If find

the smallest positive value of t.

61. Critical Thinking Find all solutions of
in the interval 

62. Critical Thinking What is wrong with this
“solution’’?

Hint: Solve the original equation by moving all
terms to one side and factoring. Compare your
answers with the ones above.

63. Critical Thinking Let n be a fixed positive integer. 

Describe all solutions of the equation sin nx �
1
2.

x �
p

4   or  5p
4  

 tan x � 1
 sin x tan x � sin x

30, 2p2.sin2x � 3 cos2x � 0

f � 0, Vmax � 20, V � 8.5, and f � 120,

f

Vmax



Recall the shapes of sine and cosine waves.
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Figure 8.4-3

y

t

2

0

4

−2

−2π −1π 2π1π
4

3π

The wave shape of the graphs of these functions is called a sinusoid and
the functions are called sinusoidal functions.

Recall that the amplitude of the function is the number 
and that its graph consists of waves that rise to units above the hor-
izontal axis and fall to units below the horizontal axis. In other 
words, the amplitude is half the distance from the maximum value to the
minimum value of the function. This number remains the same when the
graph is shifted vertically or horizontally. Thus the amplitude of the sinu-
soidal function is the
number

where and denote the maximum and minimum values of f.

The vertical shift d of a sinusoidal function can be determined by aver-
aging the maximum and minimum values as shown below.

Example 1 Constructing Sinusoidal Functions

Write a sine function and a cosine function whose graph resembles the
sinusoidal graph below.

vertical shift � d �
fmax � fmin

2

fminfmax

a �
1
2 1 fmax � fmin2,

f 1t2 � a sin1bt � c2 � d or g 1t2 � a cos 1bt � c2 � d

�0 a 0 0 a 0 0 a 0 ,f 1t2 � a sin1bt2

�2

2π0

2

Figure 8.4-1 �2

2π0

2

Figure 8.4-2



Solution

The graph shows that the function has a maximum of 4 and a minimum
of Therefore, the amplitude is

The graph shows one complete cosine cycle between 0 and so the period 
is Therefore,

The vertical shift d is one unit. 

The variable c depends on whether the function is described in terms of
sine or cosine. If is used, there is no phase shift because a
cosine wave’s maximum occurs at So the phase shift is 0, and a
function for the sinusoidal graph in Figure 8.4-3 has a value of 0 for c.

The graph indicates that a sine wave begins at so the phase shift 

for a function using is 

Solve for c.

Therefore, a function for the sinusoidal graph in Figure 8.4-3 is

■

Simple Harmonic Motion

Motion that can be described by a function of the form

is called simple harmonic motion. Many kinds of physical motion are
simple harmonic motions.

f 1t2 � a sin 1bt � c2 � d    or    g 1t2 � a cos 1bt � c2 � d

f 1t2 � 3 sin a2t �
3p
2 b � 1.

 c � �
3p
2

b � 2 3p4 � �
c
2

phase shift is �
c
b

 3p4 � �
c
b

3p
4 .f 1t2 � sin t

t �
3p
4 ,

g1t2 � 3 cos 2t � 1

t � 0.
g1t2 � cos t

d �
fmax � fmin

2 �
4 � 1�22

2 � 1

 b � 2

 2p
b

� p

p.
p,

a �
1
2 1 fmax � fmin2 �

1
2 14 � 1�22 2 � 3.

�2.
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The function that
represents the graph,

is not
unique because infinitely
many functions can name
the graph, such as

They can be written using
different phase shifts. The
first function above is the
representative answer
because it uses the phase
shift that is closest to zero.

h1t2 � 3 cos 121t � p2 2 � 1.

g1t2 � 3 cos 2t � 1,

NOTE



Example 2 Rotating Wheel

A wheel with a radius of 2 centimeters is rotating counterclockwise at 3
radians per second. A free-hanging rod 10 centimeters long is connected
to the edge of the wheel at point P and remains vertical as the wheel
rotates (Figure 8.4-4).

a. Assuming that the center of the wheel is at the origin and that P is
at (2, 0) at time find a function that describes the y-coordinate
of the tip E of the rod at time t.

b. What is the first time that the tip E of the rod will be at a height of
centimeters?

Solution

a. The wheel is rotating at 3 radians per second. After t seconds, the
point P has moved through an angle of radians and is 2 units
from the origin.

To find the time t that it takes to complete one revolution (i.e., 2p),
solve 

After of a revolution, or the height of P reaches its 

maximum of 2 centimeters, so the y-coordinate of E is 

After of a revolution, or the height of P is at 0, so the 

y-coordinate of E is Continuing this process, it can be found that  

at the y-coordinate of E is and at the y-coordinate of E is 

Plotting these key points shows the main features of the graph.

The amplitude is

Use the period to find b.

The sine wave begins at so there is no phase shift and 
The vertical shift, d, is units.

Thus, the function giving the y-coordinate of E at time t is

f 1t2 � 2 sin 3t � 10.

d �
fmax � fmin

2 �
�8 � 1�122

2 � �10

�10
c � 0.t � 0,

 b � 3

 2p3 �
2p
b

a �
1
2 1 fmax � fmin2 �

1
2 1�8 � 1�122 2 � 2.

�10.

2p
3�12p

2

�10.

1
2 �

2p
3 �

p
3 ,1

2

2 � 10 � �8.

1
4 �

2p
3 �

p
6 ,1

4

 t �
2p
3

 3t � 2p.

3t

�9

t � 0,

550 Chapter 8 Solving Trigonometric Equations

y t
0

−2

−4

−6

−8

−10

−12

π5π2ππππ
6 3 2 3 6

Figure 8.4-5

P(2, 0)

E
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b. To find the first time that the tip E of the rod will be at a height of
centimeters, solve for t.

The first time that the tip E of the rod will be at a height of 

is when that is, seconds.

■

Example 3 Bouncing Spring

Suppose that a weight hanging from a spring is set in motion by an
upward push (Figure 8.4-6). It takes 5 seconds for it to complete one cycle
of moving from its equilibrium position to 8 centimeters above, then drop-
ping to 8 centimeters below, and finally returning to its equilibrium
position. (This is an idealized situation in which the spring has perfect
elasticity, and friction, air resistance, etc., are negligible.)

t �
p
18 � 0.1745k � 0,

�9 cm

 t �
p
18 �

2kp
3 � 0.1745 �

2kp
3

 3t �
p
6 � 2kp 1k is any integer2

 3t � sin�1 a1
2b

 sin 3t �
1
2

 2 sin 3t � 1
 2 sin 3t � 10 � �9

2 sin 3t � 10 � �9�9
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Equilibrium
position

Figure 8.4-6

a. Find a sinusoidal function to represent the motion of the moving
weight.

b. Sketch a graph of the function you wrote in part a.
c. Use the function from part a to predict the height of the weight after

3 seconds.
d. In the first 5 seconds, when will the height of the weight be 

6 centimeters below the equilibrium position?



Solution

a. Let denote the distance of the weight above or below its
equilibrium position at time t. Then is 0 when t is 0. As t increases
from 0 to 5, increases from 0 to 8, decreases to and increases
again to 0. In the next 5 seconds it repeats the same pattern, and so
on. Therefore, the graph of h is periodic and has some kind of wave
shape. Two possibilities are shown in Figures 8.4-7a and 8.4-7b.

�8,h 1t2 h 1t2 1�21� 2h1t2
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Figure 8.4-8

Careful physical experiment suggests that the curve in Figure 8.4-7a,
which resembles the sine graphs you have studied, is a reasonably
accurate model of this process. Facts from physics and calculus
show that the rule of the function h is the form 
for some constants a, b, and c.

The function h has an amplitude of 8, a period of 5, and a phase
shift 0, so the constants a, b, and c must satisfy

or equivalently,

Therefore, the motion of the moving weight can be described by
this function:

b. The graph of is shown in Figure 8.4-8.

c. The value of gives the height of the weight after 3 seconds.

The height of the weight after 3 seconds is approximately 4.7
centimeters below the equilibrium point.

d. To find the times in the first 5 seconds when the weight is 6
centimeters below the equilibrium, you must solve the equation

h 132 � 8 sin a2p
5 � 3b � 8 sin 6p5 � �4.7

h132
h 1t2 � 8 sin 2p5 t

h 1t2 � 8 sin 2p5 t

a � 8,  b �
2p
5 ,  and  c � 0.

0 a 0 � 8,  2p
b

� 5,  and  �
c
b

� 0,

h 1t2 � a sin 1bt � c2

Figure 8.4-7a

8

or

−8

h(t)

t

8

−8

h(t)

t

Figure 8.4-7b



The graphs of and in a window with 

are shown in Figure 8.4-9 and 8.4-10. The points of
intersection show that the weight will be 6 centimeters below the
equilibrium at two times between 0 and 5 seconds.

■

Modeling Trigonometric Data

Periodic data that appears to resemble a sinusoidal curve when plotted
can often be modeled by a sine function, as shown in Example 4.

Example 4 Temperature Data

The following table shows the average monthly temperature in Cleve-
land, Ohio, based on data from 1971 to 2000. Since average temperatures
are not likely to vary much from year to year, the data essentially repeats
the same pattern in subsequent years. So, a periodic model is appropriate.

t � 3.1749    and    t � 4.3251

0 � t � 5

Y2 � �6Y1 � 8 sina2p
5  tb

8 sina2p
5  tb � �6 10 � t � 52
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�10

50

10

Figure 8.4-9

�10

50

10

Figure 8.4-10

Month Temperature 

Jan. 25.7

Feb. 28.4

Mar. 37.5

Apr. 47.6

May 58.5

June 67.5

1°F2

a. Make a scatter plot of the data.
b. Find a sinusoidal function that models the temperature data.
c. Use the sine regression feature on a calculator to find another

sinusoidal model for the data.
d. How do the models in parts b and c differ from one another?
e. Use one of the models to predict time(s) of year in which the

average temperature is 

Solution

a. Let represent January. Enter 1 through 12 in List 1 and the
temperatures in List 2. The scatter plot is shown in Figure 8.4-11a.

t � 1

45°F.

Month Temperature 

July 71.9

Aug. 70.2

Sep. 63.3

Oct. 52.2

Nov. 41.8

Dec. 31.1

1°F2

[Source: National Climatic Data Center]

0

130

100

Figure 8.4-11a



b. To find a sinusoidal function to represent the temperature data,
examine the properties of the scatter plot.

The minimum value is 25.7 and the maximum value is 71.9, so the
amplitude is

One complete cycle is 12 months, so the period, is 12.

The vertical shift is

A sine wave begins close to the data point (4, 47.6), as shown in 

Figure 8.4-11b, so the phase shift is approximately 4. Find c.

Therefore, a sinusoidal function to represent the temperature data is
approximately

The graph of this function is shown with the scatter plot of the data
in Figure 8.4-12.

c. Using the 12 given data points, the regression feature on a calculator
produces the following model.

The period of this function is approximately

which is not a very good approximation for a 12-month cycle.

Because the data repeats the same pattern from year to year, a more
accurate model can be obtained by using the same data repeated for

2p
0.5018 � 12.52,

f 1t2 � 23.1202 sin 10.5018t � 2.04902 � 48.6927

f 1t2 � 23.1 sin ap6 t �
2p
3 b � 48.8.

 c � �
2p
3

 � c
p
6

� 4

 � c
b

� 4

�
c
b

d �
fmax � fmin

2 �
71.9 � 25.7

2 � 48.8.

 b �
p
6

 2p
b

� 12

2p
b

,

a �
1
2 1 fmax � fmin2 �

1
2 171.9 � 25.72 � 23.1.
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the second year. The data for a two-year period is plotted in Figure
8.4-13a. The sine regression feature on a calculator produces this
model from the 24 data points:

The period of this function is

which is slightly off from the expected 12-month period. However,
its graph in Figure 8.4-13b appears to fit the data well.

d. Using the decimal approximation of the rule of the function
found in part b becomes

This model differs only slightly from the second model in part c.

Visually, however, the model shown in Figure 8.4-12 does not seem
to fit the data points quite as well as the model shown in Figure 
8.4-13b. Nevertheless, considering that the model found in part b
can be obtained without technology, it is remarkedly close.

e. The model from part c will be used to predict the times of year in
which the average temperature is .

There are two points of intersection of the graphs of 

and 

as shown in Figure 8.4-14. Their approximate coordinates are 
(3.8, 45) and (10.6, 45). Therefore, according to this model, the
temperature would be around in late March and late October.

■
45°F

f 1t2 � 22.7000 sin 10.5219 t � 2.18422 � 49.5731,y � 45

45°F

f 1t2 � 22.7000 sin 10.5219 t � 2.18422 � 49.5731

f 1t2 � 23.1 sin 10.5236 t � 2.09442 � 48.8.

p,

2p
0.5219 � 12.04,

f 1t2 � 22.7000 sin 10.5219t � 2.18422 � 49.5731
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0
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Figure 8.4-13b

Figure 8.4-14

Exercises 8.4

1. The original Ferris wheel, built by George Ferris
for the Columbian Exposition of 1893, was much
larger and slower than its modern counterparts: It
had a diameter of 250 feet and contained 36 cars,
each of which held 40 people; it made one
revolution every 10 minutes. Suppose that the
Ferris wheel revolves counterclockwise in the x-y
plane with its center at the origin. Car D in the
figure had coordinates (125, 0) at time Find
the rule of a function that gives the y-coordinate
of car D at time t.

t � 0.

125

125−125 x

y

D
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2. Do Exercise 1 if the wheel turns at 2 radians per
minute and car D is at at time 

3. A circular wheel with a radius of 1 foot rotates
counterclockwise. A 4-foot rod has one end
attached to the edge of this wheel and the other
end to the base of a piston (see figure). It transfers
the rotary motion of the wheel into a back-and-
forth linear motion of the piston. If the wheel is
rotating at 10 revolutions per second, point W is
at at time and point P is always on 
x-axis, find the rule of a function that gives the 
x-coordinate of P at time t.

4. Do Exercise 3 if the wheel has a radius of 2 feet,
rotates at 50 revolutions per second, and is at

when 

In Exercises 5–8, suppose a weight is hanging from a
spring (under the same conditions as in Example 3). The
weight is pushed to start it moving. At time t, let h(t)
be the distance of the weight above or below its equi-
librium point. Assume the maximum distance the
weight moves in either direction from the equilibrium
point is 6 cm and that it moves through a complete cycle
every 4 seconds. Express h(t) in terms of the sine or
cosine function under the given conditions.

5. There is an initial push upward from the
equilibrium point.

6. There is an initial pull downward from the
equilibrium point. Hint: What does the graph of

look like when ?

7. The weight is pulled 6 cm above the equilibrium
point, and the initial movement (at ) is
downward. Hint: Think of the cosine graph.

8. The weight is pulled 6 cm below its equilibrium
point, and the initial movement is upward.

9. A pendulum swings uniformly back and forth,
taking 2 seconds to move from the position directly
above point A to the position directly above point B,
as shown in the figure. The distance from A to B is
20 centimeters. Let be the horizontal distanced1t2

t � 0

a 6 0y � a sin bt

t � 0.12, 02

−1 1

W

P

−1

1

t � 0,11, 02

t � 0.10, �1252
from the pendulum to the (dashed) center line at
time t seconds (with distances to the right of the
line measured by positive numbers and distances to
the left by negative ones). Assume that the
pendulum is on the center line at time and
moving to the right. Assume the motion of the
pendulum is simple harmonic motion. Find the rule
of the function 

10. The following figure shows a diagram of a merry-
go-round that is turning counterclockwise at a
constant rate, making 2 revolutions in 1 minute.
On the merry-go-round are horses A, B, C, and D
4 meters from the center and horses E, F, and G
8 meters from the center. There is a function 
that gives the distance the horse A is from the 
y-axis (this is the x-coordinate of A’s position) as a
function of time t measured in minutes. Similarly,

gives the x-coordinate for B as a function of
time, and so on. Assume the diagram shows the
situation at time 

a. Which of the following function rules does 
have?

b. Describe the function 
and using the cosine function.g 1t2

b 1t2, c1t2, d1t2, e 1t2, f 1t2,
4 cosa1

2 tb, 4 cosap2 tb, 4 cos 4pt

4 cos 2pt,4 cos t, 4 cos pt, 4 cos 2t,

a1t2

x

y

G

F

E
A

D

C
B

t � 0.

b1t2

a1t2

BA

d1t2.

t � 0



c. Suppose the x-coordinate of a horse S is given 

by the function and the 

x-coordinate of another horse R is given by 

Where are these horses 

located in relation to the rest of the horses?
Copy the diagram and mark the positions of R
and S at .

11. The following table shows the number, in
millions, of unemployed people in the labor force
for 1991–2002.

t � 0

r 1t2 � 8 cos a4pt �
p

3 b.

s1t2 � 4 cosa4pt �
5p
6 b
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Year Unemployed

1991 8.628

1992 9.613

1993 8.940

1994 7.996

1995 7.404

1996 7.236

a. Sketch a scatter plot of the data, with 
corresponding to 1990.

b. Does the data appear to be periodic? If so, find
an appropriate model.

c. Do you think this model is likely to be accurate
much beyond the year 2002? Why?

In Exercises 12 and 13, do the following:

a. Use 12 data points (with corresponding to
January) to find a periodic model of the data.

b. What is the period of the function found in part a?
Is this reasonable?

c. Plot 24 data points (two years) and graph the
function from part a on the same screen. Is the
function a good model in the second year?

d. Use the 24 data points in part c to find another
periodic model for the data.

e. What is the period of the function in part d? Does
its graph fit the data well?

12. The table shows the average monthly temperature
in Chicago, IL, based on data from 1971 to 2000.

x � 1

x � 0

Year Unemployed

1997 6.739

1998 6.210

1999 5.880

2000 5.655

2001 6.742

2002 8.234
13. The table shows the average monthly precipitation,

in inches, in San Francisco, CA, based on data from
1971 to 2000.

Month Temperature 

Jan. 22.0

Feb. 27.0

Mar. 37.3

Apr. 47.8

May 58.7

June 68.2

July 73.3

Aug. 71.7

Sep. 63.8

Oct. 52.1

Nov. 39.3

Dec. 27.4

1°F2

[Source: National Climatic Data Center]

[Source: National Climatic Data Center]

Month Precipitation

Jan. 4.45

Feb. 4.01

Mar. 3.26

Apr. 1.17

May 0.38

June 0.11

July 0.03

Aug. 0.07

Sep. 0.20

Oct. 1.04

Nov. 2.49

Dec. 2.89



14. Critical Thinking A grandfather clock has a
pendulum length of k meters. Its swing is given
(as in Exercise 9) by the function

a. Find k such that the period of the pendulum is
2 seconds.

f 1t2 � 0.25 sin 1vt2, where v �
B

9.8
k

.
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b. The temperature in the summer months causes
the pendulum to increase its length by 0.01%.
How much time will the clock lose in June,
July, and August? Hint: These three months
have a total of 92 days (7,948,800 seconds). If k
is increased by 0.01%, what is f 122?

8.4.A Excursion: Sound Waves

Sound travels through the air like small ripples traveling across a body
of water. Throwing a rock into a calm body of water causes the water to
begin to move up and down around the entry point. The movement of
the water causes ripples to move outward. If a flower is floating in this
body of water, the ripples will cause the flower to move up and down on
the water.

Sound is produced by a vibrating object that disturbs the surrounding air
molecules and causes them to vibrate. These vibrations cause a periodic
change in air pressure that travels through the air much like the ripples
in a body of water. When the air pressure waves reach the eardrum, they
cause it to vibrate at the same frequency as the source. These air pressure
waves are more commonly called sound waves. The voices and sounds
heard each day are generally a combination of many different sound
waves. The sound from a tuning fork is a single tone that can be described
mathematically using a sinusoidal function, or

Recall from Sections 7.4 and 8.4 that if and then each of the
functions

has the following characteristics:

The period of a sound wave determines the sound’s frequency. The fre-
quency f of a sound wave is the reciprocal of its period.

f �
b

2p

phase shift � �
c
b
  vertical shift � d

amplitude � 0 a 0  period �
2p
b

f 1t2 � a sin 1bt � c2 � d  and  g 1t2 � a cos 1bt � c2 � d

b 7 0,a � 0

g 1t2 � a cos1bt � c2 � d.
f 1t2 � a sin 1bt � c2 � d

Objectives

• Find the frequency of a
sound wave using a tuning
fork and a data collection
device

• Model sound wave data
with sinusoidal functions
and graphs
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A tuning
program can be obtained
by downloading or
entering the DataMate
application available 
from Texas Instruments.

NOTE

Frequency gives the number of cycles (periods) that the sound wave com-
pletes in one second. Frequencies are measured in units called Hertz (Hz),
where one Hertz is one cycle per second. Most tuning forks have their
frequency and corresponding musical note listed on them.

A tuning fork, a microphone connected to a data collection device (such
as a CBL2), and a calculator with a tuning program can be used to sim-
ulate the sounds heard through the eardrum.

7 8 9

4 5 6

1 2 3

0 . (-)

tuning fork

microphone

data collection
device

calculator

Figure 8.4.A-1

0.05

0 0.05

−0.05

Figure 8.4.A-2a

Example 1 Frequency

Confirm with a sinusoid graph that the frequency of a sound wave formed
by striking a C tuning fork is 262 Hz.

Solution

Connect the calculator to the data collection device, connect the micro-
phone to the data collection device, and run the program needed to
calculate the pressure for the sound waves. Follow the directions on the
screen of your calculator to obtain a graph like the one shown in Figure
8.4.A-2.

The period of the data can be found by dividing the differences between
the x-value of the first maximum and the x-value for the last maximum
by the number of complete cycles between the maximums. For the data

−0.05

0.05

0 0.05

Figure 8.4.A-2b

−0.05

0.05

0.050

Figure 8.4.A-2c

Technology 
Tip

Data obtained may dif-
fer from one collection 

to another, and specific
values produced by a cal-
culator may vary.



shown in Figure 8.4.A-2a, Figures 8.4.A-2b and 8.4.A-2c show that the first
maximum occurs when , the last maximum occurs when

, and there are five complete cycles between the first and
last maximum. Therefore, the period of the data is given by the following.

cycle length

The frequency is the reciprocal of the period.

Therefore, the graph indicates a frequency of about 266.184, which is very
close to the actual frequency of 262 Hz.

■

Example 2 Sinusoidal Model

Find a sinusoidal model to fit the sound waves produced by a tuning fork
with the note G.

Solution

Use a data collection device, a G tuning fork, and a tuning program to
obtain a graph similar to the one shown in Figure 8.4.A-3.

Find the amplitude a by finding half the difference between the maximum
value and minimum value. The data graphed in Figure 8.4-3 has a max-
imum value of 0.043942 and a minimum value of .

amplitude

To find the period, find the x-value of the first maximum of the graph,
find the x-value of the last maximum of the graph, and divide the differ-
ence between the two x-values by 8 (the number of cycles between the
first and last maximum). The first maximum shown on the graph occurs
when , and the last maximum occurs when .

period

Use the period to find b.

The graph has a maximum at , so the phase shift for a func-
tion using cosine is 0.0020768.

x � 0.0020768

 b �
2p

0.002504

 2p
b

� 0.002504

p �
0.0221088 � 0.0020768

8 � 0.002504

x � 0.0221088x � 0.0020768

a �
0.043942 � 1�0.0456182

2 � 0.04478

�0.045618

1
0.0037568 � 266.184

0.0208608 � 0.0020768
5 � 0.0037568

x � 0.0208608
x � 0.0020768
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−0.06

0.06

0.0240.0001

Figure 8.4.A-3



Use the phase shift and b to find c.

Find the vertical shift d by finding the average of the maximum and min-
imum values. In this example, 

Therefore, the sinusoidal model to fit the sound waves produced by a 
tuning fork with the note G is

Notice that the frequency, the reciprocal of the period, is 399.361, which
is very close to the actual frequency of 392 Hz for the note G.

■

When two sounds of slightly different frequency are produced simulta-
neously, a beat is heard. A beat is a single sound that gets louder and softer
at periodic intervals. By using more than one tuning fork, a beat can be
displayed.

Example 3 Chord Frequency

Place tuning forks with notes of C and G close to a microphone.
a. Find a graphical representation for the sound waves produced by

playing the two notes simultaneously.
b. Find the period of the function.
c. How does the frequency of this sound compare with the actual

frequencies of C and G?

Solution

a. Using a data collection device, the graph in Figure 8.4.A-4 is
obtained.

b. The graph appears to be periodic. By finding the length of one
complete cycle, the period of this graph appears to be approximately
0.0077632.

c. The frequency of this sound is the reciprocal of the period of the
function.

The frequency of this sound is very close to the difference between
the actual frequency of C, 262 Hz, and the actual frequency of G, 
392 Hz.

■
392 � 262 � 130

1
0.0077632 � 128.8128607 Hz

y � 0.04478 cos a 2p
0.002504 x � 1.658786pb.

d � 0.

 c � �0.0020768a 2p
0.002504b � �1.658786p

 � c
b

� phase shift

Section 8.4.A Excursion: Sound Waves 561

Figure 8.4.A-4
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Graphing Exploration

Find a sinusoidal function to model the graph produced by the C
tuning fork.

Add the sinusoidal models for C and G notes. (Use the model from
Example 2.) Graph this sum.

What is the frequency of the graph? How does the frequency of this
sound compare with the sum of the actual frequencies of C and G?

Most sounds are more complex than those produced by tuning forks. A
tuning fork produces a graph of a single note. Most musical instruments
produce a sound that is a combination of several different sounds.

A C-G chord was produced with the tuning forks in Example 3. The explo-
ration above indicates that this sound can be modeled by the sum of the
models for the C note and the G note.

Exercises 8.4.A

Bottles of water can be tuned using a microphone and
data collection device. Place some water in the bottle
and blow air over the top of the bottle to produce a
sound. Use the frequency of the graph formed from
the sound to approximate the frequency. If a higher
note is needed, place more water in the bottle and cal-
culate the frequency again. Display the graph of the
following notes using the chart below.

Note Frequency in Hz

or 415

A 440

or 466

B 494

C (next octave) 524

BbA#

AbG#

Note Frequency in Hz

C 262

or 277

D 294

or 311

E 330

F 349

or 370

G 392

GbF#

EbD#

DbC#

1. D 2. B 3. A 4.

5. Using only one tuning fork at a time and the sum
of three functions, sketch a graph of the C-major
chord 

6. Using three tuning forks for the notes C, E, and G
at one time, find a graph of the C-major chord
1C � E � G2.

1C � E � G2.

C#

The intensity of
the strike on the tuning
fork determines the
amplitude.

NOTE
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Important Facts 
and Formulas

exactly when tan 

Let and The following functions have the given charac-
teristics.

and 

vertical shift d �
1
2 1 fmax � fmin2

period 2p
b

,  phase shift � c
b

amplitude 0 a 0 � 1
2 1 fmax � fmin2
g 1t2 � a cos1bt � c2 � df 1t2 � a sin1bt � c2 � d

b 7 0.a � 0

u � v a�p2 6 u 6 p2 , v a real numberbtan�1 v � u

cos�1 v � u  exactly when  cos u � v A0 � u � p, �1 � v � 1 B
sin�1 v � u  exactly when  sin u � v a�p2 � u �

p
2 , �1 � v � 1b
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Section 8.2

In Exercises 1–6, solve each equation graphically.

1. 2.

3. 4.

5. 6.

7. A weight hanging from a spring is set into motion, moving up and down.
(See Figure 8.4-6 in Example 3 of Section 8.4.) Its distance in centimeters
above or below the equilibrium point at time t seconds is given by

At what times during the first two seconds is the
weight at the equilibrium position 

In Exercises 8–17, find the exact value without using a calculator.

8. 9.

10. 11.

12. 13.

14. 15.

16. 17.

18. Sketch the graph of 

19. Sketch the graph of 

20. Find the exact value of 

21. Find the exact value of 

22. Find all angles with such that 

23. Find all angles with such that 

In Exercises 24–38, solve the equation by any means. Find exact solutions when
possible and approximate solutions otherwise.

24. 25.

26. 27.

28. 29.

30. 31.

32. 33. 4 cos2 x � 2 � 02 sin2 x � 5 sin x � 3

cot x � 0.4tan x � 13

cos x � �0.8sin x � 0.7

sin 3x � �
23
2tan x � �1

cos x �
23
22 sin x � 1

tan u � 3.7321.0° � u � 360°u

sin u � �0.7133.0° � u � 360°u

sinatan�1 12 � cos�1 45b.

sinacos�1 14b.
g 1x2 � sin�11x � 22.
f 1x2 � tan�1 x � p.

cos�1acos 13p
4 b � ?sin�1 asin 8p3 b � ?

cos�1 1cos 22 � ?sin�11sin 0.752 � ?

tan�1acos 7p2 b � ?cos�1asin 5p3 b � ?

sin�1acos 11p
6 b � ?tan�123 � ?

sin�1a23
2
b � ?cos�1a22

2
b � ?

1d � 02?
d � 5 sin 3t � 3 cos 3t.

3 sin 2x � �cos xcos 2x � sin x

cos2 x � csc2 x � tanQx �
p

2 R � 5 � 0sin x � sec2 x � 3

sin3 x � cos2 x � tan x � 25 tan x � 2 sin 2x

Review Exercises

Section 8.1

Section 8.3



Chapter Review 565
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34. 35.

36. 37.

38.

39. A cannon has a muzzle velocity of 600 feet per second. At what angle of
elevation should it be fired in order to hit a target 3500 feet away? Hint:
Use the projectile equation given for Exercises 56–59 of Section 8.3.

40. The following table gives the average population, in thousands, of a
southern town for each month throughout the year. The population is
greater in the winter and smaller in the summer, and it repeats this pattern
from year to year.

cos2 x � 3 cos x � 2 � 0

2 sin2 x � sin x � 2 � 0sec2 x � 4 tan x � 2

sec2 x � 3 tan2 x � 132 sin2 x � 3 sin x � 2

a. Make a scatter plot of the data.
b. Find a sinusoidal function to represent the population data.
c. Use the sine regression feature on a calculator to find a periodic model

for the data.
d. Use the model from part c to predict time(s) of year in which the

average population is 6200.

41. The paddle wheel of a steamboat is 22 feet in diameter and is turning at 3
revolutions per minute. The axle of the wheel is 8 feet above the surface of
the water. Assume that the center of the wheel is at the origin and that a
point P on the edge of the paddle wheel is at (0, 19) at time seconds.
a. What maximum height above the water does point P reach?
b. How far below the water does point P reach?
c. In how many seconds does the wheel complete one revolution?
d. Write a cosine function for the height of point P at time t.
e. Write a sine function for the height of point P at time t.
f. Use the function from part d or e to find the time(s) at which point P

will be at a height of 10 feet.

42. Confirm with a sinusoid graph that the frequency of a sound wave formed
by striking an F tuning fork is 349 Hz.

43. Find a sinusoidal model to fit the sound waves produced by striking an 
E tuning fork.

t � 0

Month Population

Jan. 10.5

Feb. 9.3

Mar. 7.8

Apr. 6.0

May 4.9

June 4.5

Month Population

July 4.7

Aug. 5.8

Sep. 7.6

Oct. 9.4

Nov. 10.6

Dec. 10.9

Section 8.4.A
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x n

x n

x

x

f(x)

k lim f(x) = k
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8

Limits of Trigonometric Functions

A main focus of calculus is the behavior of the output of a function as the
input approaches a specific value. The value that the function approaches,
if it exists, is called a limit. In this section an informal description of a
limit is illustrated with some interesting trigonometric functions, but the
discussion is not intended to be complete. See Chapter 14 for a detailed
discussion of limits.

If the output of a function approaches a single real number k as the
input approaches the real number n, then the function is said to have
a limit of k as the input approaches n.

This is written as

and is read “the limit of as x approaches n is k”. See Figure 8.C-1.

If the outputs of the function do not approach a single real number as the
inputs approach n, the limit does not exist.

Calculus is needed to find limits analytically, but a calculator’s table fea-
ture and a graph can approximate a limit, if it exists. A table or a graph
will also indicate when a limit does not exist. The following two limits
are very important in calculus and are used in future can do calculus 
features.

Example 1 Limit of 

Find if it exists, by using a table and a graph.

Solution

Enter into the function editor of a calculator and produce the 

table shown in Figure 8.C-2a and the graph shown in Figure 8.C-2b.

The table confirms that is undefined, but it also suggests

that the values of are approaching 1 for x-values near 0, both pos-

itive and negative.

The graph confirms that the values of are approaching 1 as x ap-

proaches 0 from the positive side and from the negative side. Therefore,

■

lim
xS0

 
sin x

x � 1

sin x
x

sin x
x

sin 0
0 �

0
0

Y1 �
sin x

x

lim
xS0

 
sin x

x ,

sin x
x

f 1x2
lim
xSn

 f 1x2 � k,Figure 8.C-1

Figure 8.C-2a

–2π 2π

2

–0.5

Figure 8.C-2b
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There is another trigonometric limit that is often used in calculus.

Example 2 Limit of 

Find if it exists, by using a table and a graph.

Solution

Figure 8.C-3a confirms that is undefined, but that the val-

ues of are approaching 0 when x is near 0. The graph shown 

in Figure 8.C-3b also illustrates this. Therefore,

■

There are two ways in which a limit may not exist, as shown in the next
examples. The first example illustrates a function that does not have a

limit as x approaches because function values on either side of do

not approach a single real number. The second example illustrates a func-
tion that does not have a limit as x approaches 0 because the function
values oscillate wildly.

Example 3 Determining the Behavior of a Function Near an 
x-Value

Discuss the behavior of as x approaches . Find 

if it exists, by using a table and a graph.

Solution

As shown in Figure 8.C-4a, the values of when are

large positive numbers, and the values are large negative numbers 

when Figure 8.C-4b shows that the graph of has a 

vertical asymptote at Because the values of do not approach a 

single real number as x approaches does not exist.p
2 , lim

xSp2
 

1
cos x

f 1x2p
2 .

f 1x2 �
1

cos xx 7 p2 .

x 6 p2f 1x2 �
1

cos x

lim
xSp2

 
1

cos x ,p
2f 1x2 �

1
cos x

p
2

p
2

lim
xS0

 
cos x � 1

x � 0.

cos x � 1
x

cos x � 1
x �

0
0

lim
xS0

 
cos x � 1

x ,

cos x � 1
x

Figure 8.C-3a

–2π 2π

2

–2

Figure 8.C-3b

p
2 � 1.57.NOTE
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■

Example 4 Oscillating Function Values

Discuss the behavior of near and find 

if it exists.

Solution

A table of values of near is shown in Figure 8.C-5a.x � 0f 1x2 � cos a1
xb

lim
xS0

 cos a1
xb,x � 0f 1x2 � cos a1

xb

Figure 8.C-4a

–0.01 0.01

1

–1

Figure 8.C-5c

–2π 2π

10

–10

Figure 8.C-4b

The table suggests that the function values near may be near 0.86232,
but using the trace feature on the graph shown in Figure 8.C-5b indicates
that the function value is near 0.365 when x is near 0.

Using a window where you can see that the graph oscil-
lates wildly around See Figure 8.C-5c.x � 0.

�0.01 � x � 0.01,

x � 0

–2π 2π

1.1

–1.1

Figure 8.C-5b

Figure 8.C-5a

Because the values of oscillate as x approaches 0, 

does not exist.

■

lim
xS0

 cos a1
xb

f 1x2 � cos a1
xb
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Exercises

Discuss the behavior of the function around the given
x-value by using a table and a graph. Find the limit of
each function, if it exists.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12. lim
xS0

 
sin 8x
sin 7xlim

xS0
 
sin 3x
sin 4x

lim
xS0

 
x

sin xlim
xS0

 
3x

sin 3x

lim
xS0

 
x

sin2 x
lim
xS0

 
x

tan2 x

lim
xS0

 
sin 2x

2xlim
xS0

 
sin 3x

3x

lim
xS0

 
tan x

xlim
xSp

2

 
tan x

x

lim
xSp

2

 
x

tan xlim
xS0

 
1

cos x

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. Make a conjecture about the where b

and c are real numbers.

lim
xS0

 
sin bx
sin cx ,

lim
xS�1

 
x 

3 � x2 � x � 1
x � 1lim

xS1
 
x 

3 � 1
x � 1

lim
xS1

 
x 

2 � 2x � 3
x � 1lim

xS3
 
x 

2 � x � 6
x � 3

lim
xS�1

 
x

1 � x
lim
xS1

 
x

1 � x

lim
xS2

 �2xlim
xS2

 3x

lim
xS0

 tan a1
xblim

xSp
2

 
x

cos x

lim
xS0

 
2x � sin x

xlim
xS0

 sin a1
xb
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Time.

To find the exact period of the oscillations of a simple pendulum, a trigonometric
expression must be written in an alternate form, which is obtained by using
trigonometric identities. See Exercise 75 in Section 9.3.

Trigonometric
Identities and 
Proof

C H A P T E R

9
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9.1 Identities and Proofs

9.2 Addition and Subtraction Identities

9.2.A Excursion: Lines and Angles

9.3 Other Identities

9.4 Using Trigonometric Identities

Chapter Review

can do calculus Rates of Change in Trigonometry

Chapter Outline
Interdependence of Sections
9.1 9.2 9.3 9.4

The basic trigonometric identities, which were discussed in Chapter 6

and used in Chapter 8, are not the only identities that are useful in

rewriting trigonometric expressions and in solving trigonometric equa-

tions. This chapter presents many widely used trigonometric identities

and specific methods for solving particular forms of trigonometric equa-

tions.

9.1 Identities and Proofs

Recall that an identity is an equation that is true for all values of the vari-
able for which every term of the equation is defined. Several trigonometric
identities have been discussed in previous sections. This section will intro-
duce other identities and discuss techniques used to verify that an
equation is an identity.

Trigonometric identities can be used for simplifying expressions, rewrit-
ing the rules of trigonometric functions, and performing numerical
calculations. There are no hard and fast rules for dealing with identities,
but some suggestions follow. The phrases “prove the identity” and “ver-
ify the identity” mean “prove that the given equation is an identity.”

Objectives

• Identify possible identities
by using graphs

• Apply strategies to prove
identities

> > >



Graphical Testing

When presented with a trigonometric equation that might be an identity,
it is a good idea to determine graphically whether or not this is possible.

For instance, the equation can be tested to determine

if it is possibly an identity by graphing and 

on the same screen, as shown in Figure 9.1-1 where the graph of is
darker than the graph of . Because the graphs are different, it can be
concluded that the equation is not an identity.

Any equation can be tested by simultaneously graphing the two functions
whose rules are given by the left and right sides of the equation. If the
graphs are different, the equation is not an identity. If the graphs ap-
pear to be the same, then it is possible that the equation is an identity.
However,

The fact that the graphs of both sides of an equation
appear identical does not prove that the equation is an
identity, as the following exploration demonstrates.

Y2

Y1

Y2 � sin xY1 � cos ap2 � xb
cos ap2 � xb � sin t
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Example 1 Graphical Identity Testing

Is either of the following equations an identity?

a.

b.

Solution

Test each equation graphically to see if it might be an identity by graph-
ing each side of the equation.

a. Graph and on the same
screen, as shown in Figure 9.1-2a. The graph of is shown darker
than Because the graphs are not the same, the equation 

is not an identity.2 cos2x � sin xcos x �2 sin2x �
Y2.

Y1

Y2 � 2 cos2x � sin xY1 � 2 sin2x � cos x

1 � sin x � sin2x
cos x � cos x � tan x

2 sin2x � cos x � 2 cos2x � sin x

�2π 2π

�4

4

Figure 9.1-2a

�2π 2π

�4

4

Figure 9.1-1

Graphing Exploration

In the viewing window with and graph
both sides of the equation

Do the graphs appear identical? Now change the viewing window
so that Is the equation an identity?�2p � x � 2p.

cos x � 1 �
x2

2 �
x4

24 �
x6

720 �
x8

40,320

�2 � y � 2,�p � x � p



■

Example 2 Finding an Identity

Find an equation involving 2 sin x cos x that could possibly be an identity.

Solution

The graph of is shown in Figure 9.1-3a. Does it look famil-
iar? At first it looks like the graph of but there is an important
difference. The function graphed in Figure 9.1-3a has a period of As
was shown in Section 7.3, the graph of looks like the sine graph
but has a period of 

The graphs and are shown in Figures 9.1-3a
and 9.1-3b. Because the graphs appear identical, 
may be an identity.

■

Proving Identities

A useful feature of trigonometric functions is that they can be written in
many ways. One form may be easier to use in one situation, and a dif-
ferent form of the same function may be more useful in another.

The elementary identities that were given in Section 6.5 are summarized
for your reference on the following page. Memorizing these identities will
benefit you greatly in the future.

2 sin x cos x � sin 2x
Y2 � sin 2xY1 � 2 sin x cos x

p.
y � sin 2x

p.
y � sin x,

y � 2 sin x cos x
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�2π 2π

�3

3

y = 2 sin x cos x

Figure 9.1-3a

�2π 2π

�3

3

y = sin 2x

Figure 9.1-3b

Figure 9.1-2b

�π π

�4

4

b. The graph shown in Figure 9.1-2b suggests that

may be an identity, but the proof that it actually is an identity must
be done algebraically.

1 � sin x � sin2x
cos x � cos x � tan x

The definitions of the basic trigonometric ratios may help
you remember the quotient and reciprocal identities. The shapes of the
graphs of sine, cosine, and tangent may help you remember the
periodicity and negative angle identities. Also, if you can remember the
first of the Pythagorean identities, which is based on the Pythagorean
Theorem, the other two can easily be derived from it.

NOTE

CAUTION

Be sure to use paren-
theses correctly when
entering each function
to be graphed.
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Quotient Identities

Reciprocal Identities

Periodicity Identities

Pythagorean Identities

Negative Angle Identities

tan(�x) � �tan xcos(�x) � cos xsin( � x) � �sin x

1 � cot2x � csc2xtan2x � 1 � sec2xsin2x � cos2x � 1

 cot(x � P) � cot x tan(x � P) � tan x

 sec(x � 2P) � sec x csc(x � 2P) � csc x

 cos(x � 2P) � cos x sin(x � 2P) � sin x

 tan x �
1

cot x cot x �
1

tan x

 sec x �
1

cos x csc x �
1

sin x

 cos x �
1

sec x sin x �
1

csc x

 cot x �
cos x
sin x tan x �

sin x
cos x

Basic
Trigonometry

Identities

Just looking at the graphs of the two expressions that make up the equa-
tion is not enough to guarantee that it is an identity. Although there are
no exact rules for simplifying trigonometric expressions or proving iden-
tities, there are some common strategies that are often helpful.

1. Use algebra and previously proven identities to transform
one side of the equation into the other.

2. If possible, write the entire equation in terms of one
trigonometric function.

3. Express everything in terms of sine and cosine.

4. Deal separately with each side of the equation 
First use identities and algebra to transform A into some
expression C, then use (possibly different) identities and
algebra to transform B into the same expression C.
Conclude that 

5. Prove that with and You can then 

conclude that .A
B �

C
D

D � 0.B � 0AD � BC,

A � B.

A � B.

Strategies for
Proving

Trigonometric
Identities



There are often a variety of ways to proceed, and it will take some prac-
tice before you can easily decide which strategies are likely to be the most
efficient in a particular case. Keep these two purposes of working with
trigonometric identities in mind:

• to learn the relationships among the trigonometric functions
• to simplify an expression by using an equivalent form
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CAUTION

Proving identities is not the same as solving equations. Properties
that apply to equations, such as adding the same value to both
sides, are not valid when verifying identities because the begin-
ning statement (to be verified) may not be true.

In the following example, the Pythagorean identity is used to replace
with Consider using one of the Pythagorean identities

whenever a squared trigonometric function appears.

replace with replace with

Example 3 Transform One Side into the Other Side

Verify that 

Solution

The graph of each side of the equation is shown in Figure 9.1-2b of Exam-
ple 1, where it was noted that the equation might be an identity. Begin
with the left side of the equation.

regrouping terms

Pythagorean identity

quotient identity
■

Strategies for proving identities can also be used to simplify complex
expressions.

 � cos x � tan x

a2

a � a � cos x �
sin x
cos x

a � b
c �

a
c �

b
c � cos2x

cos x �
sin x
cos x

 � cos2x � sin x
cos x

 1 � sin x � sin2x
cos x �

11 � sin2x2 � sin x
cos x

1 � sin x � sin2x
cos x � cos x � tan x.

csc2x � 1cot2xsec2x � 1tan2x
tan2x � 1sec2x1 � sin2xcos2x
1 � cot2xcsc2x1 � cos2xsin2x

cos2x.1 � sin2x



Example 4 Write Everything in Terms of Sine and Cosine

Simplify 

Solution

1csc x � cot x2 11 � cos x2.
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reciprocal and quotient identities

Pythagorean identity

x2

x � x� sin x

�
sin2x
sin x

1a � b2 ˛1a � b2 � a2 � b2�
1 � cos2x

sin x

a
c � b �

ab
c�

11 � cos x2 ˛11 � cos x2
sin x

a
c �

b
c �

a � b
c�

11 � cos x2
sin x ˛ 11 � cos x2

� a 1
sin x �

cos x
sin x b 11 � cos x2

1csc x � cot x2 11 � cos x2

■

The strategies presented above and those to be considered are “plans of
attack.” By themselves they are not much help unless you also have some
techniques for carrying out these plans. In the previous examples, the
techniques of basic algebra and the use of known identities were used to
change trigonometric expressions into equivalent expressions. There is
another technique that is often useful when dealing with fractions.

Rewrite a fraction in equivalent form by multiplying 
its numerator and denominator by the same quantity.

Example 5 Transform One Side into the Other Side

Prove that 

Solution

Beginning with the left side, multiply the numerator and denominator by

Pythagorean identity

■

 � 1 � cos x
sin x

 �
sin x11 � cos x2

sin2x

 �
sin x11 � cos x2

1 � cos2x

 �
sin x11 � cos x2

11 � cos x2 11 � cos x2

 sin x
1 � cos x �

sin x
1 � cos x �

1 � cos x
1 � cos x

1 � cos x.

sin x
1 � cos x �

1 � cos x
sin x

.

If a denominator
is of the form 
multiplying by 
gives 
Similarly, if a denominator
is of the form 
multiplying by 
gives 
Compare this with earlier
techniques used to
rationalize denominators
and simplify numbers with
complex denominators.

1 � sin2x � cos2x.
1 � sin x

1 � sin x,

1 � cos2x � sin2x.
1 � cos x

1 � cos x,
NOTE



Alternate Solution

The numerators of the given equation, and look similar
to the Pythagorean identity—except the squares are missing. So begin
with the left side and introduce some squares by multiplying it by 

Pythagorean identity

■

Example 6 Dealing with Each Side Separately

Prove that 

Solution

Begin with the left side.

[1]

Example 5 shows that the right side of the identity to be proved can also
be transformed into this same expression.

[2]

Combining the equalities [1] and [2] proves the identity.

■

Proving identities involving fractions can sometimes be quite compli-
cated. It often helps to approach a fractional identity indirectly, as in the
following example.

csc x � cot x �
1 � cos x

sin x �
sin x

1 � cos x

sin x
1 � cos x �

1 � cos x
sin x

 � 1 � cos x
sin x

 csc x � cot x �
1

sin x �
cos x
sin x

csc x � cot x �
sin x

1 � cos x .

 � 1 � cos x
sin x

a2 � b2 � 1a � b2 1a � b2 �
11 � cos x2 ˛11 � cos x2

sin x˛11 � cos x2

 � 1 � cos2x
sin x˛11 � cos x2

 � sin2x
sin x˛11 � cos x2

 sin x
1 � cos x �

sin x
sin x �

sin x
1 � cos x

sin x
sin x � 1.

1 � cos x,sin x
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Example 7 Proving Identities that Involve Fractions

Prove the first identity below, then use the first identity to prove the sec-
ond identity.

a. b.

Solution

a. Begin by transforming the left side.

reciprocal identity

Pythagorean identity

Therefore, 

b. By part a,

Divide both sides of this equation by .

■

Look carefully at how identity b was proved in Example 7. First prove
identity a, which is of the form (with 

and Then divide both sides by BD, that 

is, by to conclude that This property pro-

vides a useful strategy for dealing with identities involving fractions.

Example 8 If with and then 

Prove that 

Solution

Use the same strategy used in Example 7. First prove with
and 

[3]1cot x � 12 ˛11 � tan x2 � 1cot x � 12 ˛11 � tan x2
AD � BC

D � 1 � tan x.C � 1 � tan x,B � cot x � 1,A � cot x � 1,
AD � BC,

cot x � 1
cot x � 1 �

1 � tan x
1 � tan x .

A
B

�
C
D

.D � 0,B � 0AD � BC,

A
B �

C
D .tan x˛1sec x � cos x2,

D � sec x � cos x2.C � tan x,
B � tan x,A � sec x,AD � BC

 sec x
tan x �

tan x
sec x � cos x

 
sec x˛1sec x � cos x2
tan x˛1sec x � cos x2 �

tan x tan x
tan x˛1sec x � cos x2

 
sec x˛1sec x � cos x2
tan x˛1sec x � cos x2 �

tan2x
tan x˛1sec x � cos x2

tan x˛1sec x � cos x2
sec x˛1sec x � cos x2 � tan2x

sec x˛1sec x � cos x2 � tan2x.

 � tan2x
 � sec2x � 1

 � sec2x �
1

cos x ˛cos x

 sec x˛1sec x � cos x2 � sec2x � sec x cos x

sec x
tan x �

tan x
sec x � cos xsec x˛1sec x � cos x2 � tan2x
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Multiply out the left side of [3].

Similarly, multiply the right side of [3].

Because the left and right sides are equal to the same expression, [3] has
been proven to be an identity. Therefore, conclude that

is also an identity.
■

cot x � 1
cot x � 1 �

1 � tan x
1 � tan x

 � cot x � tan x.
 � cot x � 1 � 1 � tan x

 1cot x � 12 ˛11 � tan x2 � cot x � cot x tan x � 1 � tan x

 � cot x � tan x.
 � cot x � 1 � 1 � tan x

 � cot x �
1

tan x  tan x � 1 � tan x

 1cot x � 12 ˛11 � tan x2 � cot x � cot x tan x � 1 � tan x
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CAUTION

Strategy 5 does not say that you begin with a fractional equation 

and cross multiply to eliminate the fractions. If you did 

that, you would be assuming that the statement was true, which is
what has to be proved. What the strategy says is that to prove an
identity involving fractions, you need only prove a different iden-
tity that does not involve fractions. In other words, if you prove
that whenever and then you can conclude 

that Note that you do not assume that you use 

some other strategy to prove this statement.

AD � BC;A
B �

C
D .

D � 0,B � 0AD � BC

A
B �

C
D

It takes a good deal of practice, as well as much trial and error, to become
proficient at proving identities. The more practice you have, the easier it
will become. Because there are many correct methods, your proofs may
be quite different from those of your classmates, instructor, or text
answers.

If you do not see what to do immediately, try something and see where
it leads: multiply out, factor, or multiply numerator and denominator by
the same nonzero quantity. Even if this does not lead anywhere, it may
give you some ideas on other strategies to try. When you do obtain a
proof, check to see if it can be done more efficiently. Do not include the
“side trips” in your final proof—they may have given you some ideas,
but they are not part of the proof.
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Exercises 9.1

In Exercises 1–4, test the equation graphically to deter-
mine whether it might be an identity. You need not
prove those equations that appear to be identities.

1.

2.

3.

4.

In Exercises 5–8, insert one of a–f on the right of the
equal sign so that the resulting equation appears to be
an identity when you test it graphically. You need not
prove the identity.

a. b. c.

d. e. f.

5.

6.

7.

8.

In Exercises 9–18, prove the identity.

9. 10.

11. 12.

13. 14.

15. 16.

17.

18.

In Exercises 19–48, state whether or not the equation
is an identity. If it is an identity, prove it.

19. sin x � 21 � cos2x

1csc x � 12 1csc x � 12 � cot2x

11 � cos x2 11 � cos x2 � sin2x

cot x
csc x � cos xtan x

sec x � sin x

sec x cot x � csc xtan x csc x � sec x

sin x csc x � 1cos x sec x � 1

cot x sin x � cos xtan x cos x � sin x

tan21�x2 �
sin 1�x2

sin x � ____

sin4x � cos4
˛x

sin x � cos x � ____

sin x
tan x � ____

csc x tan x � ____

1
sin x cos x

sin x � cos xsec2 x

sin2xsec xcos x

tan x � cot x
csc x � sec x

1 � cos 2x
2 � sin2x

tan x � cot x � sin x cos x

sec x � cos x
sec x � sin2x

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.
cot x � 1
1 � tan x �

csc x
sec x

sec x � csc x
1 � tan x � csc x

1 � cos x
sin x �

sin x
1 � cos x � 2 csc x

sec x
csc x �

sin x
cos x � 2 tan x

11 � tan x22 � sec2x

1sin x � cos x22 � sin2x � cos2x

cot2x � cos2x � cos2x cot2x

cos4x � sin4x � cos2x � sin2x

cos 1�x2
sin 1�x2 � �cot x

tan x �
sec x
csc x

11 � cos2x2csc x � sin x

1cos2x � 12 1tan2x � 12 � �tan2x

cot2x � 1 � csc2x

sin2x � tan2x � �sin2x tan2x

cos2x1sec x � 122 � 11 � cos x22
sin2x1cot x � 122 � cos2x 1tan x � 122
sec2x � csc2x � sec2x csc2x

sec2x � csc2x � tan2x � cot2x

sec4
˛x � tan4

˛x � 1 � 2 tan2x

1 � sec2x � tan2x

sec 1�x2 � sec x

cot 1�x2 � �cot x

tan x � 2sec2x � 1

sin 1�x2
cos 1�x2 � �tan x

cot x �
csc x
sec x



45.

46.

47.

48.

In Exercises 49–52, half of an identity is given. Graph
this half in a viewing window with and
write a conjecture as to what the right side of the iden-
tity is. Then prove your conjecture.

49. Hint: What familiar function 

has a graph that looks like this?

50.

51.

52.

In Exercises 53–66, prove the identity.

53. 1 � sin x
sec x �

cos3x
1 � sin x

cos3x11 � tan4x � sec4x2 � ?

1sin x � cos x2 1sec x � csc x2 � cot x � 2 � ?

1 � cos x � cos2x
sin x � cot x � ?

1 �
sin2x

1 � cos x � ?

�2P �� x �� 2P

cot x
csc x � 1 �

csc x � 1
cot x

sin x � cos x
tan x �

tan x
sin x � cos x

1 � csc x
csc x �

cos2x
1 � sin x

1
csc x � sin x � sec x tan x
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54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.
tan x � tan y
cot x � cot y �

tan x tan y � 1
1 � cot x cot y

cos x � sin y
cos y � sin x �

cos y � sin x
cos x � sin y

tan x � tan y
cot x � cot y � �tan x tan y

tan x � tan y � �tan x tan y1cot x � cot y2
log101sec x � tan x2 � �log101sec x � tan x2
log101csc x � cot x2 � �log101csc x � cot x2
log101sec x2 � �log101cos x2
log101cot x2 � �log101tan x2

cos3x � sin3x
cos x � sin x � 1 � sin x cos x

cos x cot x
cot x � cos x �

cot x � cos x
cos x cot x

1 � sec x
tan x � sin x � csc x

cos x
1 � sin x � sec x � tan x

sin x
1 � cot x �

cos x
1 � tan x � cos x � sin x

9.2 Addition and Subtraction Identities

Many times, the input, or argument, of the sine or cosine function is the
sum or difference of two angles, and you may need to simplify the expres-
sion. Be careful not to make this common student error.

sinax �
p
6 b is not sin x � sin p6  

Objectives

• Use the addition and
subtraction identities for
sine, cosine, and tangent
functions

• Use the cofunction
identities Graphing Exploration

Verify graphically that the expressions above do NOT form an iden-

tity by graphing and Y2 � sin x � sin p6 .Y1 � sinax �
p
6 b



The exploration shows that because it is false 

when So, is there an identity involving sin1x � y2?y �
p
6 .

sin1x � y2 � sin x � sin y

The equations examined in the discussion and exploration above are
examples of the first identity listed below. Each identity can be confirmed
by assigning a constant value to y and then graphing each side of the
equation, as in the Graphing Exploration above.
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The exploration suggests that may be 

an identity. Furthermore, note that the coefficients on the right side can 

be expressed in terms of and In other words, 

the following equation appears to be an identity.

sinax �
p
6 b � sin x cos p6 � cos x sin p6

sin ˛

p
6 �

1
2.p

6  : cos˛ p6 �
23
2

sinax �
p
6 b �

23
2  sin x �

1
2 cos x

cos(x � y) � cos x cos y � sin x sin y
cos(x � y) � cos x cos y � sin x sin y
sin(x � y) � sin x cos y � cos x sin y
sin(x � y) � sin x cos y � cos x sin y

Addition and
Subtraction

Identities for
Sine and Cosine

Graphing Exploration

Graph and on the same 

screen. Do the graphs appear identical?

Y2 �
23
2 ˛ sin x �

1
2 ˛ cos xY1 � sinax �

p
6 b

Graphing Exploration

Graph and on the
same screen. Do the graphs appear identical? What identity does
this suggest? Repeat the process with some other number in place
of 5. Are the results the same?

Y2 � sin x cos 5 � cos x sin 5Y1 � sin1x � 52

The addition and subtraction identities are important trigonometric iden-
tities. You should become familiar with the examples and special cases
that follow.
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Example 1 Addition Identities

Use the addition identities to find the exact values of and 

Solution

Because apply the addition identities with 

and 

■

Example 2 Subtraction Identity

Find 

Solution

Apply the subtraction identity for the sine function with 

■

Example 3 Addition Identity

Prove that 

Solution

Begin with the more complicated right side and use the addition and sub-
traction identities for cosine to transform it into the left side.

■ 
 � cos x cos y

 � 1
2 1cos x cos y � cos x cos y2 �

1
2 12 cos x cos y2

 � 1
2 3 1cos x cos y � sin x sin y2 � 1cos x cos y � sin x sin y2 4

 12 3cos1x � y2 � cos1x � y2 4

cos x cos y �
1
2 3cos 1x � y2 � cos1x � y2 4 .

sin1p � y2 � sin p cos y � cos p sin y � 0 cos y � 1�12sin y � sin y

x � p.

sin1p � y2.

 � 23
2 �

22
2 �

1
2 �
22
2 �

22 A23 � 1 B
4

 cos 5p12 � cosap6 �
p
4 b � cos p6  cos p4 � sin p6  sin p4

 � 1
2 �
22
2 �

23
2 �

22
2 �

22 A1 � 23 B
4

 sin 5p12 � sinap6 �
p
4 b � sin p6  cos p4 � cos p6  sin p4

y �
p
4 .x �

p
6

5p
12 �

2p
12 �

3p
12 �

p
6 �

p
4 ,

cos 5p12 .sin 5p12

In order to use
addition or subtraction
identities to find exact
values, first write the
argument as a sum or
difference of two terms for
which exact values are 

known, such as 

and p.p
2 ,

p
3 ,p

4 ,p
6 ,

NOTE



Simplifying the Difference Quotient of a Trigonometric Function
The difference quotient is very important in calculus, and the addition
identities are needed to simplify difference quotients of trigonometric
functions.

Example 4 The Difference Quotient of 

Show that for the function and any number 

Solution

Use the addition identity for with 

■

Addition and Subtraction Identities for the 
Tangent Function

The addition and subtraction identities for sine and cosine can be used to
obtain the addition and subtraction identities for the tangent function.

 � sin xacos h � 1
h

b � cos xasin h
h
b

 �
sin x1cos h � 12 � cos x sin h

h

 � sin x cos h � cos x sin h � sin x
h

 
f 1x � h2 � f 1x2

h
�

sin1x � h2 � sin x
h

y � h.sin1x � y2

f 1x � h2 � f 1x2
h

� sin xacos h � 1
h

b � cos xasin h
h
b.

h � 0,f 1x2 � sin x

f(x) � sin x

A proof of these identities is outlined in Exercise 36.

Example 5 Addition and Subtraction Identities for Tangent

Find the exact values of and if x and y are numbers 

such that and Deter-cos y � �
1
3 .sin x �

3
4 ,p 6 y 6 3p

2  ,0 6 x 6 p2  ,

tan1x � y2sin1x � y2
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tan(x � y) �
tan x � tan y

1 � tan x tan y

tan(x � y) �
tan x � tan y

1 � tan x tan y

Addition and
Subtraction

Identities for
Tangent

Recall that the
difference quotient of a
function f is

f 1x � h2 � f 1x2
h

.

NOTE
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mine in which of the following intervals lies: 

or 

Solution

Use the Pythagorean identity and the fact that cos x and tan x are posi-
tive in the first quadrant to obtain the following. See Figure 9.2-1a.

Because y lies between and its sine is negative. See Figure 9.2-1b.

The addition identities for sine and tangent show exact values.

Both the sine and tangent of are negative numbers. Therefore 

must be in the interval because it is the only one of the four 

intervals in which both sine and tangent are negative.
■

Cofunction Identities

Special cases of the addition and subtraction identities are the cofunction
identities.

a3p
2 , 2pb

x � yx � y

 � 327 � 1422
7 � 6214

� �
2727 � 3222

65

 �

327
7 � 222

1 � a327
7 bA222 B

�

327 � 1422
7

7 � 6214
7

 tan 1x � y2 �
tan x � tan y

1 � tan x tan y

 � 3
4 �

�1
3 �

27
4 �

�222
3 �

�3
12 �

2214
12 �

�3 �2214
12

 sin 1x � y2 � sin x cos y � cos x sin y

 tan y �
sin y
cos y �

�222
3

�1
3

�
�222

3 �
3

�1 � 222

 sin y � �21 � cos2y � �
B

1 � a�1
3b

2

� �
B

8
9 � �

28
3 � �

222
3

3p
2 ,p

 tan x �
sin x
cos x �

3
4
27
4

�
3
27

�
327

7

 cos x � 21 � sin2x �
B

1 � a3
4b

2

�
B

1 �
9

16 �
B

7
16 �

27
4

a3p
2 , 2pb.ap, 3p2 b,

ap2 , pb,a0, p2 b,x � y

See Figure 6.4-7
for the signs of the
functions in each quadrant.

NOTE

x

y

y

(−1, −2  2)

32 − 12 = 8 = 2

1

3
2

cos y = −1
3

xx

y

3
4

42 − 32 = 7

(  7, 3)

sin x = 3
4

Figure 9.2-1a

Figure 9.2-1b



The first cofunction identity is proved by using the identity for 

with in place of x and x in place of y.

Because the first cofunction identity is valid for every number x, it is also

valid with the number in place of x.

Thus, the second cofunction identity is proved. The others now follow
from these previous two. For instance,

Also,

Example 6 Cofunction Identities

Verify that 

Solution

Beginning with the left side, the term looks almost, but not 

quite, like the term in the cofunction identity. But note that

Therefore,�ax �
p
2 b �

p
2 � x.

cosap2 � xb
cosax �

p
2 b

cosax �
p
2 b

cos x � tan x.

cscap2 � xb �
1

sinap2 � xb
�

1
cos x � sec x

tanap2 � xb �

sinap2 � xb
cosap2 � xb

�
cos x
sin x � cot x

sinap2 � xb � cos c p2 � ap2 � xb d � cos x

p
2 � x

cosap2 � xb � cos p2  cos x � sin p2  sin x � 0 � cos x � 1 � sin x � sin x

p
2

cos1x � y2
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csc x � secaP2 � xbsec x � cscaP2 � xb

cot x � tanaP2 � xbtan x � cotaP2 � xb

cos x � sinaP2 � xbsin x � cosaP2 � xb
Cofunction

Identities



cofunction identity

quotient identity
■

 � tan x

 � sin x
cos x

 �
cosap2 � xb

cos x

 
cosax �

p
2 b

cos x �

cos c�ax �
p
2 b d

cos x
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Exercises 9.2

In Exercises 1–12, find the exact value.

1. 2. 3.

4. 5. 6.

7. 8. 9.

10.

11. 12.

In Exercises 13–18, rewrite the given expression in
terms of and 

13. 14.

15. 16.

17. 18.

In Exercises 19–24, simplify the given expression.

19.

20.

21.

22.

23.

24. sin 1x � y2  � sin 1x � y2
cos 1x � y2  � cos 1x � y2
sin 1x � y2  cos  y � cos 1x � y2  sin  y

cos 1x � y2 cos  y � sin 1x � y2  sin  y

sin 37°  sin 53° � cos 37°  cos 53°

sin 3 cos 5 � cos 3 sin 5

cot 1x � p2sec1x � p2
cscax �

p

2 bcosax �
3p
2 b

cosax �
p

2 bsinap2 � xb
cos x.sin x

cos 165°sin 105°

sin 75° Hint: 75° � 45° � 30°.

cot 

11p
12cos 

11p
12tan 

7p
12

cos 

7p
12cot 

5p
12sin 

5p
12

tan 

p

12cos 

p

12sin 

p

12

25. If 

26. If then 

27. If and then 

28. If and then 

In Exercises 29–34, assume that and 

and that x and y lie between 0 and 

Evaluate the given expressions.

29. 30.

31. 32.

33. 34.

35. If and h is a fixed nonzero number,
prove that the difference quotient is

36. Prove the addition and subtraction identities for
the tangent function. Hint:

Use the addition identities on the numerator and
denominator; then divide both numerator and
denominator by , and simplify.cos x cos y

tan 1x � y2 �
sin 1x � y2
cos 1x � y2

f 1x � h2 � f 1x2
h

� cos xacos h � 1
h

b� sin xasin h
h
b.

f 1x2 � cos x

tan 1x � y2tan 1x � y2
sin 1x � y2cos 1x � y2
sin 1x � y2cos 1x � y2

P

2 .sin y �20.75

sin x � 0.8

cosap4 � xb � ?

3p
2 6 x 6 2p,sin x � �

3
4

sinap3 � xb � ?p 6 x 6 3p
2 ,cos x � �

1
5

cosap6 � xb � ?cos x � �
1
4 and p2 6 x 6 p,

sin x �
1
3 and 0 6 x 6 p2 , then sinap4 � xb � ?

negative angle identity with

x �
p

2
 in place of x



37. If x is in the first quadrant and y is in the second 

quadrant, and find the exact 

value of and the
quadrant in which lies.

38. If x and y are in the second quadrant, 

and find the exact value of 

and and the quadrant in
which lies.

39. If x is in the first quadrant and y is in the second 

quadrant, and find the 

exact value of and and the
quadrant in which lies.

40. If x is in the fourth quadrant and y is in the first 

quadrant, and find the exact 

value of and and the
quadrant in which lies.

41. Express in terms of sines and
cosines of u, v, and w. Hint: First apply the
addition identity with and 

42. Express in terms of sines and
cosines of x, y, and z.

43.

44. Prove that 

In Exercises 45–56, prove the identity.

45.

46.

47.

48.

49. sin 1x � p2 � �sin x

tan 1p � x2 � �tan x

cos 1p � x2 � �cos x

cos 1x � p2 � �cos x

sin 1x � p2 � �sin x

cot1x � y2 �
cot x cot y � 1
cot x � cot y .

If x � y �
p

2 , show that sin2x � sin2y � 1.

cos 1x � y � z2
y � w.x � u � v

sin 1u � v � w2
x � y

tan1x � y2sin1x � y2
cos y �

2
3,cos x �

1
3,

x � y
tan1x � y2cos1x � y2

cos y � �
12
13,sin x �

4
5,

x � y
tan1x � y2cos1x � y2,

sin1x � y2,cos y � �
3
4,

sin x �
1
3,

x � y
sin1x � y2 and tan1x � y2

sin y �
4
5,sin x �

24
25,
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50.

51.

52.

53.

54.

55.

56.

In Exercises 57–66, determine graphically whether the
equation could not possibly be an identity (by choosing
a numerical value for y and graphing both sides), or
write a proof that it is.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66. cot1x � y2 � cot x � cot y

tan1x � y2 � tan x � tan y

cos1x � y2
cos1x � y2 �

cot y � tan x
cot y � tan x

cos1x � y2
cos1x � y2 �

cot x � tan y
cot x � tan y

sin1x � y2
sin1x � y2 �

cot y � cot x
cot y � cot x

sin1x � y2
sin1x � y2 �

tan x � tan y
tan x � tan y

cos1x � y2 � cos x � cos y

sin1x � y2 � sin x � sin y

cos1x � y2
sin x cos y � cot x � tan y

cos1x � y2
sin x cos y � cot x � tan y

sin 1x � y2 sin1x � y2 � sin2x cos2y � cos2x sin2y

cos 1x � y2 cos1x � y2 � cos2
˛x cos2

˛y � sin2
˛x sin2

˛y

cos x sin y �
1
2 3sin1x � y2 � sin1x � y2 4

sin x sin y �
1
2 3cos1x � y2 � cos1x � y2 4

sin x cos y �
1
2 3sin1x � y2 � sin1x � y2 4

tan 1x � p2 � tan x

cos 1x � p2 � �cos x
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9.2.A Excursion: Lines and Angles

Several interesting concepts dealing with lines are defined in terms of
trigonometry. They lead to useful facts whose proofs are based on the
addition and subtraction identities for sine, cosine, and tangent.

If L is a nonhorizontal straight line, the angle of inclination of L is the
positive angle formed by the part of L above the x-axis and the x-axis,
as shown in Figure 9.2.A-1.

u

Objectives

• Find the angle of inclination
of a line with a given slope

• Find the angle between two
lines

θ θx

y

L

x

y

L

Figure 9.2.A-1

The angle of inclination of a horizontal line is defined to be Thus,
the radian measure of the angle of inclination of any line satisfies

Furthermore,0 � u 6 p.

u � 0.

If L is a nonvertical line with angle of inclination then
of L.tan U � slope

U,
Angle of

Inclination
Theorem

Proof
If L is horizontal, then L has slope 0 and angle of inclination Hence,

so of 

If L is not horizontal, then it intersects the x-axis at some point as
shown for two possible cases in Figure 9.2.A-2.

1x1, 02,
L � 0.tan u � slopetan u � tan˛ 0 � 0,

u � 0.

θ

y2L

(x2, y2)

x2 − x1

(x1, 0) x θθπ −

y2 L

(x2, y2)

x1 − x2
(x1, 0)

x

Figure 9.2.A-2a Figure 9.2.A-2b



The right triangle in Figure 9.2.A-2a shows that

The right triangle in Figure 9.2.A-2b shows that

[1]

Use the fact that the tangent function has period and the negative angle
identity for tangent to obtain

Combining this fact with shows that slope of in this case
also.

■

Example 1 Angle of Inclination

Find the angle of inclination of a line of slope 

Solution

By the Angle of Inclination Theorem, key on a cal-

culator shows that radians, or .
■

Example 2 Angle of Inclination

Find the angle of inclination of a line L with slope 

Solution

Because line L has slope its angle of inclination is a solution of 

tan that lies between and A calculator gives the approximate 

solution Because an angle of inclination must be between 0 and
another solution is needed.

Recall that , for every t. So

is the solution of in the interval from 0 to Therefore, the
angle of inclination is approximately 2.03 radians, or about 

■

Angles Between Two Lines

If two lines intersect, then they determine four angles with vertices at the
point of intersection, as shown in Figure 9.2.A-3. If one of these angles

116.57°.
p.tan u � �2

u � �1.1071 � p � 2.0344

tan˛ t � tan1t � p2
p,

�1.1071.

p.p
2u � �2

�2,

�2.

u � 59.04°u � 1.0304

tan u �
5
3 . The TAN�1

5
3.

L � tan ˛u31 4
�tan1p � u2 � �tan1�u2 � �1�tan u2 � tan u.

p

slope of L �
0 � y2
x1 � x2

� �
y2

x1 � x2
� �

opposite
adjacent

� �tan1p � u2.

slope of L �
y2 � 0
x2 � x1

�
y2

x2 � x1
�

opposite
adjacent

� tan u.
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θθπ − θπ −θ

Figure 9.2.A-3
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measures radians, then each of the two angles adjacent to it measures
radians. (Why?) The fourth angle also measures radians by the

vertical angle theorem from plane geometry.

The angles formed by intersecting lines can be determined from the angles
of inclination of the lines. Suppose L and M have angles of inclination 
and respectively, such that Basic facts about parallel lines, as
illustrated in Figure 9.2.A-4, show that is one angle between L and
M, and is the other.p � 1b � a2 b � a

b � a.b,
a

up � u
u

x

y

ML

α

α

β

β − α

π − (β − α)

β

Figure 9.2.A-4

The angle between two lines can also be found from their slopes by using
the following fact.

If two nonvertical, nonperpendicular lines have slopes m and
k, then one angle between them satisfies

tan˛ U � ` m � k
1 � mk

` .
U

Angle Between
Two Lines

Proof
Suppose L has slope k and angle of inclination and that M has slope m
and angle of inclination By the definition of absolute value

whichever is positive. It will be shown that one angle between L and M 

has tangent and that the other has tangent Thus, one 

of them necessarily has tangent If then is one 

angle between L and M. By the subtraction identity for tangent,

The other angle between L and M is and by periodicity, the
negative angle identity, and the addition identity

p � 1b � a2
tan1b � a2 �

tan b � tan a
1 � tan b tan a �

m � k
1 � mk

b � ab � a,` m � k
1 � mk

` .
�

m � k
1 � mk

.m � k
1 � mk

,

` m � k
1 � mk

` �
m � k
1 � mk

  or  ` m � k
1 � mk

` � �
m � k

1 � mk

b.
a



This completes the proof when The proof in the case is 
similar.

■

Example 3 The Angle Between Two Lines

If the slopes of lines L and M are 8 and , respectively, then find one
angle between them.

Solution

Substitute 8 for m and for k to find the tangent values.

Solving the equation yields radians, or 
■

25.56°.u � 0.4461

 � ` 11
�23 ` � 11

23

 tan u � ` 8 � 1�32
1 � 81�32 `

�3

�3

a � bb � a.

 � �
m � k
1 � mk

.

 � �
tan b � tan a

1 � tan b tan a

 � �tan1b � a2
 tan 3p � 1b � a2 4 � tan 3�1b � a2 4
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Exercises 9.2.A

In Exercises 1–6, find the angle of inclination of the
straight line through the given points.

1. (3, 5) 2. (0, 4), 

3. (1, 4), (6, 0) 4. (4, 2), 

5. , (3, 5) 6. (0, 0), 

In Exercises 7–12, find one of the angles between the
straight lines L and M.

7. L has slope and M has slope �1.3
2

1�4, �5213, �72
1�3, �22
15, �121�1, 22,

8. L has slope 1 and M has slope 3.

9. L has slope and M has slope 0.

10. L has slope and M has slope 

11. (3, 2) and (5, 6) are on L; (0, 3) and (4, 0) are on M.

12. and are on L; and (6, 1) are
on M.

13, �3213, �321�1, 22

�3.�2

�1
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9.3 Other Identities

A variety of identities that are special cases of the addition and subtrac-
tion identities of Section 9.2 are presented in this section. These identities
include double-angle identities, power-reducing identities, half-angle
identities, product-to-sum identities, and sum-to-product identities.

Double-Angle Identities

Special cases of the addition identities occur when two angles have the
same measure. These identities are called the double-angle identities.

Objectives

• Use the following identities:

double-angle

power-reducing

half-angle

product-to-sum

sum-to-product

 tan 2x �
2 tan x

1 � tan2x

 cos˛ 2x � cos2x � sin2x

 sin ˛2x � 2 sin x cos x
Double-Angle

Identities

Proof Substitute x for y in the addition identities.

Example 1 Use Double-Angle Identities

If and find sin 2x and cos 2x, and show that 

Solution

In order to use the double-angle identities, first determine sin x, which
can be found by using the Pythagorean identity.

Thus, Since x must be in the third quad-

rant, and sin x is negative there.

sin ˛x � �
B

225
289 � �

15
17

p 6 x 6 3p
2 ,sin x � ±

B
225
289.

sin2
˛x � 1 � cos2

˛x � 1 � a� 8
17b

2

� 1 �
64

289 �
225
289

5p
2 6 2x 6 3p.

cos ˛x � �
8

17 ,p 6 x 6 3p
2

 tan 2x � tan1x � x2 �
tan ˛x � tan ˛x

1 � tan ˛x tan ˛x �
2 tan x

1 � tan2
˛x

 cos 2x � cos1x � x2 � cos ˛x ˛cos ˛x � sin ˛x ˛sin˛ x � cos2x � sin2
˛x

 sin 2x � sin1x � x2 � sin˛ x cos ˛x � cos ˛x sin ˛x � 2 sin˛ x ˛cos x

8

(−8, −15)

17
15

x
x

y

Figure 9.3-1



Now substitute these values in the double-angle identities to find sin 2x
and cos 2x.

You know that x lies in the third quadrant. Multiply the inequality 

by 2 to find that That is, 2x is in either the 

first or second quadrant. The calculations above show that at 2x, sine is
positive and cosine is negative. This can occur only if 2x lies in the sec-

ond quadrant, so 

■

Example 2 Use Double-Angle Identities

Express the rule of the function in terms of powers of 
and constants.

Solution

First use the addition identity for with 

identity for cos 2x identity for sin 2x

Pythagorean identity

■

Forms of cos 2x
The double-angle identity for can be rewritten in several useful
ways. For instance, we can use the Pythagorean identity in the form of

to obtain the following.

Similarly, use the Pythagorean identity in the form to
obtain the following.

cos 2x � cos2x � sin2x � cos2x � 11 � cos2x2 � 2 cos2x � 1

sin2x � 1 � cos2x

cos 2x � cos2x � sin2x � 11 � sin2x2 � sin2x � 1 � 2 sin2x

cos2x � 1 � sin2x

cos 2x

 � 3 sin x � 4 sin3x

 � 3 sin x � 3 sin3x � sin3x

 � 3 sin x 11 � sin2x2� sin3x

 � 3 sin x cos2x � sin3x

 � sin x cos2x � sin3x � 2 sin x cos2x

 � sin x˛1cos2x � sin2x2� cos x 12 sin x cos x2
 f 1x2 � sin 3x � sin 1x � 2x2 � sin x cos 2x � cos x sin 2x

y � 2x.sin 1x � y2

sin xf 1x2 � sin 3x

5p
2 6 2x 6 3p.

2p 6 2x 6 3p.p 6 x 6 3p
2

 cos 2x � cos2x � sin2x � a� 8
17b

2

�a�15
17b

2

�
64

289 �
225
289 � �

161
289 � �0.5571

 sin ˛2x � 2˛ sin˛ x cos ˛x � 2a�15
17ba� 8

17b�
240
289 � 0.8304
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cos2x �
1 � cos 2x

2

sin2x �
1 � cos 2x

2

Power-Reducing
Identities

Example 3 Use Forms of cos 2x

Prove that 

Solution

Use the first identity in the preceding box and the double-angle identity
for sine.

■

Power-Reducing Identities

If the first equation in the preceding box is solved for and the sec-
ond one for alternate forms for these identities are obtained. The
new forms are called the power-reducing identities.

cos2 x,
sin2x

1 � cos 2x
sin 2x �

1� 11 � 2 sin2x2
2 sin x cos x �

2 sin2x
2 sin x cos x �

sin x
cos x � tan x

1 � cos 2x
sin 2x � tan x.

cos 2x � 2 cos2x � 1
cos 2x � 1 � 2 sin2x

Forms of cos 2x

Example 4 Use Power-Reducing Identities

Express the function in terms of constants and first powers
of cosine functions.

Solution

Begin by applying the power-reducing identity.

 � 1 � 2 cos 2x � cos2 2x
4

 � 1 � cos 2x
2 �

1 � cos 2x
2

 f 1x2 � sin4x � sin2x � sin2x

f 1x2 � sin4 x



Next apply the power-reducing identity for cosine to (See Note.)

■

Half-Angle Identities

The power-reducing identities with in place of x can be used to obtain 

the half-angle identities.

This proves the first of the half-angle identities.

 sinax
2b � ±

B
1 � cos x

2

 sin2 ax
2b �

1 � cos2ax
2b

2 �
1 � cos x

2

x
2

 � 3
8 �

1
2 cos 2x �

1
8 cos 4x

 � 1
4 �

1
2 cos 2x �

1
8 ˛ 11 � cos 4x2

 1 � 2 cos 2x � cos22x
4 �

1 � 2 cos 2x �
1 � cos 4x

2
4

cos22x.
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The sign in front of the radical depends 

upon the quadrant in which lies.x
2

tan x2 � ±±
B

1 � cos x
1 � cos x

cos x2 � ±±
B

1 � cos x
2sin x2 � �

B
1 � cos x

2

Half-Angle
Identities

To write 
in terms of first powers of
cosine functions, use 2x in
place of x in the power-
reducing identity for
cosine.

 � 1 � cos 4x
2

 cos2 2x �
1 � cos 212x2

2

cos2 2xNOTE

The half-angle identity for cosine is derived from a power-reducing iden-
tity, as was the half-angle identity for sine. The half-angle identity for 

tangent then follows immediately since 

Example 5 Half-Angle Identities

Find the exact value of

a. b. sin p12cos 5p8

tanax
2b �

sinax
2b

cosax
2b

.



Solution

a. Because use the half-angle identity with and 

the fact that The sign chart given in Section 6.4 

shows that is negative because is in the second quadrant. 

So, use the negative sign in front of the radical.

b. Because and is in the first quadrant, where sine is 

positive,

■

The problem of determining signs in the half-angle formulas can be elim-
inated for the tangent by using the following formulas.

 � 32 � 23
2

 �
C

2 � 23
4

 �
S

2 � 23
2

  2  

 �
S

1 �
23
2

2

 sin p12 � sin 

p
6

 2 �
R

1 � cosap6 b
2

p
12

p
12 �

1
2 ap6 b

 � �
22 � 12

2

 � �
B

2 � 12
4

 � �
R

A2 � 12 B
2

   2   

 � �
R

1 � a�12
2 b

2

 cos 5p8 � cos 

5p
4

  2  � �
R

1 � cosa5p
4 b

2

5p
8cos 5p8

cos 5p4 � �
22
2 .

x �
5p
4

5p
8 �

1
2 a5p

4 b ,
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 tan x2 �
sin x

1 � cos x

 tan x2 �
1 � cos x

sin x

Half-Angle
Identities for

Tangent

Proof
The proof of the first of these identities follows from the identity 

which was proved in Example 3. Replace x by in 

this identity.

The second identity in the box is proved in Exercise 71.

Example 6 Use Half-Angle Identity for Tangent

If and find 

Solution

The terminal side of an angle of x radians in standard position lies in the
third quadrant, as shown in Figure 9.3-2. The tangent of the angle in stan-
dard position whose terminal side passes through the point is

Because there is only one angle in the third quadrant with tan-

gent the point must lie on the terminal side of the angle of x

radians.

The distance from to the origin is the hypotenuse of the 
triangle.

Therefore,

By the first of the half-angle identities for tangent,

■

tan ˛

x
2 �

1 � cos x
sin x �

1 � a �2
213

b
�3
213

�

 
213 � 2
213

 

�3
213

� �
213 � 2

3

sin x �
�3
213

  cos x �
�2
213

21�2 � 022 � 1�3 � 022 � 213

1�2, �32

1�2, �323
2,

�3
�2 �

3
2.

1�2, �32

tan˛ x2.p 6 x 6 3p
2 ,tan x �

3
2

tan x2 �

1 � cos 2ax
2b

sin 2ax
2b

�
1 � cos x

sin x

x
2tan x �

1 � cos 2x
sin 2x ,

2

(−2, −3)

3

x
x

y

13

Figure 9.3-2



Product-to-Sum Identities

Use the addition and subtraction identities to rewrite 

Dividing both sides of the equation by 2 produces the first of the follow-
ing identities.

 � 2 sin x cos y
 sin 1x � y2 � sin 1x � y2 � sin x cos y � cos x sin y � sin x cos y � cos x sin y

sin 1x � y2� sin 1x � y2.
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  cos x sin y �
1
2 [sin(x � y) � sin(x � y)]

  cos x cos y �
1
2 [cos(x � y) � cos(x � y)]

  sin x sin y �
1
2 ˛ [cos(x � y) � cos(x � y)]

  sin x cos y �
1
2 ˛ [sin(x � y) � sin(x � y)]

Product-to-Sum
Identities

The proofs of the second and fourth product-to-sum identities are simi-
lar to the proof of the first. The third product-to-sum identity was proved
in Example 3 of Section 9.2.

Sum-to-Product Identities

Use the first product-to-sum identity with in place of x and 

in place of y to obtain the first sum-to-product identity.

Multiplying both sides of the equation by 2 produces the identity.

�
1
2 1sin x � sin y2

�
1
2 c sinax � y

2 ˛ �
x � y

2 ˛b � sinax � y
2 �

x � y
2 b d

sin 
x � y

2 ˛ cos 
x � y

2 ˛

x � y
2 ˛

x � y
2 ˛

cos x � cos y � �2 sin 
x � y

2 ˛ sin 
x � y

2

cos x � cos y � 2 cos 
x � y

2 ˛ cos 
x � y

2

sin x � sin y � 2 cos 
x � y

2 ˛ sin 
x � y

2

sin x � sin y � 2 sin 
x � y

2 ˛ cos 
x � y

2

Sum-to-Product
Identities



The other sum-to-product identities are proved the same way as the first.

Example 7 Use Sum-to-Product Identities

Prove the identity below.

Solution

Use the first sum-to-product identity with and .

Similarly,

Therefore,

■

sin t � sin 3t
cos t � cos 3t �

2 sin 2t cos 1�t2
2 cos 2t cos 1�t2 �

sin 2t
cos 2t � tan 2t.

cos t � cos 3t � 2 cos ˛at � 3t
2 b ˛ cosa t � 3t

2 b � 2 cos 2t cos 1�t2.

sin t � sin 3t � 2 sinat � 3t
2 b ˛ cosa t � 3t

2 b � 2 sin 2t cos 1�t2
y � 3tx � t

sin t � sin 3t
cos t � cos 3t � tan 2t
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Exercises 9.3

In Exercises 1–12, use the half-angle identities to eval-
uate the given expression exactly.

1. 2. 3. 4.

5. 6. 7. 8.

9. 10. 11. 12.

In Exercises 13–18, write each expression as a sum or
difference.

13. 14.

15. 16.

17. 18.

In Exercises 19–22, write each expression as a product.

19. 20.

21. 22. cos 5x � cos 7xsin 9x � sin 5x

cos 2x � cos 6xsin 3x � sin 5x

cos 13x cos1�5x2sin 17x sin1�3x2
sin 3x cos 5xcos 2x cos 4x

sin 5x sin 7xsin 4x cos 6x

cot p8tan 7p8cos 7p8sin 7p8

tan 5p8cos p12sin 5p8tan p12

cos 3p8sin 3p8tan p8cos p8

In Exercises 23–30, find and 
under the given conditions.

23.

24.

25.

26.

27.

28.

29.

30. sec x � �5, for p 6 x 6 3p
2

csc x � 4, for 0 6 x 6 p2

tan x � �
3
2, for p2 6 x 6 p

tan x �
3
4, for p 6 x 6 3p

2

cos x � �
1
3, for p2 6 x 6 p

cos x � �
3
5, for p 6 x 6 3p

2

sin x � �
4
5, for p 6 x 6 3p

2

sin x �
5

13, for 0 6 x 6 p2

tan 2xcos 2x,sin 2x,
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In Exercises 31–36, find and under 

the given conditions.

31.

32.

33.

34.

35.

36.

In Exercises 37–42, assume and 

and evaluate the given expression.

37. 38. 39.

40. 41. 42.

43. Express in terms of 

44. a. Express the function in terms of
constants and first powers of the cosine
function, as in Example 4.

b. Do the same for 

In Exercises 45–50, simplify the given expression.

45. 46.

47.

48.

49.

50.

In Exercises 51–64, determine graphically whether the
equation could not possibly be an identity, or write a
proof showing that it is.

51.

52. cos 8x � cos24x � sin24x

sin 16x � 2 sin 8x cos 8x

2 sin x cos3x � 2 sin3x cos x

1sin x � cos x22 � sin 2x

cos2
˛ax

2b � sin2
˛ax

2b

2 cos 2y sin 2y

1 � 2 sin2
˛ax

2b
sin 2x
2 sin x

f 1x2 � cos4x.

f 1x2 � cos3x

cos x.cos 3x

cos x2sin x2sin 4x

cos 2xcos 4xsin 2x

0 66 x 66 P

2sin x � 0.6

cot x � 1, for �p 6 x 6 �
p

2

tan x �
1
2, for p 6 x 6 3p

2

cos x � 0.8, for 3p2 6 x 6 2p

sin x � �
3
5, for 3p2 6 x 6 2p

sin x � 0.6, for p2 6 x 6 p

cos x � 0.4, for 0 6 x 6 p2

tan x2sin x2, cos x2, 53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

In Exercises 65–70, prove the identity.

65.

66.

67.

68.

69.

70.

71. a. Prove that 

b. Use part a and the half-angle identity proved 

in the text to prove that 

72. If and find the relation
between x and y by eliminating t.

y � sin t,x � cos 2t

tan x2 �
sin x

1 � cos x .

1 � cos x
sin x �

sin x
1 � cos x .

sin x � sin y
cos x � cos y � tana

x � y
2 b

sin x � sin y
cos x � cos y � �cota

x � y
2 b

cos 8x � cos 4x
cos 8x � cos 4x

� �cot 6x cot 2x

sin 4x � sin 6x
cos 4x � cos 6x

� cot x

sin x � sin 3x
cos x � cos 3x � �cot 2x

sin x � sin 3x
cos x � cos 3x � �tan x

sec2
˛ax

2b �
2

1 � cos x

csc2
˛ax

2b �
2

1 � cos x

cos 3x � 1cos x2 ˛13 � 4 cos2x2

cos 2x �
2 tan x
sec2x

sin 4x � 14 cos x sin x2 ˛11 � 2 sin2x2

sin 3x � 1sin x2 ˛13 � 4 sin2x2

sin 2x �
2 cot x
csc2x

1 � cos 2x
sin 2x � cot x

sin2x � cos2x � 2 sin x

cos 4x � 2 cos 2x � 1

sec 2x �
1

1 � 2 sin2x

cos4x � sin4x � cos 2x
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73. The horizontal range of a projectile R is given by
the equation

where v is the initial velocity of the projectile, t is
the time of flight, and is the angle between the 

line of fire and the horizontal. If 

where g is acceleration due to gravity, show that 

74. The expression occurs in the theory 

of reflection of light waves. Show that this
expression can be written as 1 � 2 sin2u.

sin ap2 � 2ub

R �
v2 sin 2a

g .

t �
2v sin a

g ,

a

R � vt cos a,
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75. The expression is used in 

the theory of the motion of a pendulum. Show
that this equation can be written as 

76. A batter hits a baseball that is caught by a fielder.
If the ball leaves the bat at an angle of radians
to the horizontal, with an initial velocity of v feet
per second, then the approximate horizontal
distance d traveled by the ball is given by

a. If the initial velocity is 90 ft/sec, find the
horizontal distance traveled by the ball when

radian and when radian.

b. Use an identity to show that d �
v2 sin 2u

32 .

u � 0.75u � 0.5

d �
v2 sin u cos u

16 .

u

cos u � cos a.

2asin2 12 a � sin2 12 ub

9.4 Using Trigonometric Identities

Recall that the basic identities are used to simplify expressions and to
algebraically solve trigonometric equations. The trigonometric identities
introduced in Section 9.3 can also be used with the techniques shown in
Section 8.3, where equations were rewritten into a basic form and then
solved.

Example 1 Use Double-Angle Identities

Solve 

Solution

Use a double-angle identity to rewrite cos 2x in terms of 

double-angle identity

factor the quadratic expression

or

cos x �
2
3cos x � �

3
2

3 cos x � 2 � 02 cos x � 3 � 0
 12 cos x � 32 �13 cos x � 22 � 0

 6 cos2x � 5 cos x � 6 � 0
 5 cos x � 6 cos2x � 3 � 3

 5 cos x � 312 cos2x � 12 � 3
 5 cos x � 3 cos 2x � 3

cos2x.

5 cos x � 3 cos 2x � 3.

Objectives

• Use identities to solve
trigonometric equations
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The equation has no solutions because always lies 

between and 1. A calculator shows that the solutions of are

for any integer k.
■

Example 2 Use Double-Angle Identities

Solve the equation 

Solution

Use the double-angle identity to rewrite sin x cos x.

Replace sin x cos x with and multiply both sides by 2.

Because the sine of any number must be between and 1, there is no
solution to the last equation. Therefore, there is no solution to the origi-
nal equation.

■

Example 3 Use Double-Angle Identities

Find exact solutions of 

Solution

Because the equation can be rewritten

or

for any integer k.
■

x �
5p
6 � pkx �

p
6 � pk

2x �
5p
3 � 2pk2x �

p
3 � 2pk

 2x � cos�1 12

 cos 2x �
1
2

cos2x � sin2x � cos 2x,

cos2x � sin2x �
1
2

�1

 sin 2x � 2

 12 sin 2x � 1

1
2 sin 2x

 sin x cos x �
1
2 sin 2x

 2 sin x cos x � sin 2x

sin x cos x � 1.

x � 0.8411 � 2kp and x � �0.8411 � 2kp

cos x �
2
3�1

cos xcos x � �
3
2



Example 4 Use Addition Identities

Find the exact solutions of 

Solution

The left side of the equation is similar to the right side of the addition
identity for sine.

Substitute 2x for x and x for y.

For any integer k,

■

Example 5 Use Half-Angle Identities

Find the solutions of where 

Solution

half-angle identity

square both sides

Pythagorean identity

or

For any integer k,

For or 

■

2p.x � 0, 2p3 ,0 � x � 2p,

x � 0 � 2pkx �
4p
3 � 2pkx �

2p
3 � 2pk

cos x � 1cos x � �
1
2

cos x � 1 � 02 cos x � 1 � 0
 12 cos x � 12 1cos x � 12 � 0

 2 cos2x � cos x � 1 � 0
 2 � 2 cos2x � 1 � cos x

 1 � cos2x �
1 � cos x

2

 sin2x �
1 � cos x

2

 sin x � ±
B

1 � cos x
2

 sin x � sin x2

0 � x � 2p.sin x � sin x2,

 x �
p
6 �

2pk
3

3x �
p
2 � 2pk

 3x � sin�11
 sin 3x � 1

 sin 2x cos x � cos 2x sin x � sin12x � x2 � 1

sin1x � y2 � sin x cos y � cos x sin y.

sin 2x cos x � cos 2x sin x � 1.
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CAUTION

Squaring both sides of
an equation may intro-
duce extraneous
solutions. Be sure to
check all solutions in
the original equation.
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Solving (Optional)

Equations of the form occur often.

For the case when the equations can be rewritten as

The last equation can be solved by methods discussed in Section 8.3.

For the case when a very different approach is needed to find the
solutions to

The procedure involves rewriting the equation as

where is the angle whose terminal side contains the point (a, b), and
then using the addition identity for the sine function.

To find , construct a right triangle in the coordinate plane with sides a
and b, where a lies on the positive x-axis and is the angle with its ver-
tex at the origin.

Begin by writing the equation so that the coefficient of sin x, a, is posi-
tive. The position of the point (a, b) depends on whether b is positive or
negative. If b is positive, the point is in the first quadrant; if b is negative,
the point is in the fourth quadrant. Both possibilities are shown in Fig-
ures 9.4-1 and 9.4-2.

In both cases,   [1]

Divide each side of the original equation by to obtain

a sin x b cos x c

[2]

Substitute the equivalent expressions from [1] into equation [2].

Use the addition identity for sine to rewrite the left side of the equation.

The last equation can be solved by using the methods from Section 8.3.
The steps of the procedure are summarized in the following box.

sin 1x � a2 �
c

2a2 � b2

cos a sin x � sin a cos x �
c

2a2 � b2

a
2a2 � b2

 sin x �
b

2a2 � b2
  cos x �

c
2a2 � b2

��

2a2 � b2

 and cos a �
a

2a2 � b2
.sin a �

b
2a2 � b2

a

a

a

 sin 1x � a2 � k,

 a sin x � b cos x � c

c � 0,

 tan x � �
b
a

 sin x
cos x � �

b
a

 a sin x � �b cos x

c � 0,

a sin x � b cos x � c

a sin x � b cos x � c

b

y

x

Positive b

a

(a, b)

α

a2 + b2

y
x

Negative b

a

b

(a, b)

α

a2 + b2

Figure 9.4-2

Figure 9.4-1



Example 6 Solve 

Solve the equation 

Solution

Step 1 Make the coefficient of positive by multiplying both sides
of the equation by 

so and 

Step 2 Sketch a diagram of the angle that has on its termi-
nal side. See Figure 9.4-3.

Step 3 The length of the hypotenuse is .

Find sin and cos from the figure.

and 

Find .

or

Step 4 Divide both sides of the equation in Step 1 by the hypotenuse,

23
2  sin x �

1
2 cos x �

23
2

3A23 B 2 � 1�122 � 2.

a �
11p

6a � �
p
6

a

sin a �
�1
2cos a �

23
2

aa

3A23 B 2 � 1�122 � 2

A23, �1 Ba

b � �1a � 2323 sin x � cos x � 23

�1.
sin x

�23 sin x � cos x � �23.

a sin x � b cos x � c
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y

x

3, −1)

2

0

1
−1

−1

−2

1

(

α

3

Figure 9.4-3

Solving 

where c � 0
� c,

� b cos xa sin x Let a, b, and c be nonzero real numbers. To solve

1. Multiply by if needed, to make a positive.

2. Plot the point and let be the angle in standard
position that contains on its terminal side.

3. Find

• the length of the hypotenuse of the reference triangle

• expressions that represent and 

• the measure of 

4. Divide each side of the equation by yielding

5. Use the addition identity for sine to rewrite the equation.

6. Solve the equation using techniques previously discussed.

sin(x � A) �
c

2a2 � b2

a
2a2 � b2

 sin x �
b

2a2 � b2
 cos x �

c
2a2 � b2

2a2 � b2

A

cos Asin A

(a, b)
A(a, b)

�1,

a sin x � b cos x � c
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Step 5 Rewrite the equation by substituting

and then use the addition identity for sine.

Step 6 Solve the equation.

or

for any integer k.
■

Maxima and Minima of 

For functions of the form maximum and mini-
mum values can be found by using a technique similar to that described
in the algorithm to solve equations of the form 

Example 7 Maximum and Minimum of 

Find the maximum and minimum of the function

Solution

Note that Let or equivalently 

and write the function in the form .

Because the sine function varies between and 1, the maximum of
is 5 and the minimum is 

■
�5.5 sin1x � a2 �1

 � 5 sin1x � a2
 f 1x2 � 5a3

5 sin x �
4
5 cos xb � 51cos a sin x � sin a cos x2

f 1x2 � k sin1x � a2a � sin�1 4
5,

a � cos�1 35,232 � 42 � 225 � 5.

f 1x2 � 3 sin x � 4 cos x.

f(x) � a sin x � b cos x

a sin x � b cos x � c.

f 1x2 � a sin x � b cos x,

f(x) � a sin x � b cos x

 x �
5p
6 � 2pk x �

p
2 � 2pk

 x � �
7p
6 � 2pk x � �

3p
2 � 2pk

 x �
2p
3 �

11p
6 � 2pk x �

p
3 �

11p
6 � 2pk

 x �
11p

6 �
2p
3 � 2pk x �

11p
6 �

p
3 � 2pk

x �
11p

6 � sin�1a23
2 b

 sinax �
11p

6 b �
23
2

 cos 11p
6  sin x � sin 11p

6  cos x �
23
2

cos 11p
6  for 23

2   and  �sin 11p
6  for 1

2

CAUTION

When substituting 

for the 

sign between the terms
changes to �.

1
2,�sin 11p

6

The value of is
not needed to find the
maximum or minimum 
of the function.

aNOTE



To find the values of x that produce the maximum or minimum values of
the function, solve the equation

where c is the maximum or minimum value. In Example 7, the maximum
value of 5 occurs when

In one revolution, the maximum occurs at approximately 0.6435.

Where the minimum value occurs is found in a similar manner.

 � 0.6435

a � cos�1 3
5

� 0.9273 � 1.5708 � 0.9273

 x �
p
2 � a

 x � a � sin�11 �
p
2

 sin1x � a2 � 1

3
5 sin x �

4
5 cos x � 1

3 sin x � 4 cos x � 5

a sin x � b cos x � c,
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Exercises 9.4

In Exercises 1–27, find all solutions of the equation in
the interval 

1.

2.

3.

4.

5.

6.

7.

8.

9.

10. (Check for extraneous solutions.)cos x � cos 12 x

sin 2x sin x � cos x � 0

sin 2t cos t � cos 2t sin t � 0

sin x sin 12 x � 1 � cos x

sin 4x � sin 2x � 0

4 sin2ax
2b � cos2x � 2

sin x2 � 1 � cos x

cos 2x � sin x � 1

sin 2x � cos x � 0

sin2x � 3 cos2x � 0

[0, 2P].
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22. 1sin x � cos x22 � 1

cos 2x � cos x � 0

sin 2x � cos x � 0

sin x � cos x � 0

sin x � 23 cos x � 0

sinax �
p

2 b � cos x � 1

cosax �
p

2 b � sin x � 1

2 cos2x � 2 cos 2x � 1

cos 2x � sin2 x � 0

sin 4x � cos 2x

cos 4x cos x � sin 4x sin x � 0

sin 2x � cos 2x � 0
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23.

24.

25.

26.

27.

In Exercises 28–31, find the solution to each equation
in the interval 

28.

29.

30.

31.

In Exercises 32–35, solve each equation in 

32. sin 4x � sin 2x � sin x

[0, 2P).

�cos x � 23 sin x � 1

sin 2x � cos x � 0

sin2x � cos 2x � 1

sin x � cos x � 1

[�P, P].

2 sin x � 2 cos x � 22

�22 sin x � 22 cos x � 1

csc2 x2 � 2 sec x

sin2ax
2b � cos x � 0

sin x cos x �
1
2 � 0 33.

34.

35.

In Exercises 36–40,

a. Express each function in the form

b. Find the maximum value that can assume.
c. Find all values of x in that give the

maximum value of 

36.

37.

38.

39.

40. f 1x2 � 4 sin x � 3 cos x

f 1x2 � sin x � cos x

f 1x2 � 2 sin x � 2 cos x

f 1x2 � sin x � 23 cos x

f 1x2 � 23 sin x � cos x

f 1x2.
30, 2p 4

f 1x2
f 1x2 � k sin1x � a2.

sin 3x � sin x � 0

cos 3x � cos x � 0

sin 2x � sin 12 x
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a sin x � b cos x � c

cos 2x

Addition and Subtraction Identities

 tan1x � y2 �
tan x � tan y

1 � tan x tan y

 tan1x � y2 �
tan x � tan y

1 � tan x tan y

 cos1x � y2 � cos x cos y � sin x sin y
 cos1x � y2 � cos x cos y � sin x sin y
 sin1x � y2 � sin x cos y � cos x sin y
 sin1x � y2 � sin x cos y � cos x sin y

C H A P T E R

9
R E V I E W

Important Concepts

Important Facts 
and Formulas
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Review Exercises

Section 9.1

Cofunction Identities

Double-Angle Identities

Half-Angle Identities

 tan x2 �
1 � cos x

sin x �
sin x

1 � cos x

 cos x2 � ±
B

1 � cos x
2

 sin x2 � ±
B

1 � cos x
2

 tan 2x �
2 tan x

1 � tan2x

 cos 2x � cos2x � sin2x � 2 cos2x � 1 � 1 � 2 sin2x
 sin 2x � 2 sin x cos x

 sec x � cscap2 � xb       csc x � secap2 � xb
 tan x � cotap2 � xb       cot x � tanap2 � xb
 sin x � cosap2 � xb       cos x � sinap2 � xb

In Exercises 1–4, simplify the given expression.

1.

2. 3.

4.

In Exercises 5–11, determine graphically whether the equation could not pos-
sibly be an identity, or write a proof showing that it is.

5. 6.

7. 8.

9. 10.

11. 1sin x � cos x22 � sin 2x � 1

tan x � cot x � sec x csc x
cos21p � t2
sin21p � t2 � 1 �

1
sin2t

sin2t
cos2t

� 1 �
1

cos2t
sin t

1 � cos t �
1 � cos t

sin t

1 � 2 cos2t � cos4t � sin4tsin4t � cos4t � 2 sin2t � 1

1sin x � cos x2 1sin x � cos x2 � 1
sin2x

tan2x � sin2x
sec2x

sec2t csc t
csc2t sec t

sin2t � 1tan2t � 2 tan t � 42 � cos2t
3 tan2t � 3 tan t
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In Exercises 12–16, prove the given identity.

12. 13.

14. 15.

16.

17.

a. b.

c. d.

e. undefined

18.

a. b.

c. d.

e.

In Exercises 19–20, prove the given identity.

19.

20.

21. Evaluate the following in exact form, where the angles and satisfy the
conditions:

a. b. c.

22. If and and with find 

23. If with and with find 

24. If and then 

25. If and then 

26. Find the exact value of sin 5p12 .

cosap4 � xb � ?3p
2 6 x 6 2p,sin x � �

2
5

sinap3 � xb � ?0 6 x 6 p2 ,sin x �
1
4

cos1x � y2.
3p
2 6 y 6 2p,sec y �

13
12p 6 x 6 3p

2 ,sin x � �
12
13

sin1x � y2.
3p
2 6 y 6 2p,cot y � �

5
12p 6 x 6 3p

2 ,tan x �
4
3

cos1a � b2tan1b � a2sin1b � a2
sin a �

4
5  for p2 6 a 6 p   tan b �

7
24  for p 6 b 6 3p

2 ,

ba

cos1x � y2
cos x cos y � 1 � tan x tan y

cos1x � y2cos1x � y2 � cos2x � sin2y

1 � tan3x

sin x �
1

1 � tan2x
1

1sin x2 11 � tan2x2

sin x � sin3x1
1sin x2 1cos2x2

1
1csc x2 1sec2x2 � ?

sec x
B

1 � sin2x
1 � cos2x

0 cot x 00 tan x 0
B

1 � cos2x
1 � sin2x

� ?

tan2x � sec2x � cot2x � csc2x

sec x � cos x � sin x tan x1 � tan2x
tan2x

� csc2x

cos4x � sin4x
1 � tan4x

� cos4xsec x � 1
tan x �

tan x
sec x � 1

Section 9.2
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Section 9.3

27. Express in terms of and 

28. Find the angle of inclination of the straight line through the points (2, 6)
and 

29. Find one of the angles between the line L through the points and 
(5, 1) and the line M, which has slope 2.

30. Evaluate the following in exact form, where the angles and satisfy the
conditions:

a. b.

c. d.

In Exercises 31–34, prove the given identity.

31. 32.

33.

34.

35. If and find 

36. If and find 

37. If is it true that Justify your answer.

38. If is it true that Justify your answer.

39. Show by computing in two ways, using 

the half-angle identity and the subtraction identity for cosine.

40. True or false: Justify your answer.

41. If and find 

42. If and find 

Solve the equation. Find exact solutions when possible and approximate ones
otherwise.

43. 44.

45. 46. sin 2x � cos x � 02 cos x � sin x � 0

cos 2x � cos x5 tan x � 2 sin 2x

sin x2.0 6 x 6 p2 ,sin x � 0.6

sin 2x.0 6 x 6 p2 ,sin x � 0.6

2 sin x � sin 2x.

cos p1232 � 23 �
22 � 26

2

cos 2x � 0?cos x � 0,

sin 2x � 0?sin x � 0,

sin x2.0 6 x 6 p2 ,cos x �
15
17

sin 2x.sin x 7 0,tan x �
5
12

sin 2x �
1

tan x � cot 2x

2 cos x � 2 cos3 x � sin x sin 2x

tan x � sin x
2 tan x � sin2 x

2
1 � cos 2x

tan x � sin 2x

cos1a � b2 � cos1a � b2tan 2a

cos 2asin 
b

2

sin a �
44
125 for p2 6 a 6 p  tan b � �

15
112  for 3p2 6 b 6 2p

ba

1�3, 22
1�2, 22.

cos x.sin xsec1x � p2
Section 9.2.A

Section 9.4
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Rates of Change in Trigonometry

As discussed in Section 3.7, the difference quotient represents the aver-
age rate of change of a function over the interval from x to 

average rate of change

As the value of h becomes smaller and smaller, the average rate of change
approaches the instantaneous rate of change at x as discussed in the Chap-
ter 3 Can Do Calculus.

Another way to represent the instantaneous rate of change is with limit
notation, shown in the Can Do Calculus in Chapter 8. That is, instanta-
neous rate of change of a function f at x is the limit of the difference
quotient.

instantaneous rate of change

The instantaneous rate of change of a particular function is given by the
expression in x that is the simplified form of the limit given above.

Example 1 Instantaneous Rate of Change of 

Find an expression for the instantaneous rate of change of 

Solution

The difference quotient of can be simplified by using the
addition identity for the sine function.

Let 

Therefore, the difference quotient for the sine function can be simplified
as follows. (See Example 4 of Section 9.2 for details of the simplification.)

The expression that represents the instantaneous rate of change is found 

by finding the limit of as h approaches 0.

instantaneous rate of changelim 
hS0
asin x acos h � 1

h
b � cos x asin h

h
bb

sin x acos h � 1
h

b � cos x asin h
h
b

sin1x � h2 � sin x
h

� sin x acos h � 1
h

b � cos x asin h
h
b

sin1x � h2 � sin x cos h � cos x sin h

y � h.

sin1x � y2 � sin x cos y � cos x sin y

f 1x2 � sin x 

f 1x2 � sin x.

f (x) � sin x

lim
hS0

 
 f 1x � h2 � f 1x2

h

 f 1x � h2 � f 1x2
h

x � h.
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The two fractional expressions in the limit above were evaluated in the
Chapter 8 Can Do Calculus as follows:

Substitute the values above into the expression for instantaneous rate of
change to find a simpler expression.

instantaneous rate of change
■

The expression for the instantaneous rate of change for can
be used to find the instantaneous rate of change at any particular value
of x.

Example 2 Finding Instantaneous Rate of Change at 

Find the instantaneous rate of change of when Inter-

pret the result.

Solution

Because the instantaneous rate of change of is given by 

the instantaneous rate of change at is 

or When sin x is changing unit per unit increase in x.

■

1
2x �

p
3 ,1

2.

gap3 b � cos 
p
3 ,x �

p
3g 1x2 � cos x,

 f 1x2 � sin x

x �
p
3 .f 1x2 � sin x

x � k

f 1x2 � sin x

� cos x

lim
hS0 
asin x acos h � 1

h
b � cos x asin h

h
bb � 1sin x2 102 � 1cos x2 112

lim
hS0

 
sin h

h
� 1     and    lim

hS0
 
cos h � 1

h
� 0See Chapter 14

for a complete discussion
of limits.

NOTE

Exercises

1. What is the instantaneous rate of change of
for the following values of x. Interpret

each result.

a. b.

c. d.

2. Find the expression for the instantaneous rate of
change of f 1x2 � cos x.

x �
p

6x �
p

2

x �
p

4x � 0

f 1x2 � sin x
3. What is the instantaneous rate of change of

for the following values of x?
Interpret each result.

a. b.

c. d. x �
p

6x �
p

2

x �
p

4x � 0

f 1x2 � cos x
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A Bridge over Troubled Waters

When planning a bridge or building, architects and engineers must determine the 
stress on cables and other parts of the structure to be sure that all parts are adequately 
supported. Problems like these can be modeled and solved by using vectors. See 
Exercise 50 in Section 10.6.

Trigonometric
Applications

C H A P T E R
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10.1 The Law of Cosines

10.2 The Law of Sines

10.3 The Complex Plane and Polar Form for Complex

Numbers

10.4 DeMoivre’s Theorem and nth Roots of Complex

Numbers

10.5 Vectors in the Plane

10.6 Applications of Vectors in the Plane

10.6.A Excursion: The Dot Product

Chapter Outline
Chapter Review

can do calculus Euler’s Formula

Interdependence of Sections
10.1 10.2

10.3 10.4

10.5 10.6

Trigonometry has a variety of useful applications in geometry, alge-

bra, and the physical sciences. Several applications are discussed in

this chapter.

10.1 The Law of Cosines

Sections 6.1 and 6.2 presented right triangle trigonometry and its appli-
cations. In this section, the solutions to oblique triangles, ones that do
not contain a right angle, are considered.

Standard notation of triangles, which is used in this section and the next,
is shown in Figure 10.1-1 and is described below.

Each vertex is labeled with a capital letter, and the length of the side oppo-
site that vertex is denoted by the same letter in lower case. The letter A
will also be used to label the angle at vertex A, and similarly for B and
C. Thus, statements such as

will be made.

The first fact needed to solve oblique triangles is the Law of Cosines,
whose proof is given at the end of this section.

A � 37°  or  cos B � 0.326

Objectives

• Solve oblique triangles by
using the Law of Cosines.

B

A

C

c
b

a

Figure 10.1-1

>

>

>

In any triangle ABC, with lengths a, b, c, as in Figure 10.1-1,

c2 � a2 � b2 � 2ab cos C
b2 � a2 � c2 � 2ac cos B
a2 � b2 � c2 � 2bc cos A

Law of Cosines

617



You need only memorize one of these equations since each of them pro-
vides essentially the same information: the square of the length of one
side of a triangle is given in terms of the angle opposite it and the other
two sides.

Solving the first equation in the Law of Cosines for cos A results in the
alternate form of the Law of Cosines, given below.

618 Chapter 10 Trigonometric Applications

In any triangle ABC, with sides of lengths a, b, and c, as in
Figure 10.1-1,

cos A �
b2 � c2 � a2

2bc
.

Alternate Form:
Law of 

Cosines

The other two equations in the Law of Cosines can be similarly rewritten
in an alternate form. In this form, the Law of Cosines provides a descrip-
tion of each angle of a triangle in terms of the three sides. Consequently,
the Law of Cosines can be used to solve triangles in the following cases.

1. Two sides and the angle between them are known (SAS)
2. Three sides are known (SSS)

Example 1 Solve a Triangle with SAS Information

Solve triangle ABC shown in Figure 10.1-2.

Solution

Because c is the unknown quantity, use the third equation in the Law of
Cosines.

Take the square root of each side.

Use the alternate form of the Law of Cosines to find the measure of 
angle A.

Use the key with the
calculator in degree mode. A � 44.2°

COS�1 A � cos�1 0.7172
 cos A � 0.7172

 cos A � 102 � 21.62 � 162

21102 121.62

 cos A �
b2 � c2 � a2

2bc

 c � 21.6
 c � 2356 � 320 cos 110°

 c2 � 356 � 320 cos 110°
 c2 � 162 � 102 � 21162 1102 cos 110°
 c2 � a2 � b2 � 2ab cos C

10 16

A Bc

C

110°

Figure 10.1-2

Throughout this
chapter, no rounding is
done in the actual
computation until the final
quantity is obtained.

NOTE

When C is a right
angle, then c is the
hypotenuse and

so that the third equation in
the Law of Cosines becomes
the Pythagorean theorem.

c2 � a2 � b2

cos C � cos 90° � 0,

NOTE



Because the sum of the angle measures in a triangle is 

Thus, and 
■

Example 2 Solve a Triangle with SSS Information

Find the angles of triangle ABC shown in Figure 10.1-3.

Solution

The given information is and To find angles, use
the alternate form of the Law of Cosines.

Use the sum of angle measures in a triangle to find the third angle.

Thus, and 
■

Example 3 The Distance Between Two Vehicles

Two trains leave a station on different tracks. The tracks make an angle
of with the station as the vertex. The first train travels at an average
speed of 100 kilometers per hour, and the second train travels at an aver-
age speed of 65 kilometers per hour. How far apart are the trains after 
2 hours?

Solution

The first train, A, traveling at 100 kilometers per hour for 2 hours, goes a
distance of kilometers. The second train, B, travels a dis-
tance of kilometers. The situation is shown in Figure 10.1-4.

By the Law of Cosines:

The trains are about 294.5 kilometers apart after 2 hours.
■

 c � 294.5
 c � 256,900 � 52,000 cos 125°

 c2 � 56,900 � 52,000 cos 125°
 c2 � 1302 � 2002 � 211302 12002cos 125°
 c2 � a2 � b2 � 2ab cos C

65 � 2 � 130
100 � 2 � 200

125°

C � 22.1°.A � 115.2°, B � 42.7°,

C � 180° � 1115.2° � 42.7°2 � 22.1°

B � 42.7° A � 115.2°
cos B � 0.7346 cos A � �0.4261

cos B �
202 � 8.32 � 152

21202 18.32 cos A �
152 � 8.32 � 202

21152 18.32

cos B �
a2 � c2 � b2

2ac cos A �
b2 � c2 � a2

2bc

c � 8.3.a � 20, b � 15,

B � 25.8°.c � 21.6, A � 44.2°,

B � 180° � 144.2° � 110°2 � 25.8°.

180°,

Section 10.1 The Law of Cosines 619

15 8.3

C B20

A

Figure 10.1-3

125°

C

B

A200

130

Station

c

Figure 10.1-4



Example 4 Find Angles with the Horizontal

A 100-foot tall antenna tower is to be placed on a hillside that makes an
angle of with the horizontal. It is to be anchored by two cables from
the top of the tower to points 85 feet uphill and 95 feet downhill from the
base. How much cable is needed?

Solution

The situation is shown in Figure 10.1-5, where AB represents the tower
and AC and AD represent the cables.

12°
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If the hillside makes an angle of with the horizontal, then in triangle
BEC, angle E is a right angle and angle C measures Use the sum of
the angle measures in the triangle.

As shown in Figure 10.1-5, adjacent angles ABC and CBE form a straight
angle, which measures 

Using the SAS information in triangle ABC, apply the Law of Cosines.

The length of the downhill cable is about 151.58 feet.

To find the length of the uphill cable, notice that adjacent angles ABC and
ABD form a straight angle.

m�ABD � 180° � m�ABC � 180° � 102° � 78°

 b � 151.58
 b � 219,025 � 19,000 cos 102°

 b2 � 19,025 � 19,000 cos 102°
 b2 � 952 � 1002 � 21952 11002 cos 102°
 b2 � a2 � c2 � 2ac cos B

m�ABC � 180° � 78° � 102°

180°.

m�CBE � 180° � 190° � 12°2 � 78°

12°.
12°

12°

D

A

b

k

C

B

E

100

95

85

Figure 10.1-5



Using the SAS information in triangle ABD, apply the Law of Cosines.

The length of the uphill cable is about 117.01 feet.

The amount of cable needed is the sum of the lengths of the uphill and
downhill cables.

Therefore, the length of the cable needed is about 268.59 feet.
■

Proof of the Law of Cosines

Given triangle ABC, position it on a coordinate plane so that angle A is
in standard position with initial side c and terminal side b. Depending on
the size of angle A, there are two possibilities, as shown in Figure 10.1-6.

151.58 � 117.01 � 268.59

 k � 117.01
 k � 217,225 � 17,000 cos 78°

 k2 � 17,225 � 17,000 cos 78°
 k2 � 1002 � 852 � 211002 1852 cos 78°

Section 10.1 The Law of Cosines 621

BA c

C(x, y)

a
b

BA c

C(x, y)

ab

y

x

y

x

Figure 10.1-6

The coordinates of B are (c, 0). Let (x, y) be the coordinates of C. Now C
is a point on the terminal side of angle A, and the distance from C to the
origin A is b. Therefore, according to the definitions of sine and cosine,
the following statements are true.

Use the distance formula to find a, the distance from C to B.

Substitute for x and y.

Square each side.

Simplify.

Rearrange terms.

Factor out 

Pythagorean identity a2 � b2 � c2 � 2bc cos A
b2. a2 � b21cos2 A � sin2 A2 � c2 � 2bc cos A

 a2 � b2 cos2 A � b2 sin2 A � c2 � 2bc cos A
 a2 � b2 cos2 A � 2bc cos A � c2 � b2 sin2 A
 a2 � 1b cos A � c22 � 1b sin A22
 a � 21b cos A � c22 � 1b sin A � 022

 a � 21x � c22 � 1y � 022

y

b
� sin A,  or equivalently,  y � b sin A

x
b

� cos A,  or equivalently,  x � b cos A



This proves the first equation in the Law of Cosines. Similar arguments
beginning with angles B or C in standard position prove the other two
equations.

622 Chapter 10 Trigonometric Applications

Exercises 10.1

Standard notation for triangle ABC is used through-
out. Use a calculator and round your answers to one
decimal place at the end of each computation.

In Exercises 1–16, solve the triangle ABC under the
given conditions.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17. Find the angles of the triangle whose vertices are
and 

18. Find the angles of the triangle whose vertices are

19. Two trains leave a station on different tracks. The
tracks make a angle with the station as112°

1�3, 42, 16, 12, and 12, �12.

11, �42.10, 02, 15, �22,

a � 5.7, b � 20.4, c � 16.8

a � 12, b � 16.5, c � 21.3

a � 6.8, b � 12.4, c � 15.1

a � 7.2, b � 6.5, c � 11

a � 5.3, b � 7.2, c � 10

a � 16, b � 20, c � 32

a � 8, b � 5, c � 10

a � 7, b � 3, c � 5

A � 118.2°, b � 16.5, c � 10.7

C � 78.6°, a � 12.1, b � 20.3

B � 25.4°, a � 6.8, c � 10.5

A � 140°, b � 12, c � 14

C � 52.5°, a � 6.5, b � 9

C � 118°, a � 6, b � 10

B � 40°, a � 12, c � 20

A � 20°, b � 10, c � 7

vertex. The first train travels at an average speed
of 90 kilometers per hour and the second at an
average speed of 55 kilometers per hour. How far
apart are the trains after 2 hours and 45 minutes?

20. One plane flies west from Cleveland at 350 miles
per hour. A second plane leaves Cleveland at the
same time and flies southeast at 200 miles per
hour. How far apart are the planes after 1 hour
and 36 minutes?

21. The pitcher’s mound on a standard baseball
diamond (which is actually a square) is 60.5 feet
from home plate. How far is the pitcher’s mound
from first base?

22. If the straight-line distance from home plate over
second base to the center field wall in a baseball
stadium is 400 feet, how far is it from first base to
the same point in center field? Adapt the figure
above.

23. A stake is located 10.8 feet from the end of a
closed gate that is 8 feet long. The gate swings
open, and its end hits the stake. Through what
angle does the gate swing?

Home plate

90 ft 90 ft
60.5 ft

90 ft90 ft

1st base3rd base

2nd base

Pitcher's
mound



24. The distance from Chicago to St. Louis is 
440 kilometers, from St. Louis to Atlanta 
795 kilometers, and from Atlanta to Chicago 
950 kilometers. What are the angles in the triangle
with these three cities as vertices?

25. A boat runs in a straight line for 3 kilometers, 
then makes a turn and goes for another 
6 kilometers. How far is the boat from its starting
point?

26. A plane flies in a straight line at 400 miles per
hour for 1 hour and 12 minutes. It makes a 
turn and flies at 375 miles per hour for 2 hours
and 27 minutes. How far is it from its starting
point?

27. The side of a hill makes an angle of with the
horizontal. A wire is to be run from the top of a
175-foot tower on the top of the hill to a stake
located 120 feet down the hillside from the base of
the tower. What length of wire is needed?

28. Two ships leave port, one traveling in a straight
course at 22 miles per hour and the other
traveling a straight course at 31 miles per hour.
Their courses diverge by How far apart are
they after 3 hours?

29. An engineer wants to measure the width CD of a
sinkhole. He places a stake B and determines the

38°.

12°

15°

45°

Start

3 6

45°

8

10.8
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measurements shown in the figure below. How
wide is the sinkhole?

30. A straight tunnel is to be dug through a hill. Two
people stand on opposite sides of the hill where
the tunnel entrances are to be located. Both can
see a stake located 530 meters from the first
person and 755 meters from the second. The angle
determined by the two people and the stake (the
vertex) is How long must the tunnel be?

31. One diagonal of a parallelogram is 6 centimeters
long, and the other is 13 centimeters long. They
form an angle of with each other. How long
are the sides of the parallelogram? Hint: The
diagonals of a parallelogram bisect each other.

32. A parallelogram has diagonals of lengths 12 and
15 inches that intersect at an angle of How
long are the sides of the parallelogram?

33. A ship is traveling at 18 miles per hour from
Corsica to Barcelona, a distance of 350 miles. To
avoid bad weather, the ship leaves Corsica on a
route south of the direct route (see the figure 
below). After 7 hours the bad weather has been
bypassed. Through what angle should the ship
now turn to head directly to Barcelona?

34. In aerial navigation, directions are given in degrees
clockwise from north. Thus east is south is

and so on, as shown in the following figure.
A plane leaves South Bend for Buffalo, 400 miles
away, intending to fly a straight course in the

180°,
90°,

22°

Angle of
turn 

Barcelona Corsica

22°

63.7°.

42°

77°.

103°

C D

B

120 ft
74 ft



direction After flying 180 miles, the pilot
realizes that an error has been made and that he
has actually been flying in the direction 

a. At that time, how far is the plane from Buffalo?
b. In what direction should the plane now go to

reach Buffalo?

35. Assume that the earth is a sphere of radius 3980
miles. A satellite travels in a circular orbit around
the earth, 900 miles above the equator, making
one full orbit every 6 hours. If it passes directly
over a tracking station at 2 P.M., what is the
distance from the satellite to the tracking station
at 2:05 P.M.?

36. Two planes at the same altitude approach an
airport. One plane is 16 miles from the control
tower and the other is 22 miles from the tower.
The angle determined by the planes and the
tower, with the tower as the vertex, is How
far apart are the planes?

37. Assuming that the circles in the following figure
are mutually tangent, find the lengths of the sides
and the measures of the angles in triangle ABC.

C

A

B

13

8.23

11.27

11°.

0° North

180° South

90° East270° West

55°.

70°.
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38. Assuming that the circles in the following figure
are mutually tangent, find the lengths of the sides
and the measures of the angles in triangle ABC.

39. Critical Thinking A rope is attached at points A
and B and taut around a pulley whose center is at
C, as shown in the following figure. The rope lies
on the pulley from D to E and the radius of the
pulley is 1 meter. How long is the rope?

40. Critical Thinking Use the Law of Cosines to prove
that the sum of the squares of the lengths of the
two diagonals of a parallelogram equals the sum
of the squares of the lengths of the four sides.

8 m 7 m

9 m
B

ED C

A

C
A

B

20.62

7.35

8.04
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10.2 The Law of Sines

In Section 10.1, the Law of Cosines was used to solve oblique triangles
when SAS or SSS information was given. When different information is
given about the triangle, the Law of Cosines may not be sufficient to solve
them. In this case, the Law of Sines may be used.

Objectives

• Solve oblique triangles by
using the Law of Sines

• Use area formulas to find
areas of triangles

In any triangle ABC (in standard notation)

a
sin A �

b
sin B �

c
sin C .

Law of Sines

Proof Position triangle ABC on a coordinate plane so that angle C is in
standard position, with initial side b and terminal side a, as shown in
Figure 10.2-1.

x

y

C bD A

B

90° < C < 180°

ch a

D x

y

bC A

B

0° < C < 90°

h
a c

Figure 10.2-1

In each case, sin C can be computed by using the point B on the terminal
side of angle C. The second coordinate of B is h, and the distance from B
to the origin is a. Therefore, by the definition of sine,

In each case, right triangle ADB shows that

Combine these two expressions for h.

Because angles in a triangle are nonzero, sin and Divide
each side of the last equation by (sin A)(sin C).

a
sin A �

c
sin C

sin C � 0.A � 0

a sin C � c sin A

sin A �
opposite

hypotenuse
�

h
c ,  or equivalently,  h � c sin A.

sin C �
h
a ,  or equivalently,  h � a sin C.



This proves one proportion in the Law of Sines. Similar arguments begin-
ning with angles A or B in standard position prove the other proportions.

The Law of Sines can be used to solve triangles in the following cases.

1. Two angles and one side are known (AAS)
2. Two sides and the angle opposite one of them are known (SSA)

Example 1 Solve a Triangle with AAS Information

If and , find the other angle measure and side
lengths. See Figure 10.2-2.

b � 210B � 20°, C � 31°,
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31°

20°
A c

C

B

210
a

Figure 10.2-2

Solution

Because the sum of the angle measures of a triangle is 

In order to find a, notice that three of the four quantities in one of the Law
of Sines proportions are known.

Multiply each side by .

c is found in a similar manner. Use a Law of Sines proportion involving
c and the three known quantities.

Multiply each side by 

Therefore, and 
■

c � 316.2.A � 129°, a � 477.2,

 c � 316.2

sin 31°. c �
210 sin 31°

sin 20°

 c
sin 31° �

210
sin 20°

 c
sin C �

b
sin B

a � 477.2

sin 129° a �
210 sin 129°

sin 20°

 a
sin 129° �

210
sin 20°

 a
sin A �

b
sin B

A � 180° � 120° � 31°2 � 129°.

180°,



The Ambiguous Case

Given AAS information, such as in Example 1, there is exactly one trian-
gle satisfying the given data (see note). But when two sides of a triangle
and the angle opposite one of them are known, as in the SSA case, there
may be one, two, or no triangles that satisfy the given data. This is called
the ambiguous case.

Section 10.2 The Law of Sines 627

The four Triangle Congruence Theorems—AAS, SAS, SSS,
and ASA—state that a unique triangle can be formed that is congruent
to a given triangle. However, SSA is not a triangle congruence theorem
because a unique triangle congruent to the given one is not guaranteed;
zero, one, or two triangles can be formed from the side-side-angle
information.

NOTE

To see why the ambiguous case occurs, suppose sides a and b and angle
A are given. Place angle A in standard position with terminal side b. If
angle A is less than then there are four possibilities for side a.90°,

Ambiguous Case: SSA Information with 

(i) a � b, and side a is too short (ii) a � b, and side a just reaches the
to reach the third side: no third side and is perpendicular to 
solution. it: one solution.

(iii) a � b, and an arc of radius a (iv) so that an arc of
meets the third side at 2 points radius a meets the third side
to the right of A: two solutions. at just one point to the right 

of A: one solution.

a � b,

A 66 90�

A

C

b
a

Figure 10.2-3

A
B

C

b a

Figure 10.2-4

A
B B

C

b
a a

Figure 10.2-5

A B

C

b a

Figure 10.2-6



If angle A is greater than then there are only two possibilities.90°,
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Ambiguous Case: SSA Information with 

(i) so that side a is too (ii) so that an arc of radius
short to reach the third side: a meets the third side at just
no solution. one point to the right of A:

one solution.

a 7 b,a � b,

A 7 90°

A B

C

b

a

Figure 10.2-7

A B

C

b
a

Figure 10.2-8

Recall from Section 8.3 that when finding all solutions of a trigonometric
equation involving the sine function, the identity is
used. This same identity, stated in terms of degrees rather than radians,
is used to deal with the ambiguous SSA case.

sin x � sin 1p � x2

If then

sin U � sin(180� � U).

0� �� U �� 90�,
Supplementary
Angle Identity

x

y

OE

D

r
h

180° − θθ

Figure 10.2-9

Proof Place the angle in standard position and choose a point
D on its terminal side. Let r be the distance from D to the origin. The
situation is shown in Figure 10.2-9.

Because h is the second coordinate of D, then Right tri-

angle OED shows that

Example 2 Solve a Triangle with SSA Information

Given a possible triangle ABC with and find angle B.

Solution

Use a proportion of the Law of Sines involving angle B and three known
quantities.

A � 65°,a � 6, b � 7,

sin u �
opposite

hypotenuse
�

h
r � sin1180° � u2.

sin1180° � u2 �
h
r .

180° � u



Because there is no proportion of the Law of Sines using B that can be
solved, use a proportion involving A to find a second angle of the trian-
gle. This will provide you with enough information to find angle B and
hence allowing you to use the Law of Sines to find b.

A � 14.5°  or  A � 180° � 14.5° � 165.5°
 sin A � 0.2508

 sin A �
5 sin 37°

12

 5
sin A �

12
sin 37°

 a
sin A �

c
sin C
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There is no angle B whose sine is greater than 1. Therefore, there is no tri-
angle satisfying the given data.

■

Example 3 Solve a Triangle with SSA Information

An airplane A takes off from carrier B and flies in a straight line for 12
kilometers. At that instant, an observer on destroyer C, located 5 kilome-
ters from the carrier, notes that the angle determined by the carrier, the
destroyer (the vertex), and the plane is How far is the plane from the
destroyer?

Solution

The given information is organized in Figure 10.2-10.

37°.

 sin B � 1.06

 sin B �
7 sin 65°

6

 7
sin B �

6
sin 65°

 b
sin B �

a
sin A

37°

5 12

A

B

C
b

Figure 10.2-10



If and then the sum of angles A, B, and C would be
greater than Because that is impossible, is the only possible
measure of angle A. Therefore,

All of the angles are known, and b can be found using either the Law of
Cosines or the Law of Sines.

The plane is approximately 15.6 kilometers from the destroyer.
■

Example 4 Solve a Triangle with SSA Information

Solve triangle ABC when and 

Solution

Use a proportion of the Law of Sines involving the known quantities.

Because the sum of angles A and B is less than in each case, there
are two possible cases, as shown in Figure 10.2-11.

180°

B � 66.6°  or  B � 180° � 66.6° � 113.4°
 sin B � 0.9177

 sin B �
12 sin 35°

7.5

 12
sin B �

7.5
sin 35°

 b
sin B �

a
sin A

A � 35°.a � 7.5, b � 12,

 b � 15.6

 b �
12 sin 128.5°

sin 37°

 b
sin 128.5° �

12
sin 37°

 b
sin B �

c
sin C

B � 180° � 137° � 14.5°2 � 128.5°.

14.5°180°.
C � 37°,A � 165.5°
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66.6°35° 113.4°

7.5 7.5
12

A B
B

c

c

C

Figure 10.2-11
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Case 1

Use the Law of Sines.

 c � 12.8

 c �
7.5 sin 78.4°

sin 35°

 c
sin 78.4° �

7.5
sin 35°

 c
sin C �

a
sin A

C � 180° � 135° � 66.6°2 � 78.4°

B � 66.6° Case 2

Use the Law of Sines.

 c � 6.9

 c �
7.5 sin 31.6°

sin 35°

 c
sin 31.6° �

7.5
sin 35°

 c
sin C �

a
sin A

C � 180° � 135° � 113.4°2 � 31.6°

B � 113.4°

Thus, in Case 1, and and in Case 2,
and 

■

Example 5 Solve a Triangle with ASA Information

A plane flying in a straight line parallel to the ground passes directly over
point A and later directly over point B, which is 3 miles from A. A few
minutes after the plane passes over B, the angle of elevation from A to
the plane is and the angle of elevation from B to the plane is How
high is the plane at that moment?

Solution

If C represents the plane, then the situation is represented in Figure 
10.2-12. The height of the plane is h.

67°.43°

c � 6.9.B � 113.4°, C � 31.6°,
c � 12.8;B � 66.6°, C � 78.4°,

67°

ha

C

43°

3A B D

Figure 10.2-12

Angle ABC measures . So

m�BCA � 180° � 143° � 113°2 � 24°.

180° � 67° � 113°



Use the Law of Sines to find side a of triangle ABC.

Now use sin to find h in right triangle CBD.

The plane is about 4.63 miles high.
■

The Area of a Triangle

The proof of the Law of Sines leads to the following formula for the area
of a triangle.

 h � 4.63
 h � 5.03 sin 67°

 sin 67° �
h

5.03

67° �
h
a

 a � 5.03

 a �
3 sin 43°
sin 24°

 a
sin 43° �

3
sin 24°
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Proof Place the vertex of angle C at the origin, with side b on the positive
x-axis, as in Figure 10.2-13. Then b is the base and h is the height of the
triangle.

The proof of the Law of Sines shows that Therefore,

Figure 10.2-13 is the case when C is greater than the argument when
C is less than is similar.

Example 6 Find Area with SAS Information

Find the area of the triangle shown in Figure 10.2-14.

90°
90°;

area of triangle ABC �
1
2 bh �

1
2 ab sin C.

h � a sin C.

area of triangle ABC �
1
2 � base � height �

1
2 bh.

The area of a triangle containing an angle C with adjacent
sides of lengths a and b is

1
2 ˛ ab sin C.

Area of a
Triangle

x

y

C bD A

B

ch a

Figure 10.2-13
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8 cm 13 cm130°

Figure 10.2-14

Solution

Use the new formula for the area of a triangle.

Thus, the area is about 39.83 square centimeters.
■

An alternate formula for the area of a triangle, Heron’s formula, gives the
area in terms of its sides.

1
2 ab sin C �

1
2 182 1132 sin 130° � 39.83

This formula is proved in Exercise 62.

Example 7 Find Area with SSS Information

Find the area of the triangle whose sides have lengths 7, 9, and 12.

Solution

Let and To use the Heron’s formula, first find s.

Now, use Heron’s formula.

The area is about 31.3 square units.
■

� 2980 � 31.3
2s1s � a2 1s � b2 1s � c2 � 214114 � 72 114 � 92 114 � 122

s �
1
2 1a � b � c2 �

1
2 17 � 9 � 122 � 14

c � 12.a � 7, b � 9,

The area of a triangle with sides a, b, and c is

where s �
1
2  (a � b � c).

2s(s � a)(s � b)(s � c),

Heron’s Formula
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40.

Exercises 10.2

Standard notation for triangle ABC is used through-
out. Use a calculator and round off your answers to
one decimal place at the end of each computation.

In Exercises 1–8, solve triangle ABC under the given
conditions.

1.

2.

3.

4.

5.

6.

7.

8.

In Exercises 9–16, find the area of triangle ABC under
the given conditions.

9.

10.

11.

12.

13.

14.

15.

16.

In Exercises 17–36, solve the triangle. The Law of
Cosines may be needed in Exercises 27–36.

17.

18.

19.

20.

21.

22. a � 9, b � 14, B � 95°

a � 5, c � 12, A � 102°

b � 12.5, c � 20.1, B � 37.3°

a � 12, b � 5, B � 20°

b � 30, c � 50, C � 60°

b � 15, c � 25, B � 47°

a � 17, b � 27, c � 40

a � 7, b � 9, c � 11

a � 4, b � 12, c � 14

a � 11, b � 15, c � 18

a � 9, b � 13, C � 75°

c � 7, a � 10, B � 68°

b � 10, c � 14, A � 36°

a � 4, b � 8, C � 27°

B � 97.5°, C � 42.5°, b � 7

A � 102.3°, B � 36.2°, a � 16

A � 67°, C � 28°, a � 9

B � 44°, C � 48°, b � 12

A � 105°, B � 27°, b � 10

A � 116°, C � 50°, a � 8

B � 33°, C � 46°, b � 4

A � 48°, B � 22°, a � 5

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

In Exercises 37 and 38, find the area of the triangle with
the given vertices.

37.

38.

In Exercises 39 and 40, find the area of the polygonal
region. Hint: Divide the region into triangles.

39.

1�4, 22, 15, 72, 13, 02
10, 02, 12, �52, 1�3, 12

b � 14.6, c � 7.8, B � 40.4°

a � 10.1, b � 18.2, A � 50.7°

b � 24.1, c � 10.5, C � 26.3°

b � 17.2, c � 12.4, B � 62.5°

a � 21, c � 15.8, B � 71°

a � 16.5, b � 18.2, C � 47°

B � 20.67°, C � 34°, b � 185

a � 6, b � 12, c � 16

a � 50, c � 80, C � 45°

b � 4, c � 10, A � 75°

a � 30, b � 40, A � 30°

A � 41°, B � 67°, a � 10.5

a � 12.4, c � 6.2, A � 72°

b � 11, c � 10, C � 56°

20

30

40

30

23
1
3

80°

120°

135°

130°

75°

120

55

135

68.4

103°

72°

89°

96°
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angle of elevation from the end of the pole’s
shadow to the top of the pole is How long is
the pole?

45. A side view of a bus shelter is shown in the
following figure. The brace d makes an angle of

with the back and an angle of with
the top of the shelter. How long is the brace?

46. A straight path makes an angle of with the
horizontal. A statue at the higher end of the path
casts a 6.5-meter shadow straight down the path.
The angle of elevation from the end of the
shadow to the top of the statue is How tall is
the statue?

47. A vertical statue 6.3 meters high stands on top of
a hill. At a point on the side of the hill 35 meters
from the statue’s base, the angle between the
hillside and a line from the top of the statue is

What angle does the side of the hill make
with the horizontal?

48. A fence post is located 36 feet from one corner of
a building and 40 feet from the adjacent corner.
Fences are put up between the post and the
building corners to form a triangular garden area.
The 40-foot fence makes a angle with the
building. What is the area of the garden?

49. Two straight roads meet at an angle of in
Harville, one leading to Eastview and the other 
to Wellston (see the figure on the next page).
Eastview is 18 kilometers from Harville and 
20 kilometers from Wellston. What is the distance
from Harville to Wellston?

40°

58°

10°.

32°.

6°

8 ft

5 ft

d

34.85°37.25°

53°.
41. A surveyor marks points A and B 200 meters

apart on one bank of a river. She sights a point C
on the opposite bank and determines the angles
shown in the figure below. What is the distance
from A to C?

42. A forest fire is spotted from two fire towers. The
triangle determined by the two towers and the
fire has angles of and at the tower vertices.
If the towers are 3000 meters apart, which one is
closer to the fire?

43. A visitor to the Leaning Tower of Pisa observed
that the tower’s shadow was 40 meters long and
that the angle of elevation from the tip of the
shadow to the top of the tower was The
tower is now 54 meters tall, measured from the
ground to the top along the center line of the
tower (see the figure). Approximate the angle 
that the center line of the tower makes with the
vertical.

44. A pole tilts at an angle from the vertical, away
from the sun, and casts a shadow 24 feet long. The

9°

α

57°

a

57°.

37°28°

C

A B
57° 42°



50. Each of two observers 400 feet apart measures the
angle of elevation to the top of a tree that sits on
the straight line between them. These angles are

and respectively. How tall is the tree?
How far is the base of its trunk from each
observer?

51. From the top of the 800-foot-tall Cartalk Tower,
Tom sees a plane; the angle of elevation is At
the same instant, Ray, who is on the ground 1
mile from the building, notes that his angle of
elevation to the plane is and that his angle of
elevation to the top of Cartalk Tower is 
Assume that Tom, Ray, and the airplane are in a
plane perpendicular to the ground. (See the
following figure.) How high is the airplane?

52. A plane flies in a direction of from airport A.
[Note: Aerial navigation directions are explained
in Exercise 34 of Section 10.1.] After a time, it
turns and proceeds in a direction of Finally,
it lands at airport B, 120 miles directly south of
airport A. How far has the plane traveled?

53. Charlie is afraid of water; he can’t swim and
refuses to get in a boat. However, he must
measure the width of a river for his geography

267°.

105°

81°
67°

8.6°800 ft

1 mile

8.6°.
81°

67°.

65°51°

Eastview

Wellston

Harville 40°
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class. He has a long tape measure, but no way to
measure angles. While pondering what to do, he
paces along the side of the river using the five
paths joining points A, B, C, and D (see the
following figure). If he does not determine the
width of the river, he will not pass the course.

a. Save Charlie from disaster by explaining how
he can determine the width AE simply by
measuring the lengths AB, AC, AD, BC, and BD
and using trigonometry.

b. Charlie determines that feet, 
feet, feet, feet, and 
feet. How wide is the river between A and E?

54. A plane flies in a direction of from Chicago.
[Note: Aerial navigation directions are explained
in Exercise 34 of Section 10.1.] It then turns and
flies in the direction of for 150 miles. It is
then 195 miles from its starting point. How far did
the plane fly in the direction of 

55. A hinged crane makes an angle of with the
ground. A malfunction causes the lock on the
hinge to fail and the top part of the crane swings
down (see the figure). How far from the base of
the crane does the top hit the ground?

14.6 m

19 m

50°

50°

85°?

200°

85°

BD � 22BC � 80AD � 90
AC � 25AB � 75

E

A

C

B

D



56. A triangular lot has sides of 120 feet and 160 feet.
The angle between these sides is Adjacent to
this lot is a rectangular lot whose longest side is
200 feet and whose shortest side is the same
length as the shortest side of the triangular lot.
What is the total area of both lots?

57. If a gallon of paint covers 400 square feet, how
many gallons are needed to paint a triangular
deck with sides of 65 feet, 72 feet, and 88 feet?

58. Critical Thinking Find the volume of the pyramid
in the figure below. The volume is given by the 

formula where B is the area of the 

base and h is the height.

59. Critical Thinking A rigid plastic triangle ABC rests
on three vertical rods, as shown in the figure.
What is its area?

h

10

46°34°
36°

V �
1
3 Bh,

42°.
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60. Critical Thinking Prove that the area of triangle
ABC, in standard notation is given by

61. Critical Thinking What is the area of a triangle
whose sides have lengths 12, 20, and 36? Hint:
Drawing a diagram may be helpful.

62. Critical Thinking Use the area formula 

and the Pythagorean identity 
to show that 

Then use the Law of Cosines to show that 

, where 

and Combine the

facts to prove Heron’s Formula.

� 1s � a2 1s � b2.1
2 ab11 � cos C2

s �
1
2 1a � b � c21

2 ab11 � cos C2 � s1s � c2

� 
B

1
2 ab11 � cos C2 12 ab11 � cos C2.1

2 ab sin C

sin2C � 1 � cos2C

1
2 ab sin C

a2 sin B sin C
2 sin A

.

A

C

B

Horizontal plane

4

4

3

5

5
6

10.3 The Complex Plane and Polar Form 
for Complex Numbers*

The real number system is represented geometrically by the number line.
The complex number system can be represented geometrically by the
coordinate plane:

For example, the point (2, 3) shown in Figure 10.3-1 is labeled by .
The other points shown are labeled similarly.

2 � 3i

 (a, b) in the plane.
The complex number a � bi corresponds to the point

Objectives

• Graph a complex number in
the complex plane

• Find the absolute value of a
complex number

• Express a complex number
in polar form

• Perform polar multiplication
and division *Section 4.5 is a prerequisite for this section.



When the coordinate plane is used to graph complex numbers in this way,
it is called the complex plane. Each real number corresponds
to the point on the horizontal axis; so this axis is called the real axis.
The vertical axis is called the imaginary axis because every imaginary
number corresponds to the point on the vertical axis.

The absolute value of a real number c is the distance from c to 0 on the
number line. So the absolute value (or modulus) of the complex number

is defined to be the distance from to the origin in the com-
plex plane.

represents the distance from to , which is given by 
21a � 022 � 1b � 022 � 2a2 � b2.

10, 021a, b20 a � bi 0
a � bia � bi

10, b2bi � 0 � bi

1a, 02 a � a � 0i

638 Chapter 10 Trigonometric Applications

Example 1 Find Absolute Value of a Complex Number

Find the absolute value of each complex number.

a. b.

Solution

a. b.
■

Absolute values and trigonometry lead to a useful way of representing
complex numbers. Let be a nonzero complex number and denote

by r. Then r is the length of the line segment joining (a, b) and 
(0, 0) in the plane. Let be the angle in standard position with this line
segment as terminal side, as shown in Figure 10.3-2.

u

0 a � bi 0 a � bi

0 4 � 5i 0 � 242 � 1�522 � 2410 3 � 2i 0 � 232 � 22 � 213

4 � 5i3 � 2i

2 + 3i

4 − 3i

2i = 0 + 2i

5.5 = 5.5 + 0i

−6 + 2.3i

−5 − 3i

i

real

Figure 10.3-1

The absolute value (or modulus) of the complex number
is

00 a � bi 00 � 2a2 � b2.

a � bi

Absolute Value
of a Complex

Number

Technology 
Tip

Recall that complex
numbers are entered by 

using the special i key on
the TI keyboard or in the
CPLX submenu of the
Casio OPTN menu.

Technology 
Tip

Use the ABS key to
find the absolute value 

of a complex number. It is
in the NUM submenu of TI
and in the CPLX submenu
of the Casio OPTN menu.
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r

(a, b)

θ

i

real

Figure 10.3-2

Using the definitions of sine and cosine, the coordinates a and b can be
expressed in terms of r and 

and

Consequently,

When a complex number is written in this way, it is said to be in
polar form or trigonometric form. The angle is called the argument and
is usually expressed in radian measure. The number is called
the modulus (plural, moduli). The number 0 can also be written in polar
notation by letting and be any angle.ur � 0

r � 0 a � bi 0u

a � bi

a � bi � r cos u � 1r sin u2i � r1cos u � i sin u2.

b � r sin u a � r cos u

sin u �
b
r cos u �

a
r

u.

Every complex number can be written in polar form

where and b � r sin U.r � 00 a � bi 00 � 2a2 � b2, a � r cos U,

r(cos U � i sin U)

a � bi
Polar Form of a

Complex
Number

It is customary to
place i in front of 
rather than after it. Some
books abbreviate

as r cis u.r1cos u � i sin u2

sin u
NOTE

When a complex number is written in polar form, the argument is not
uniquely determined because and so on, all satisfy the
conditions in the box.

Example 2 Find Polar Form

Express in polar form.

Solution

In this case, and Therefore,

The angle must satisfy the following two conditions.

Because is represented by the
point in the complex plane, it lies
in the second quadrant, as shown in Figure
10.3-3. Therefore, must be a second-

quadrant angle. So, satisfies these 

conditions.

Thus, 

■

�23 � i � 2 acos 
5p
6 � i sin 

5p
6 b .

u �
5p
6

u

A�13, 1 B�13 � i

cos u �
a
r �

�23
2   and  sin u �

b
r �

1
2

u

r � 2a2 � b2 � 21�1322 � 12 � 23 � 1 � 2.

b � 1.a � �23

�23 � i

u ± 4p,u ± 2p,u,
u

– 3 + i

1
2

3

5π
6

i

real

Figure 10.3-3



Example 3 Find Polar Form

Express in polar form.

Solution

In this case, and Therefore,

The angle must satisfy

so that

Because lies in the second quadrant (see Figure 10.3-4), lies 

between and Using the key, the calculator indicates that a 

solution to is Because that angle is in the 

fourth quadrant, the only solution between and is

Thus, 
■

Multiplication and Division of Complex Numbers

�2 � 5i � 2291cos 1.9513 � i sin 1.95132.
u � �1.1903 � p � 1.9513.

p
p
2

u � �1.1903.tan u � �2.5

TAN�1p.p
2

u�2 � 5i

tan u �
sin u
cos u �

5
129
�2
129

� �
5
2 � �2.5.

cos u �
a
r �

�2
229

  and  sin u �
b
r �

5
229

,

u

r � 2a2 � b2 � 21�222 � 52 � 229.

b � 5.a � �2

�2 � 5i
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θ

−2 + 5i

29

i

real

Figure 10.3-4

If and are any
two complex numbers, then

and

z1
z2

�
r1
r2

 [cos(U1� U2) � i sin(U1� U2)], z2 � 0.

z1z2 � r1r2[cos(U1 � U2) � i sin(U1 � U2)]

z2 � r2(cos U2 � i sin U2)z1 � r1(cos U1 � i sin U1)
Polar

Multiplication
and Division

That is, given two complex numbers written in polar form,

• to multiply the two numbers
multiply the moduli and add the arguments.

• to divide the two numbers
divide the moduli and subtract the arguments.



The proof of the multiplication statement, which is given at the end of
this section, uses the addition identities for sine and cosine.

Example 4 Multiplication of Numbers in Polar Form

Find when and 

Solution

In this case, and Therefore,

■

Example 5 Division of Numbers in Polar Form

Find when and 

Solution

In this case, and Therefore,

■

Proof of the Polar Multiplication Rule
Let and 

Recall from Section 9.2 that

cos1u1 � u22 � cos u1 cos u2 � sin u1 sin u2

 � r1r2 3 1cos u1 cos u2 � sin u1 sin u22 � i 1sin u1 cos u2 � sin u2 cos u12 4
 � r1r21cos u1 cos u2 � i sin u1 cos u2 � i sin u2 cos u1 � i2 sin u1 sin u22
 � r1r21cos u1 � i sin u12 1cos u2 � i sin u22

 z1z2 � 3r11cos u1 � i sin u12 4 3r2 1cos u2 � i sin u22 4
z2 � r2 1cos u2 � i sin u22.z1 � r11cos u1 � i sin u12

 � 5acos 
p
12 � i sin 

p
12b

 
z1
z2

�
10
2 c cosap3 �

p
4 b � i sinap3 �

p
4 b d

u2 �
p
4 .r1 � 10, u1 �

p
3 , r2 � 2,

z2 � 2 acos 
p
4 � i sin 

p
4 b .z1 � 10Qcos 

p
3 � i sin 

p
3 Rz1

z2

 � 6acos 
31p
12 � i sin 

31p
12 b

 � 6 c cosa10p
12 �

21p
12 b � i sina10p

12 �
21p
12 b d

 � 122 132 c cosa5p6 �
7p
4 b � i sina5p

6 �
7p
4 b d

 z1z2 � r1r2 3cos1u1 � u22 � i sin1u1 � u22 4
u2 �

7p
4 .r1 � 2, u1 �

5p
6 , r2 � 3,

z2 � 3 acos 
7p
4 � i sin 

7p
4 b.z1 � 2 acos 

5p
6 � i sin 

5p
6 bz1z2
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A complex
number written in polar
form can be written in
rectangular form by
evaluating each term and
simplifying. For example,

 � �23 � i

 � 2a�23
2 �

1
2 ib

2acos 
5p
6 � i sin 

5p
6 b

NOTE



and

Therefore,

This completes the proof of the multiplication rule. The division rule is
proved similarly. See Exercise 51.

 � r1r2 3cos1u1 � u22 � i sin1u1 � u22 4
 z1z2 � r1r2 3 1cos u1 cos u2 � sin u1 sin u22 � i 1sin u1 cos u2 � sin u2 cos u12 4

sin1u1 � u22 � sin u1 cos u2 � cos u1 sin u2.
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Exercises 10.3

In Exercises 1–8, plot the point in the complex plane
that corresponds to each number.

1. 2. 3.

4. 5. 6.

7. 8.

In Exercises 9–14, find each absolute value.

9. 10. 11.

12. 13. 14.

15. Give an example of complex numbers z and w
such that 

16. If find and where is the
conjugate of z. See Section 4.5 for the definition of
a complex conjugate.

In Exercises 17–24, sketch the graph of the equation in
the complex plane (z denotes a complex number of the
form ).

17. Hint: The graph consists of all points that
lie 4 units from the origin.

18.

19. Hint: 1 corresponds to (1, 0) in the
complex plane. What does the equation say about
the distance from z to 1?

20. 21.

22. Hint: Rewrite it as0 z � 1�2 � 3i2 0 � 3.
0 z � 3i � 2 0 � 3

0 z � 2i 0 � 40 z � 3 0 � 1

0 z � 1 0 � 10

0 z 0 � 1

0 z 0 � 4

a � bi

zzz0 z 0 2z � 3 � 4i,

0 z � w 0 � 0 z 0 � 0w 0 .

0 i 7 00�12i 00 2 � 3i 0
0 1 � i22 00 2i 00 5 � 12i 0

4
3 i 1�6 � 3i22i a3 �

5
2 ib

12 � i2 11 � 2i211 � i2 11 � i222 � 7i

�
8
3 �

5
3 i�7 � 6i3 � 2i

23. [The real part of the complex number
is defined to be the number a and is

denoted Re(z).]

24. [The imaginary part of is 

defined to be the number b (not bi) and is denoted
Im(z).]

In Exercises 25–32, express each number in polar form.

25. 26. 27.

28. 29. 30.

31. 32.

In Exercises 33–38, perform the indicated multiplica-
tion or division. Express your answer in both rec-
tangular form and polar form 

33.

34.

35.

36.

37.
6acos 

7p
20 � i sin 

7p
20 b

4acos 
p

10 � i sin 
p

10b

8acos 
5p
18 � i sin 

5p
18 b

4acos 
p

9 � i sin 
p

9 b

12acos 
11p
12 � i sin 

11p
12 b �

7
2 acos 

p

4 � i sin 
p

4 b

3acos 
p

8 � i sin 
p

8 b � 12acos 
3p
8 � i sin 

3p
8 b

3acos p12 � i sin 
p

12b � 2acos 
7p
12 � i sin 

7p
12 b

r(cos U � i sin U).a � bi

25 � i211�
5
2 �

7
2 i

3 � 5i1 � 2i�27 � 3i

5 � 12i�4 � 3i3 � 4i

z � a � biIm1z2 � �
5
2

z � a � bi
Re 1z2 � 2
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38.

In Exercises 39–46, convert to polar form and then mul-
tiply or divide. Express your answer in polar form.

39. 40.

41. 42.

43. 44.

45.

46.

47. Explain what is meant by saying that multiplying
a complex number by i
amounts to rotating z counterclockwise
around the origin. Hint: Express i and iz in polar
form; what are their relative positions in the
complex plane?

48. Describe what happens geometrically when you
multiply a complex number by 2.

49. Critical Thinking The sum of two distinct complex
numbers, and can be found
geometrically by means of the so-called
parallelogram rule: Plot the points and

in the complex plane and form the
parallelogram, three of whose vertices are 0, 
and as in the figure below. Then the fourth
vertex of the parallelogram is the point whose
coordinate is the sum

a + bi
0

c + di

i

real

0

a + bi c + di

i

real

1a � bi2 � 1c � di2 � 1a � c2 � 1b � d2i.

c � di
a � bi

c � di
a � bi

c � di,a � bi

90°
z � r 1cos u � i sin u2

11 � i2 1223 � 2i2 1�4 � 4i232
i 1i � 12 1�23 � i2

�4i
23 � i

3i A223 � 2i B

2 � 2i
�1 � i

1 � i
1 � i

11 � i2 13 � 3i2A1 � i B A1 � i23 B

254 acos 
9p
4 � i sin 

9p
4 b

26 acos 
7p
12 � i sin 

7p
12b

Complete the following proof of the parallelogram
rule when and 
a. Find the slope of the line K from 0 to 

Hint: K contains the points (0, 0) and (a, b).
b. Find the slope of the line N from 0 to 
c. Find the equation of the line L, through 

and parallel to line N of part b. Hint: The point
(a, b) is on L; find the slope of L by using part b
and facts about the slope of parallel lines.

d. Find the equation of the line M, through 
and parallel to line K of part a.

e. Label the lines K, L, M, and N in each figure.
f. Show by using substitution that the point

satisfies both the equation of line
L and the equation of line M. Therefore,

lies on both L and M. Because 
the only point on both L and M is the fourth
vertex of the parallelogram, this vertex must 
be Hence, this vertex has
coordinate 

50. Critical Thinking Let be a complex
number and denote its conjugate by 
Prove that 

51. Critical Thinking Proof of the polar division rule.
Let and

a. Multiply the denominators and use the
Pythagorean identity to show that it is the
number 

b. Multiply the numerators; use the subtraction
identities for sine and cosine (Section 9.2) to
show that it is

Therefore,

52. Critical Thinking
a. If explain

why must be true. Hint: Think distance.
b. If explain

why and Hint: See
Property 5 of the complex numbers in Section
4.5.

sin b � sin u.cos b � cos u
r1cos b � i sin b2 � r1cos u � i sin u2,

s � r
s1cos b � i sin b2 � r1cos u � i sin u2,

z1
z2

� ar1
r2
b 3cos 1u1 � u22 � i sin1u1 � u22 4 .

r1 3cos1u1 � u22 � i sin1u1 � u22 4 .

r2.

 �
r11cos u1 � i sin u12
r21cos u2 � i sin u22 �

cos u2 � i sin u2

cos u2 � i sin u2

 
z1
z2

�
r11cos u1 � i sin u12
r21cos u2 � i sin u22

z2 � r21cos u2 � i sin u22.
z1 � r11cos u1 � i sin u12

0 z 0 2 � z z.
z.a � bi

z � a � bi

1a � bi2 � 1c � di2.1a � c2 � 1b � d2i �

1a � c, b � d2.

1a � c, b � d2
1a � c, b � d2

c � di

a � bi
c � di.

a � bi.
c � 0.a � 0



c. If and show that
angles and in standard position have the
same terminal side. Hint: and

are points on the unit circle.1cos u, sin u2
1cos b, sin b2

ub

sin b � sin u,cos b � cos u
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d. Use parts a–c to prove this equality rule for
polar form:

exactly when and for some
integer k. Hint: Angles with the same terminal
side must differ by an integer multiple of 2p.

b � u � 2kps � r

s 1cos b � i sin b2 � r 1cos u � i sin u2

10.4 DeMoivre’s Theorem and n th Roots of
Complex Numbers

Polar form provides a convenient way to calculate both powers and roots
of complex numbers. If then the multiplication for-
mula from Section 10.3 shows the following:

and

and so on. Repeated application of the multiplication formula proves
DeMoivre’s Theorem.

 � r31cos 3u � i sin 3u2
 z3 � z2 � z � r2 � r 3cos12u � u2 � i sin12u � u2 4

 � r2 1cos 2u � i sin 2u2
 z2 � z � z � r � r 3cos 1u � u2 � i sin1u � u2 4

z � r 1cos u � i sin u2,Objectives

• Calculate powers and roots
of complex numbers

• Find and graph roots of
unity

For any complex number and any
positive integer n,

zn � rn(cos nU � i sin nU).

z � r(cos U � i sin U)
DeMoivre’s

Theorem

Example 1 Find Powers of Complex Numbers

Evaluate 

Solution

First express the complex number in polar form. (See Example
2 of Section 10.3.)

�23 � i � 2acos 
5p
6 � i sin 

5p
6 b

�23 � i

A�23 � i B 5.

5p
6

1
�23

�tan�1

NOTE



Apply DeMoivre’s Theorem.

Because can be substituted for 

polar form

rectangular form
■

Example 2 Find Powers of Complex Numbers

Evaluate 

Solution

Express the complex number in polar form.

Apply DeMoivre’s Theorem.

polar form

rectangular form
■

Nth Roots

If is a complex number and n is a positive integer, the equation
may have n different solutions in the complex numbers. Fur-

thermore, there is no obvious way to designate one of these solutions as
the nth root of (see note). Consequently, any solution of the equa-
tion is called an nth root of 

Every real number is a complex number. When the definition of nth root
of a complex number is applied to a real number, the terminology for real
numbers no longer applies. For instance, in the complex numbers, 16 has
four fourth roots because each of and is a solution of 
whereas in the real numbers, 2 is the fourth root of 16.

z4 � 16,�2i2, �2, 2i,

a � bi.zn � a � bi
a � bi

zn � a � bi
a � bi

 � 32i
 � 32 10 � i2
 � 32 acos 

5p
2 � i sin 

5p
2 b

 11 � i210 � A22 B 10 acos 
10p

4 � i sin 
10p

4 b

1 � i � 22 acos 
p
4 � i sin 

p
4 b

1 � i

11 � i210.

 � 1623 � 16 i

 � 32a23
2 �

1
2 ib

 � 32acos 
p
6 � i sin 

p
6 b

 A�23 � i B 5 � 32acos 
25p

6 � i sin 
25p

6 b

25p
6 .25p

6 �
p
6 �

24p
6 �

p
6 � 4p, p6

 � 32acos 
25p

6 � i sin 
25p

6 b
A�23 � i B 5 � 25 c cos a5 �

5p
6 b � i sin a5 �

5p
6 b d
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tan�1 1 �
p
4

NOTE

With complex
numbers, it is not possible
to choose the positive root
as the nth root of as
is done with real numbers,
because “positive” and
“negative” are not
meaningful terms in the
complex numbers. For
instance, should be
called positive or negative?

3 � 2i

a � bi,

NOTE



Although nth roots are not unique in the complex numbers, the radical
symbol will be used only for nonnegative real numbers and will have the
same meaning as before. That is, if r is a nonnegative real number, then

denotes the unique nonnegative real number whose nth power is r.

Example 3 Find Roots of Complex Numbers

Find the fourth roots of 

Solution

Express the complex number in polar form.

To solve find s and such that 

is a solution. In other words, find s and such that

Use DeMoivre’s Theorem to rewrite the left side.

The equality rules for complex numbers (proved in Exercise 52 of Section
10.3) show that the above equation is true if

and

Therefore, the solutions of are

where k is any integer. Letting and 3 produces four distinct
solutions.

 � 2acos 7p
6 � i sin 7p

6 b � �23 � i

 z � 2 c cosap6 � pb � i sinap6 �pb dk � 2:

 � 2acos2p
3 � i sin2p

3 b � �1 � i23

 z � 2 c cosap6 �
p
2 b � i sinap6 �

p
2 b dk � 1:

 z � 2 acos p6 � i sin p6 b � 23 � ik � 0:

k � 0, 1, 2,

z � 2 c cos ap6 �
kp
2 b � i sin ap6 �

kp
2 b d ,

z4 � 16acos 
2p
3 � i sin 

2p
3 b

b �
p
6 �

kp
2 s � 2

4
16 � 2

4b �
2p
3 � 2kp s4 � 16

s4 1cos 4b � i sin 4b2 � 16acos 
2p
3 � i sin 

2p
3 b

3s1cos b � i sin b2 4 4 � 16 acos 
2p
3 � i sin 

2p
3 b .

bz � s1cos b � i sin b2
bz4 � 16 acos 

2p
3 � i sin 

2p
3 b ,

�8 � 8i23 � 16 acos 
2p
3 � i sin 

2p
3 b

�8 � 8i23

�8 � 8i23.

2
n

r
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Because is in
Quadrant II of the complex
plane, the angle is 

�
p
3 � p �

2p
3 .

�8 � 8i˛23

tan�1 
823
�8 �

p
3

NOTE



Any other value of k produces an angle with the same terminal side as
one of the four angles already used and is the same solution. For instance, 

when then so has the same terminal side

as Therefore, all fourth roots of have been found.

■

The general equation can be solved exactly by the
same method used in Example 3: substitute n for 4, r for 16, and for 

as follows. A solution is a number such that:

Therefore,

and

where k is any integer. Letting produces n distinct
angles . This is stated in the following formula for nth roots.b

k � 0, 1, 2, p , n � 1

b �
u � 2kp

n s � 2
n

r

nb � u � 2kp sn � r

 sn 1cos nb � i sin nb2 � r 1cos u � i sin u2
 3s 1cos b � i sin b2 4n � r 1cos u � i sin u2

s 1cos b � i sin b22p
3 ,

u

zn � r 1cos u � i sin u2

�8 � 8i23p
6 .

bb �
p
6 �

4p
2 �

p
6 � 2p,k � 4,

b

� 2 acos 5p
3 � i sin 5p

3 b � 1 � i23

z � 2 c cos ap6 �
3p
2 b � i sin ap6 �

3p
2 b dk � 3:
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Formula for nth
Roots For each positive integer n, the nonzero complex number

has exactly n distinct nth roots. They are given by

where k � 0, 1, 2, 3, p , n � 1.

2
n

r c cosaU � 2kP
n b � i sinaU � 2kP

n b d ,

r(cos U � i sin U)

Example 4 Find Roots of Complex Numbers

Find the fifth roots of 

Solution

Express the complex number in polar form.

4 � 4i � 422 acos 
p
4 � i sin 

p
4 b

4 � 4i

4 � 4i.



Apply the root formula with and 

and 4.

The fifth roots have the following form.

, for and 4

Therefore, the five distinct roots are as follows.

■

Roots of Unity

The n distinct nth roots of 1 (the solutions of ) are called the nth
roots of unity. Because and the polar form of the
number 1 is Applying the root formula with and

produces a formula for roots of unity.u � 0
r � 1cos 0 � i sin 0.

sin 0 � 0,cos 0 � 1
zn � 1

� 22 Scosa33p
20 b � i sina33p

20 b T
22 scosap4 � 8p

5 b � i sinap4 � 8p
5 btk � 4:

� 22 Scosa5p
4 b � i sina5p

4 b T
22 scosap4 � 6p

5 b � i sinap4 � 6p
5 btk � 3:

� 22 Scosa17p
20 b � i sina17p

20 b T
22 scosap4 � 4p

5 b � i sinap4 � 4p
5 btk � 2:

� 22 Scosa9p
20 b � i sina9p

20 b T
22 scosap4 � 2p

5 b � i sinap4 � 2p
5 btk � 1:

22 scosap45 b � i sinap45 bt � 22 scosa p20 b � i sina p20 btk � 0:

k � 0, 1, 2, 3,22 scosap4 � 2kp
5 b � i sinap4 � 2kp

5 bt

2
n

r � 25 412 � A422 B 15 � 1222
1
2 215 � 125

2 215 � 2
5
10 � 2

1
2 � 22

k � 0, 1, 2, 3,n � 5, r � 422, u �
p
4 ,
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For each positive integer n, there are n distinct nth roots of
unity, which have the following form.

cos 
2kp

n � i sin 
2kp

n , for  k � 0, 1, 2, p , n � 1.

Formula for
Roots of Unity



Example 5 Find Roots of Unity

Find the cube roots of unity.

Solution

Apply the formula for roots of unity with and and 2.

■

All roots of unity can be found from the first nonreal root. Let the first
nonreal cube root of unity obtained in Example 5 be denoted by 

Using DeMoivre’s Theorem to find and produces the other two cube
roots of unity.

In other words, all the cube roots of unity are powers of The same is
true in the general case, as stated below.

v.

v3 � acos 2p3 � i sin 2p3 b
3

� cos 6p3 � i sin 6p3 � cos 2p � i sin 2p � 1

v2 � acos 2p3 � i sin 2p3 b
2

� cos 4p3 � i sin 4p3

v3v2

v � cos 2p3 � i sin 2p3

v.

 k � 2: cos 4p3 � i sin 4p3 � �
1
2 �

23
2 i

 k � 1: cos 2p3 � i sin 2p3 � �
1
2 �

23
2 i

 k � 0: cos 0 � i sin 0 � 1

k � 0, 1,n � 3
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The nth roots of unity have an interesting geometric interpretation. Every
nth root of unity has absolute value of 1:

 � 1
 � 21

 �
B

cos2 2kp
n �  sin2 2kp

n

 ` cos 2kp
n � i sin 2kp

n ` � Bacos 2kp
n b

2

� asin 2kp
n b

2

Let n be a positive integer with Then the number

is an nth root of unity and all the nth roots of unity are

z, z2, z3, z4, p , zn�1, zn � 1.

z � cos 2Pn � i sin 2Pn

n 77 1.
All Roots of

Unity



Therefore, in the complex plane, every nth root of unity is exactly 1 unit
from the origin. That is, the nth roots of unity all lie on the unit circle in
the complex plane.

Example 6 Find nth Roots of Unity

Find the fifth roots of unity.

Solution

The fifth roots of unity have the following form.

Therefore, the five roots of unity are

■

These five roots can be plotted in the complex plane by starting at
and moving counterclockwise around the unit circle, moving 

through an angle of at each step, as shown in Figure 10.4-1. If you 

connect these five roots, they form the vertices of a regular pentagon, as
shown in Figure 10.4-2.

2p
5

1 � 1 � 0i,

k � 4:  cos 8p5 � i sin 8p5

k � 3:  cos 6p5 � i sin 6p5

k � 2:  cos 4p5 � i sin 4p5

k � 1:  cos 2p5 � i sin 2p5

k � 0:  cos 0 � i sin 0 � 1

cos 2kp
5 � i sin 2kp

5 , for k � 0, 1, 2, 3, and 4
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+ i sincos

2π
5

2π
5

4π
5

4π
5

+ i sin

cos 0 + i sin 0

cos 2π
5

1

1

2π
5

+ i sincos 8π
5

8π
5

+ i sincos 6π
5

6π
5

2π
5 2π

5

2π
5

y

i

real

Figure 10.4-1

i

real

Figure 10.4-2



Example 7 Graph Roots of Unity

Graph the tenth roots of unity, and estimate the two tenth roots of unity
in the first quadrant.

Solution

With a graphing calculator in parametric mode, set the range values as
in the graphing exploration above.

Because reset the t-step to and graph. The result is a reg-

ular decagon whose vertices are the tenth roots of unity. By using the trace
feature, you can approximate each tenth root of unity.

2p
10 �

p
5n � 10,
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On wide screen
calculators, you may
choose to use 
or so that
the unit circle looks like a
circle.

�1.7 � x � 1.7
�2 � x � 2

NOTE
Graphing Exploration

With your calculator in parametric graphing mode, use the follow-
ing window settings.

Graph the unit circle, whose parametric equations are

Reset the t-step to be and graph again. Your screen should now 

look exactly like the solid lines in Figure 10.4-2 because the calculator

plotted only the five points corresponding to and

and connected them with the shortest possible segments.

Use the trace feature to move along the graph. The cursor will jump
from vertex to vertex, that is, from one fifth root of unity to the next.

8p
5 ,

6p
5 ,4p

5 ,t � 0, 2p5 ,

2p
5 ,

x � cos t and y � sin t

0 � t � 2p  t-step � 0.067  �2.2 � x � 2.2  �1.5 � y � 1.5

�2.2

�1.5

1.5

2.2

Figure 10.4-3

�2.2

�1.5

1.5

2.2

Figure 10.4-4

Figures 10.4-3 and 10.4-4 show the two approximate tenth roots of unity
in the first quadrant.

■
0.8090 � 0.5878i and 0.3090 � 0.9511i.



652 Chapter 10 Trigonometric Applications

Exercises 10.4

In Exercises 1–10, calculate each given product and
express your answer in the form .

1. 2.

3.

4.

5. Hint: Use polar form and DeMoivre’s
theorem.

6. 7.

8. 9.

10.

In Exercises 11 and 12, find all indicated roots of unity
and express your answers in the form 

11. fourth roots of unity

12. sixth roots of unity

In Exercises 13–22, find the nth roots of each given
number in polar form.

13.

14.

15.

16.

17. 18. 19.

20. 21. 22.

In Exercises 23–30, solve the given equation in the
complex number system.

23. 24. 25.

26. 27. 28. x6 � 729 � 0x3 � 27i � 0x4 � i

x3 � ix6 � 64 � 0x6 � �1

1 � i23; n � 31 � i; n � 2�i; n � 6

i; n � 51; n � 7�1; n � 5

16acos p7 � i sin p7 b; n � 5

81acos p12 � i sin p12b; n � 4

8acos p10 � i sin p10b ; n � 3

64acos p5 � i sin p5 b; n � 3

a � bi.

1�1 � 23 i28

a �122
�

i22
b

14

a�1
2 �

23
2  ib

20

a
23
2 �

1
2 ib

10

12 � 2i28

11 � i212

c23 4 acos 7p36 � i sin 7p36 b d
12

c3acos 7p30 � i sin 7p30 b d
5

acos p5 � i sin p5 b
20

acos p12 � i sin p12b
6

a � bi
29. 30.

In Exercises 31–35, represent the roots of unity graph-
ically. Then use the trace feature to obtain
approximations of the form for each root (round
to four places).

31. seventh roots of unity

32. fifth roots of unity 33. eighth roots of unity

34. twelfth roots of unity 35. ninth roots of unity

36. Solve the equation Hint: First
find the quotient when is divided by 
then consider solutions of 

37. Solve Hint:
Consider and and see Exercise 36.

38. What are the solutions of
(See

Exercises 36 and 37.)

39. Critical Thinking In the complex plane, the unit
circle consists of all numbers (points) z such that

Suppose v and w are two points
(numbers) that move around the unit circle in
such a way that at all times. When w has
made one complete trip around the circle, how
many trips has v made? Hint: Think polar and
DeMoivre.

40. Critical Thinking Suppose u is an nth root of unity. 

Show that is also an nth root of unity. Hint: Use

the definition, not polar form.

41. Critical Thinking Let be the distinct
nth roots of unity and suppose v is a nonzero
solution of the equation 
Show that are n distinct solutions
of the equation. Hint: Each is a solution of

42. Critical Thinking Use the formula for nth roots and
the identities

to show that the nonzero complex number
has two square roots and that

these square roots are negatives of each other.
r 1cos u � i sin u2

cos 1x � p2 � �cos x  sin 1x � p2 � �sin x

xn � 1.
ui

vu1, vu2, p ,vun

zn � r 1cos u � i sin u2.

u1, u2, p , un

1
u

v � w12

0 z 0 � 1.

xn�1 � xn�2 � p � x3 � x2 � x � 1 � 0?

x � 1x6 � 1
x5 � x4 � x3 � x2 � x � 1 � 0

x4 � 1 � 0.
x � 1,x4 � 1

x3 � x2 � x � 1 � 0.

a � bi

x4 � �8 � 8i23x4 � �1 � i23
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10.5 Vectors in the Plane

Once a unit of measure has been agreed upon, quantities such as area,
length, time, and temperature can be described by a single number. Other
quantities, such as an east wind of 10 miles per hour, require two num-
bers to describe them because they involve both magnitude and direction.
Quantities that have magnitude and direction are called vectors and are
represented geometrically by a directed line segment or arrow, as shown
in Figures 10.5-1 and 10.5-2.

Objectives

• Find the components and
magnitude of a vector

• Perform scalar multiplication
of vectors, vector addition,
and vector subtraction

Q

P

v
w

u

Figure 10.5-1 Figure 10.5-2

When a vector extends from a point P to a point Q, as in Figure 10.5-1, P
is called the initial point of the vector, and Q is called the terminal point,
and the vector is written Its length is denoted by 

When the endpoints are not specified, as in Figure 10.5-2, vectors are
denoted by boldface letters such as u, v, and w. The length of a vector u
is denoted by and is called the magnitude of u.

If u and v are vectors with the same magnitude and direction, the vec-
tors u and v are said to be equivalent, written Some examples and
nonexamples are shown in Figure 10.5-3.

u � v.

�u�

�PQ
!
�.PQ

!
.

v

v

v
u u

u

u v

u = v u ≠ v u ≠ v u ≠ v
same magnitude,
different directions

same direction,
different magnitudes

different directions,
different magnitudes

Figure 10.5-3



Example 1 Confirm Equivalent Vectors

Let and as in Figure 10.5-4. 
Show that 

Solution

The distance formula shows that and have the same length.

The lines containing and have the same slope:

Because and both point to the upper right on lines of the same 
slope, and have the same direction. Therefore, 

■

According to the definition of equivalence, if two vectors are equivalent,
then one of the vectors may be moved from one location to another, pro-
vided that its magnitude and direction are not changed, and the two
vectors will remain equivalent.

PQ
!
� OR

!
.OR

!
PQ

! OR
!

PQ
!

slope 
‹
PQ

›
�

4 � 2
5 � 1 �

2
4 �

1
2    slope 

‹
OR

›
�

2 � 0
4 � 0 �

2
4 �

1
2

OR
!

PQ
!

�OR
!
� � 214 � 022 � 12 � 022 � 242 � 22 � 220

�PQ
!
� � 215 � 122 � 14 � 222 � 242 � 22 � 220

OR
!

PQ
!

PQ
!
� OR

!
.

R � 14, 22,P � 11, 22, Q � 15, 42, O � 10, 02,
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Proof The proof is similar to the one used in Example 1. It follows
from the fact that and have the same length:

and either the lines containing and are both vertical or they have
the same slope:

as shown in Figure 10.5-5.

Every vector can be written as a vector with the origin as its initial point.
The magnitude and direction of a vector with the origin as its initial point

 � slope 
‹
PQ

›
,

 �
y2 � y1
x2 � x1

 slope 
‹
OR

›
�
1y2 � y12 � 0
1x2 � x12 � 0

OR
!

PQ
!

 � �PQ
!
�

 � 21x2 � x122 � 1y2 � y122
 �OR

!
� � 2 3 1x2 � x12 � 0 4 2 � 3 1y2 � y12 � 0 4 2

OR
!

PQ
!

3

2

1

5

4

(1, 2)

(5, 4)

1 2 3 4 5O

P

Q

(4, 2)

R

x

y

Figure 10.5-4

(x1, y1)

(x2, y2)

(x2 – x1, y2 – y1)

O

P

Q

R

x

y

Figure 10.5-5

Every vector is equivalent to a vector with initial
point at the origin. If and then

where R � (x2 � x1, y2 � y1).PQ
!
� OR

!
,

Q � (x2, y2),P � (x1, y1)
OR

!
PQ

!Equivalent
Vectors



are completely determined by the coordinates of its terminal point. Con-
sequently, the vector with initial point (0, 0) and terminal point (a, b) is
denoted by The numbers a and b are called the components of the
vector 

Because the length of the vector is the distance from (0, 0) to (a, b),
the distance formula gives its magnitude, which is also called its norm.

Ha, bI
Ha, bI.Ha, bI.
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Example 2 Find Components and Magnitude of a Vector

Find the components and the magnitude of the vector with initial point
and terminal point 

Solution

According to the properties of equivalent vectors, where 
and 

, where 

In other words,

Therefore, the magnitude is

■

Vector Arithmetic

Vectors can be added, can be subtracted, and can be multiplied in three
different ways. Addition, subtraction, and one type of multiplication are
discussed in this section. Another type of multiplication is presented in
the Excursion 10.6.A.

Scalar Multiplication
When dealing with vectors, it is customary to refer to ordinary real num-
bers as scalars. Scalar multiplication is an operation in which a scalar k
is “multiplied” by a vector v to produce another vector denoted by kv.

�PQ
!
� � �OR

!
� � 262 � 1�922 � 236 � 81 � 2117

PQ
!
� OR

!
� H6, �9I.

R � 14 � 1�22, �3 � 62 � 16, �92.PQ
!
� OR

!
y2 � �3:x2 � 4,

x1 � �2, y1 � 6,

Q � 14, �32.P � 1�2, 62

Magnitude
The magnitude (or norm) of the vector is

7v 7 � 2a2 � b2.

v � Ha, bI

CAUTION

The order in which the
coordinates of the ini-
tial point and terminal
point are subtracted to
obtain is signifi-
cant. For the points

and :

QP
!
� Hx1 � x2, y1 � y2I

PQ
!
� Hx2 � x1, y2 � y1I

Q1x2, y22P1x1, y12
Ha, bI

If k is a real number and is a vector, then

The vector kv is called a scalar multiple of v.

kv is the vector HHka, kbII.
v � HHa, bIIScalar

Multiplication
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Example 3 Perform Scalar Multiplication

Let Find the components of 3v and 

Solution

■

The graphs of v, 3v, and from Example 3, shown in Figure 10.5-6,
illustrates that 3v has the same direction as v and has the opposite
direction.

�2v
�2v

 � H�6, �2I � H9, 3I
 � H�2 � 3, �2 � 1I � H3 � 3, 3 � 1I

 �2v � �2H3, 1I 3v � 3H3, 1I

�2v.v � H3, 1I.

The magnitude of the vector kv is times the length of v, that
is,

The direction of kv is the same as that of v when k is positive
and opposite that of v when k is negative.

7kv 7 � 00 k 00 � 7v 7 .
00 k 00Geometric

Interpretation
of Scalar

Multiplication

Also note that

Therefore,

Similarly, it can be verified that Figure 10.5-6 is
an illustration of the following facts.

73v 7 � 0 3 0 � 7v 7 � 3 7v 7 .
7�2v 7 � 2210 � 2 7v 7 � 0�2 0 � 7v 7

 7�2v 7 � � H�6, 2I� � 21�622 � 22 � 240 � 2210
 7v 7 � � H3, 1I� � 232 � 12 � 210

〈3, 1〉

〈−6, −2〉
−2v

3v
v

〈9, 3〉

x

y

Figure 10.5-6
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Example 4 Perform Vector Addition

Let and Find the components of 

Solution

■

Geometric Interpretation of 

The graph of from Example 4 is shown in Figure 10.5-7.u � v

u � v

 � H�2, 3I
 � H�5 � 3, 2 � 1I

 u � v � H�5, 2I � H3, 1I

u � v.v � H3, 1I.u � H�5, 2I

Figure 10.5-7 illustrates the following geometric interpretation of vector
addition.

If and then

u � v � HHa � c, b � dII.
v � HHc, dII,u � HHa, bIIVector Addition

Vector Addition
Vector addition is an operation in which two vectors u and v are added,
resulting in a new vector denoted .u � v

2

1

3

4

–1–2–5 1 3

x

y

〈3, 1〉

〈−2, 3〉

〈−5, 2〉 u + v

v

vu

Figure 10.5-7

1. If u and v are vectors with the same initial point P, then
is the vector where is the diagonal of the

parallelogram with adjacent sides u and v.

2. If the vector v is moved without changing its magnitude
or direction so that its initial point lies on the endpoint
of the vector u, then is the vector with the same
initial point P as u and the same terminal point Q as v.

u � v

PQ
!

PQ
!
,u � v

Geometric
Interpretation

of Vector
Addition



Exercise 33 asks for the proof of the geometric interpretation of vector
addition stated above.

Vector Subtraction
The negative (or opposite) of a vector is defined to be the vec-
tor and is denoted Vector subtraction
is defined using the negative of a vector as follows.

�v.1�12v � 1�12Hc, dI � H�c, �dI, v � Hc, dI
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The Zero Vector
The vector is called the zero vector and is denoted 0.

Example 6 Perform Combined Vector Operations

Let and Find the components of 

each vector.

w � h2, 52 i .u � H�1, 6I, v � h 2
3, �4i ,

H0, 0I

Example 5 Perform Vector Subtraction

Let and Find the components of 

Solution

■

Geometric Interpretation of 
The graph of from Example 5 is shown in Figure 10.5-8.u � v

u � v

 � H�4, 4I
 � H2 � 6, 5 � 1I

 u � v � H2, 5I � H6, 1I

u � v.v � H6, 1I.u � H2, 5I

u
u

1

−1 1

v x

y
〈2, 5〉

〈6, 1〉

〈−4, 4〉

u − v

−v

Figure 10.5-8

The vectors v
and �v have the same
magnitude, and lines that
contain them have the 
same slope, but v and �v
have opposite directions.

NOTE

If and then is the vector

 � HHa � c, b � dII
 u � (�v) � HHa, bII � HH�c, �dII

u � vv � HHc, dII,u � HHa, bIIVector
Subtraction



Proof of 
Let and Addition of real numbers is commutative;
therefore,

The other properties are proved similarly. See Exercises 26–31.

 � v � u
 � Hc, dI � Ha, bI
 � Hc � a, d � bI
 � Ha � c, b � dI

 u � v � Ha, bI � Hc, dI
v � Hc, dI.u � Ha, bIu � v � v � u
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a. b.

Solution

a. b.

■

Vector Properties

Operations on vectors share many of the same properties as arithmetical
operations on numbers.

� 0
� H10, �2I� H0, 0I
� H8 � 2, 10 � 12I� H�2 � 2, 12 � 12I
� H8, 10I � H2, �12I� H�2, 12I � H2, �12I

4w � 2u � 4h2, 52 i � 2H�1, 6I2u � 3v � 2H�1, 6I � 3h 2
3, �4i

4w � 2u2u � 3v

For any vectors u, v, and w and any scalars r and s,

1. associative for addition

2. commutative

3. additive identity

4. additive inverse

5. distributive

6. distributive

7. associative for multiplication

8. multiplicative identity

9. multiplication by 00v � 0  and  r0 � 0

1v � v

(rs)v � r(sv) � s(rv)

(r � s)v � rv � sv

r(u � v) � ru � rv

v � (�v) � 0

v � 0 � v � 0 � v

u � v � v � u

u � (v � w) � (u � v) � w

Properties of
Vector Addition

and Scalar
Multiplication
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Exercises 10.5

In Exercises 1–4, find the magnitude of the vector 

1.

2.

3.

4.

In Exercises 5–10, find a vector equivalent to the vec-
tor with its initial point at the origin.

5.

6.

7.

8.

9.

10.

In Exercises 11–15, find and 

11.

12.

13.

14.

15.

In Exercises 16 – 23, let and
Find the magnitude of each vector.

16. 17.

18. 19.

20. 21.

22. 23.

If forces act on an object at the origin, the
resultant force is the sum The
forces are said to be in equilibrium if their resultant
force is 0. In Exercises 24 and 25, find the resultant

u1 � u2 � p � uk.
u1, u2, p , uk

7
6 v �

2
3 vu �

1
2 w

�21w � 2u221v � w2
v � w3u � v

u � vu � v

w � HH�6, �2II.
u � HH3, 1II, v � HH�8, 4II,

u � 2H�2, 5I, v �
1
4 H�7, 12I

u � h 2
3, 4i , v � h�7, 19

3 i
u � H3, 312 I, v � H412, 1I
u � H4, 0I, v � H1, �3I
u � H�2, 4I, v � H6, 1I

3u � 2v.u � v, u � v,

P � A22, 4 B , Q � A23,�1 B
P � a4

5, �2b, Q � a17
5 , �12

5 b
P � 1�5, 62, Q � 1�7, �92
P � 1�4, �82, Q � 1�10, 22
P � 12, 72, Q � 1�2, 92
P � 11, 52, Q � 17, 112

PQ
!

P � 130, 122, Q � 125, 52
P � 1�7, 02, Q � 1�4, �52
P � 1�3, 52, Q � 17, �112
P � 12, 32, Q � 15, 92

PQ
!
. force and find an additional force v, which, if added

to the system, produces equilibrium.

24.

25.

In Exercises 26 – 31, let and
and let r and s be scalars. Prove that the

stated property holds.

26. 27.

28. 29.

30. 31.

32. Let v be the vector with initial point and
terminal point and let k be any real
number.
a. Find the component form of v and kv.
b. Calculate and 
c. Use the fact that to verify the

following equation: 

33. Let and . Verify the accuracy of
the two geometric interpretations of vector
addition given on page 657 as follows:
a. Show that the distance from to

is the same as 
b. Show that the distance from (c, d) to

is the same as 
c. Show that the line through (a, b) and

is parallel to v by showing that
they have the same slope.

d. Show that the line through (c, d) and
is parallel to u.

34. Let and Show that

(c, d)

(a, b)

(a – b, c – d)

x

u

u – v

v

–v w

y
7u � v 7 � 7w 7 . v � Hc, dI.u � Ha, bI
1a � c, b � d2

1a � c, b � d2
7u 7 .1a � c, b � d2
7v 7 .1a � c, b � d2
1a, b2

v � Hc, dIu � Ha, bI
7 kv 7 � 0 k 0 � 7v 72k2 � 0 k 0
7 kv 7 .7v 7

1x2, y22
1x1, y12

1v � v and 0v � 01rs2v � r1sv2 � s1rv2
1r � s2v � rv � svr1u � v2 � ru � rv

v � 1�v2 � 0v � 0 � v � 0 � v

w � HHe, f II,
u � HHa, bII, v � HHc, dII

u1 � H3, 7I, u2 � H8, �2I, u3 � H�9, 0I, u4 � H�5, 4I
u1 � H2, 5I, u2 � H�6, 1I, u3 � H�4, �8I
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10.6 Applications of Vectors in the Plane

In the previous section, vectors were introduced and vector arithmetic
was defined. In this section, vectors are applied to real-world situations.

Unit Vectors

A vector with length 1 is called a unit vector. For instance, is a 

unit vector because

Example 1 Unit Vectors

Find a unit vector u with the same direction as the vector 

Solution

Multiplying vector v by a scalar that is the reciprocal of its length pro-
duces a unit vector. The length of v is

.

Let

The vector is a unit vector because

■

Multiplying a vector by a positive scalar produces a vector with the same 

direction. Thus, is a unit vector with the same direction as 

the vector 

Multiplying a vector by the reciprocal of its length to produce a unit vec-
tor, as in Example 1, works in the general case, as stated below.

v � H5, 12I.
u � h 5

13, 12
13 i

�u� � g 1
13 v g � ` 1

13 ` � �v� �
1
13 � 13 � 1

u � h 5
13, 12

13 i

u �
1
13 v �

1
13 H5, 12I � h 5

13, 12
13 i .

7v 7 � �H5, 12I� � 252 � 122 � 2169 � 13

v � H5, 12I.

g h 3
5, 45 i g �

B
a3

5b
2

� a4
5b

2

�
B

9
25 �

16
25 �

B
25
25 � 1.

h 3
5, 45 i

Objectives

• Perform operations with
linear combinations of
vectors

• Determine the direction
angle of a vector

• Determine resultant forces
in physical applications

If v is a nonzero vector, then is a unit vector with the

same direction as v.

17v 7 � v
Unit Vectors
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Alternate Vector Notation

It can be verified that the vectors and are unit vectors.
The vectors i and j play a special role because they lead to a useful alter-
nate notation for vectors. For example, if then

Similarly, if is any vector, then

The vector is said to be a linear combination of i and j. When
vectors are written as linear combinations of i and j, then the properties
of vector addition and scalar multiplication, given in Section 10.5, can be
used to write the rules for vector addition and scalar multiplication in
terms of i and j.

and

Example 2 Perform Operations with Linear Combinations

If and find 

Solution

■

Direction Angles

If is a vector, then the direction of v is completely
determined by the standard position angle between and whose
terminal side is v, as shown in Figure 10.6-1.

360°,0°u

v � Ha, bI � ai � bj

 � 16i � 22j
 � 6i � 18j � 10i � 4j

 3u � 2v � 312i � 6j2 � 21�5i � 2j2

3u � 2v.v � �5i � 2j,u � 2i � 6j

c1ai � bj2 � cai � cbj

1ai � bj2 � 1ci � dj2 � 1a � c2i � 1b � d2j

v � ai � bj

v � Ha, bI � Ha, 0I � H0, bI � aH1, 0I � bH0, 1I � ai � bj.

v � Ha, bI
u � H5, 0I � H0, �7I � 5H1, 0I � 7H0, 1I � 5i � 7j.

u � H5, �7I,
j � H0, 1Ii � H1, 0I

〈a, b〉

x

v
θ

y

b

a

Figure 10.6-1



The angle is called the direction angle of the vector v. According to the
definitions of the trigonometric functions,

Rewriting each of these equations gives the following fact.

cos u �
a

�v�
  and  sin u �

b7v 7 .

u
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Example 3 Find Velocity Vectors

Find the component form of the vector that represents the velocity of an
airplane at the instant its wheels leave the ground, if the plane is going
60 miles per hour and the body of the plane makes a angle with the
horizontal.

Solution

The velocity vector has magnitude 60 and direction angle
as shown in Figure 10.6-2. Therefore,

■

If is a nonzero vector with direction angle then

This fact provides a convenient way to find the direction angle of a vector.

Example 4 Find Direction Angles

Find the direction angle of each vector.
a. b.

Solution

a. The direction angle of u satisfies

tan u �
b
a �

13
5 � 2.6.

u

v � �10i � 7ju � 5i � 13j

tan u �
sin u
cos u �

b
�v�
a

�v�
�

b
a .

u,v � ai � bj

 � H59.55, 7.31I
 � 59.55i � 7.31j
 � 160 cos 7°2i � 160 sin 7°2j

 v � 1 7v 7  cos u2i � 1 7v 7  sin u2j
u � 7°,

v � ai � bj

7°

If 

where is the direction angle of v.U

a � 7v 7  cos U and b � 7v 7  sin U

v � HHa, bII � ai � bj, then
Components of

the Direction
Angle

x
v

y

10 30

7°

6010

50

Figure 10.6-2

4

u

4

8

12

16

85

a

〈5, 13〉

13

θ x

y

Figure 10.6-3



Using the key on a calculator indicates that The
vector u is shown in Figure 10.6-3.

b. The direction angle of v satisfies

Because v lies in the second quadrant, must be between and
A calculator shows that has a tangent that is

approximately equal to The period of tangent is so

for every t. Therefore,

is the angle between and such that The vector
v is shown in Figure 10.6-4.

■

Vector Applications

A common application of vectors is in modeling a system of forces act-
ing on an object. Every force has direction and magnitude, therefore, each
can be represented by a vector. The sum of all the forces acting on an
object is called the resultant force.

Example 5 Resultant Force

An object at the origin is acted upon by two forces. A 150-pound force
makes an angle of with the positive x-axis, and the other force of 100
pounds makes an angle of with the positive x-axis, as shown in Fig-
ure 10.6-5. Find the direction and magnitude of the resultant force.

70°
20°

tan u � �0.7.180°90°

u � �34.99° � 180° � 145.01°

tan t � tan1t � 180°2
180°,�0.7.

t � �34.99°180°.
90°u

tan u �
b
a �

7
�10 � �0.7.

u

u � 68.96°.TAN�1
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Figure 10.6-4

b

v
4

8

–4

145.01°

–34.99°–8–12

〈–10, 7〉

x

y

50

100

70°

20°

50O

R

P

Q

100 150

x

y

Figure 10.6-5



Solution

The forces acting upon the object are:

The resultant force is the sum of and 

The magnitude of the resultant force is

The direction angle of the resultant force satisfies

A calculator in degree mode shows that 
■

Example 6 Resultant Force

A 200-pound box lies on a ramp that makes an angle of with the hor-
izontal. A rope is tied to the box from a post at the top of the ramp to
keep it in position (see Figure 10.6-6). Ignoring friction, how much force
is being exerted on the rope by the box?

24°

u � 39.67°.

tan u �
145.27
175.16

� 0.8294

u

7OR
!7 � 2175.162 � 145.272 � 227.56.

OR
!

 OR
!
� 175.16i � 145.27j

 OR
!
� 1150 cos 20°2i � 1150 sin 20°2j � 1100 cos 70°2i � 1100 sin 70°2j

OQ
!
.OP

!
OR

!
 OQ

!
� 1100 cos 70°2i � 1100 sin 70°2j

 OP
!
� 1150 cos 20°2i � 1150 sin 20°2j
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C 24°

θ

R

Q

S

P
T

α

Figure 10.6-6

Solution

Because of gravity, the box exerts a 200-pound weight straight down (vec-
tor ). As Figure 10.6-6 shows, is the sum of and The force
on the rope is represented by the vector of the force pulling the boxTP

!
,

TQ
!
.TP

!
TR

!
TR

!



down the ramp, and represents the magnitude of the force.

In right triangle and in right triangle
Therefore,

The box weighs 200 pounds, so Use to find 

The force on the rope is about 81.35 pounds.
■

Example 7 Resultant Force

An airplane is flying in the direction with an air speed of 300 miles
per hour. If there was no wind, the course of the airplane would be .
However, there is a 35-mile-per-hour wind from the direction as 
represented by the vectors p and w in Figures 10.6-7, which shows the
angles using aerial navigation orientation. Find the course and ground speed
of the plane (that is, its direction and speed relative to the ground taking
the effect of the wind into consideration).

120°,
50°

50°

 7TP
!7 � 200 sin 24° � 81.35

 sin 24° �
7 TP

! 7
200

 sin u �
7 TP

! 7
7TR

!7

7TP
!7 .sin u7TR

!7 � 200.

 u � 24°
 a � u � a � 24°

TRP, a � u � 90°.
TSC, a � 24° � 90°,

7TP
!7
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120

240

40°

30°

60°

p

p + w

w

240–60

x

y

Figure 10.6-8

120

240

50°

120°

p

w

240–60

x

y

Figure 10.6-7

Solution

Figure 10.6-8 shows p, w, and The course of the plane is the direc-
tion angle of the vector , and its ground speed is the magnitude of

The direction angle of p (the angle it makes with the positive x-axis) is
The angle that w makes with the positive y-axis is90° � 50° � 40°.

p � w.
p � w

p � w.



so the direction angle of w, as measured from the pos-
itive x-axis, is Therefore,

The direction angle of is

The course of the plane is the angle between and true north.

The ground speed of the plane is .

Thus, the plane’s course is about and its ground speed is about 289.9
miles per hour.

■

43.5°

�p � w� � 2199.502 � 210.342 � 289.9

�p � w�

90° � 46.5° � 43.5°

p � w

 u � 46.5°
 tan u � 1.0543

 tan u �
210.34
199.50

p � w

 � 199.50i � 210.34j
 � 1300 cos 40° � 35 cos 150°2i � 1300 sin 40° � 35 sin 150°2j

� 135 sin 150°2j 4
 p � w � 3 1300 cos 40°2i � 1300 sin 40°2j 4 � 3 135 cos 150°2i

 w � 135 cos 150°2i � 135 sin 150°2j
 p � 1300 cos 40°2i � 1300 sin 40°2j

60° � 90° � 150°.
180° � 120° � 60°,
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Exercises 10.6

In Exercises 1–5, find and 

1.

2.

3.

4.

5.

In Exercises 6–11, find the components of the given
vector, where and 

6. 7.

8. 9.

10. 11. 31u � 2v2 � 6w1
4 18u � 4v � w2

�2u � 3v1
2 w

1
2 13v � w2u � 2w

w � �4i � j.u � i � 2j, v � 3i � j,

u � 22j, v � 23i

u � �a2i �
3
2 jb , v �

3
4 i

u � �41�i � j2, v � �3i

u � 8i, v � 213i � 2j2
u � i � j, v � 2i � j

3u � 2v.u � v, u � v, In Exercises 12–19, find the component form of the
vector v whose magnitude and direction angle are
given.

12. 13.

14. 15.

16. 17.

18. 19.

In Exercises 20–27, find the magnitude and direction
angle of the vector v.

20. 21.

22. 23.

24. 25.

26. 27. v � �15i � 10jv � �2i � 8j

v � 4i � 8jv � 6j

v � H4, 5Iv � H�8, 0I
v � H5, 523Iv � H4, 4I

7v 7 � 3, u � 310°�v � �
1
2, u � 250°

7v 7 � 8, u � 160°7v 7 � 6, u � 40°

7v 7 � 20, u � 120°7v 7 � 10, u � 225°

7v 7 � 5, u � 30°7v 7 � 4, u � 0°

U



In Exercises 28–31, find a unit vector that has the same
direction as the given vector.

28. 29.

30. 31.

In Exercises 32–35, an object at the origin is acted upon
by two forces u and v, with direction angle and ,
respectively. Find the direction and magnitude of the
resultant force.

32.

33.

34.

35.

36. Two ropes are tied to a wagon. A child pulls one
with a force of 20 pounds, while another child
pulls the other with a force of 30 pounds. See the
figure. If the angle between the two ropes is 
how much force must be exerted by a third child,
standing behind the wagon, to keep the wagon
from moving? Hint: Assume the wagon is at the
origin and one rope runs along the positive x-axis.
Proceed as in Example 5 to find the resultant force
on the wagon from the ropes. The third child
must use the same amount in the opposite
direction.

37. Two circus elephants, Bessie and Maybelle, are
dragging a large wagon, as shown in the figure. 
If Bessie pulls with a force of 2200 pounds and
Maybelle with a force of 1500 pounds and the
wagon moves along the dashed line, what is 
angle u?

20 lb

30 lb

28˚

28°,

uv � 40°
u � 30 kilograms, uu � 300°; v � 80 kilograms,

uv � 250°
u � 12 kilograms, uu � 130°; v � 20 kilograms,

u � 6 pounds, uu � 45°; v � 6 pounds, uv � 120°

u � 30 pounds, uu � 0°; v � 90 pounds, uv � 60°

UvUu

�3i � 9j5i � 10j

�7i � 8jH4, �5I

668 Chapter 10 Trigonometric Applications

Exercises 38–41 deal with an object on an inclined
plane. The situation is similar to that in Figure 10.6-6
of Example 6, where is the component of the
weight of the object parallel to the plane and is
the component of the weight perpendicular to the
plane.

38. An object weighing 50 pounds lies on an inclined
plane that makes a angle with the horizontal.
Find the components of the weight parallel and
perpendicular to the plane. Hint: Solve an
appropriate triangle.

39. Do Exercise 38 when the object weighs 200
pounds and the inclined plane makes a angle
with the horizontal.

40. If an object on an inclined plane weighs 150
pounds and the component of the weight
perpendicular to the plane is 60 pounds, what
angle does the plane make with the horizontal?

41. A force of 500 pounds is needed to pull a cart up
a ramp that makes a angle with the ground.
Assuming that no friction is involved, find the
weight of the cart. Hint: Draw a picture similar to
Figure 10.6-6; the 500-pound force is parallel to
the ramp.

In Exercises 42–47, find the course and ground speed
of the plane under the given conditions. See Example
7. All angle measurements are given as aerial naviga-
tion directions. See Exercise 55 of Section 6.2.

42. air speed 250 miles per hour in the direction 
wind speed 40 miles per hour from the direction

43. air speed 400 miles per hour in the direction 
wind speed 30 miles per hour from the direction

44. air speed 300 miles per hour in the direction 
wind speed 50 miles per hour in (not from) the
direction 30°

300°;

60°

150°;

330°

60°;

15°

20°

40°

7TQ
!77TP

!7

24°
θ

Bessie

Maybelle
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45. air speed 500 miles per hour in the direction 
wind speed 70 miles per hour in the direction 

46. The course and ground speed of a plane are 
and 400 miles per hour respectively. There is a 
60-mile-per-hour wind blowing from the south.
Find the approximate direction and air speed of
the plane.

47. A plane is flying in the direction with an air
speed of 500 miles per hour. Its course and
ground speed are and 450 miles per hour,
respectively. What is the direction and speed of
the wind?

48. A river flows from east to west. A swimmer on
the south bank wants to swim to a point on the
opposite shore directly north of her starting point.
She can swim at 2.8 miles per hour, and there is a
1-mile-per-hour current in the river. In what
direction should she swim in order to travel
directly north (that is, what angle should the
swimmer make with the south bank of the river)?

49. A river flows from west to east. A swimmer on
the north bank swims at 3.1 miles per hour along
a line that makes a angle with the north bank
of the river and reaches the south bank at a point
directly south of his starting point. How fast is the
current in the river?

50. A 400-pound weight is suspended by two cables
(see the following figure). What is the force
(tension) on each cable? Hint: Imagine that the
weight is at the origin and that the dashed line is
the x-axis. Then cable v is represented by the
vector 

which has magnitude c. (Why?) Represent cable u
similarly, denoting its magnitude as d. Use the fact
that (why?) to set up a system
of two equations in the unknowns c and d.

u � v � 0i � 400j

1c sin 65°2j1c cos 65°2i �

75°

210°

200°

70°

40°
180°;

51. A 175-pound high-wire artist stands balanced on a
tightrope, which sags slightly at the point where
he is standing. The rope in front of him makes a

angle with the horizontal and the rope behind
him makes a angle with the horizontal. Find the
force on each end of the rope. Hint: Use a picture
and procedure similar to that in Exercise 50.

52. Let v be the vector with initial point and
terminal point and let k be any real
number.
a. Show that where is the direction

angle of v and is the direction angle of kv.
Use the fact that tan to
conclude that v and kv have either the same or
opposite directions.

b. Use the fact that (c, d) and lie on the
same straight line on opposite sides of the
origin to verify that v and kv have the same
direction if and opposite directions if

53. Let and In Exercise 34 of
Section 10.5, was shown (see the
figure with Exercise 34 of Section 10.5). Show that

is equivalent to the vector w with initial
point (c, d) and terminal point (a, b) by now
showing that and w have the same direction.u � v

u � v

7u � v 7 � 7w 7
v � Hc, dI.u � Ha, bI

k 6 0.
k 7 0

1�c, �d2

t � tan1t � 180°2
b

utan u � tan b

1x2, y22,
1x1, y12

4°
6°

vu

32° 65°

400

5910ac10_616-687  9/21/05  1:59 PM  Page 669
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10.6.A Excursion: The Dot Product

Unlike multiplication of real numbers where there is only one type of
multiplication, vector operations include three types of multiplication:
scalar multiplication, dot products, and cross products. This section dis-
cusses the vector operation called the dot product. Unlike scalar
multiplication of vectors, the dot product is not a vector.

The dot product of two vectors is a real number.

Objectives

• Find the dot product of two
vectors and the angle
between two vectors

• Determine projection and
component vectors and use
them in physical applications

The dot product of vectors and 
is denoted and is defined to be the real number

Thus,

u�v � ac � bd.

ac � bd.
u�vci � dj

v � HHc, dII �u � HHa, bII � ai � bj
Dot Product

Example 1 Find Dot Product of Two Vectors

Find the dot product for the given vectors u and v.

a.

b.

c.

Solution

a.

b.

c.
■

The dot product has a number of useful properties.

u � v � H2, �4I � H6, 3I � 2162 � 1�42 132 � 0
u � v � 14i � 2j2 � 13i � j2 � 4132 � 1�22 1�12 � 14
u � v � H5, 3I � H�2, 6I � 51�22 � 3162 � 8

u � H2, �4I and v � H6, 3I
u � 4i � 2j and v � 3i � j

u � H5, 3I and v � H�2, 6I
u � v

The dot product
of two vectors is found by
multiplying corresponding
components and finding
the sum of the products.

NOTE

If u, v, and w are vectors, and k is a real number, then:

1.

2. commutative

3. distributive

4.

5. 0 � u � 0

ku � v � k(u � v) � u � kv

u � (v � w) � u � v � u � w

u � v � v � u

u � u � 7u 7 2
Properties of

the Dot Product
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Proof Let a, b, c, and d be real numbers.

1. If then Therefore,

2. If and then

The proofs of the last three statements are asked for in the exercises.

Angles Between Vectors

If and are any nonzero vectors, then the angle between
u and v is the smallest angle formed by these two vectors, as shown in
Figure 10.6.A-1. The clockwise or counterclockwise rotation is ignored,
and the angle between v and u is considered to be the same as the angle
between u and v. Thus, the radian measure of is in the interval 

Nonzero vectors u and v are said to be parallel if the angle between them
is either 0 or radians. In other words, u and v are parallel if they lie on
the same straight line through the origin and have either the same or
opposite directions. The zero vector 0 is considered to be parallel to every
vector.

Any scalar multiple of u is parallel to u because it lies on the same straight
line as u. Conversely, if v is parallel to u, it is easy to show that v must
be a scalar multiple of u. This is shown in the exercises.

p

30, p 4 .u

u

v � Hc, dIu � Ha, bI

u � v � Ha, bI � Hc, dI � ac � bd � ca � db � Hc, dI � Ha, bI � v � u.

v � Hc, dI,u � Ha, bI
u � u � Ha, bI � Ha, bI � a1a2 � b1b2 � a2 � b2 � a2a2 � b2b2

� 7u 7 2.
7u 7 � 2a2 � b2.u � Ha, bI,

u

v
θ

Figure 10.6.A-1

Vectors u and v are parallel exactly when

v � ku, for some real number k.

Parallel Vectors

Example 2 Determine Parallel Vectors

Determine whether the vectors and are parallel.

Solution

Vector v is a scalar multiple of u.

Thus, vectors u and v are parallel.
■

The angle between nonzero vectors u and v is closely related to their dot
product.

v � H8, 12I � 4H2, 3I � 4u

v � H8, 12Iu � H2, 3I



672 Chapter 10 Trigonometric Applications

If is the angle between the nonzero vectors u and v, then

or equivalently,

cos U �
u � v7u 7  7v 7 .

u � v � 7u 7  7v 7  cos U,

u
Angle Theorem

θ

u

v

(a, b)

(c, d)

x

y

Figure 10.6.A-2

Proof Let a, b, c, and d be real numbers, and suppose that
If and the angle is not 0 or 

then u and v form two sides of a triangle, as shown in Figure 10.6.A-2.

The lengths of two sides of the triangle are and 
The distance formula shows that the length of the third

side (opposite angle ) is Therefore, the Law of
Cosines produces the following result.

The proof when is 0 or is exercise 41.

Example 3 Find the Angle Between Vectors

Find the angle between the vectors and , which are shown
in Figure 10.6.A-3.

Solution

Apply the formula from the Angle Theorem with and

Using the key shows that

■

The Angle Theorem has several useful consequences. For instance, taking
the absolute value of each side of and using the factu � v � 7u 7  7v 7  cos u,

u � 2.4393 radians, or � 139.76°.

COS�1

cos u �
u � v
�u� �v�

�
1�32 152 � 1122

121�322 � 122 1252 � 222 �
�13

210 229
�

�13
2290

v � H5, 2I. u � H�3, 1I

H5, 2IH�3, 1Iu

pu

u � v7u 7 7v 7 � cos u

u � v � ac � bdu � v � 7u 7  7v 7  cos u
 ac � bd � 7u 7  7v 7  cos u

 �2 1ac � bd2 � �2 7u 7  7v 7  cos u
 �2ac � 2bd � �2 7u 7  7v 7  cos u

 a2 � 2ac � c2 � b2 � 2bd � d2 � a2 � b2 � c2 � d2 � 2 7u 7  7v 7  cos u
 1a � c22 � 1b � d22 � 1a2 � b22 � 1c2 � d22 � 2 7u 7  7v 7  cos u

 C21a � c22 � 1b � d22 D 2 � 7u 7 2 � 7v 7 2 � 2 7u 7  7v 7  cos u

21a � c22 � 1b � d22.u

7v 7 � 2c2 � d2.
7u 7 � 2a2 � b2

p,uu � Ha, bI, v � Hc, dI,7 u 7 � 0 and 7v 7  � 0.

Figure 10.6.A-3

1
2

u v

–3

〈–3, 1〉
〈5, 2〉

–1 1 5

x

y



that (because is always positive), produces the
following results.

For any angle therefore,

This proves the Schwarz inequality.

0 u � v 0 � 7u 7  7v 7  0 cos u 0 � 7u 7  7v 7 .
u, 0cos u 0 � 1;

0 u � v 0 � 0  7u 7  7v 7  cos u 0 � 0 7u 7  7v 7 0  0 cos u 0 � ‘ u ‘  ‘ v ‘ 0 cos u 0
7u 7  7v 70 7u 7  7v 7 0 � 7u 7  7v 7

Section 10.6.A Excursion: The Dot Product 673

Vectors u and v are said to be orthogonal (or perpendicular) if the angle 

between them is radians or if at least one of them is 0. The key 

fact about orthogonal vectors follows.

190°2,p
2

Schwarz
Inequality For any vectors u and v,

0 u � v 0 �� 7u 7  7v 7 .

Let u and v be vectors. Then

u and v are orthogonal exactly when u�v � 0.

Orthogonal
Vectors

Proof If u or v is 0, then If u and v are nonzero orthogonal
vectors, then by the Angle Theorem:

Conversely, if u and v are vectors such that then Exercise 42
asks for a proof that u and v are orthogonal.

Example 4 Find Orthogonal Vectors

Determine whether the given vectors are orthogonal.

a. b.

Solution

a. b.

Vectors u and v are orthogonal. Vectors u and v are orthogonal.
■

 � 5 � 5 � 0� 18 � 18 � 0

 �
1
2 1102 � 5 1�12� 2 192 � 1�62 132

u � v � a1
2 i � 5jb � 110i � j2u � v � H2,�6I � H9, 3I

u �
1
2 i � 5j and v � 10i � ju � H2,�6I and v � H9, 3I

u � v � 0,

u � v � �u� �v� cos u � �u� �v� cos p2 � �u� �v� 102 � 0

u � v � 0.



Projections and Components

If u and v are nonzero vectors, and is the angle between them, construct
the perpendicular line segment from the terminal point P of u to the
straight line on which v lies. This perpendicular segment intersects the
line at a point Q. The three possibilities are shown in Figure 10.6.A-4.

The vector is called the projection of u onto v and is denoted 
A useful description of follows.projvu

projvu.OQ
!

u
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Proof Because and v lie on the same straight line, they are parallel.
Therefore, for some real number k. Construct the orthogonal
vector from a point Q on v through point P, the terminal point of u. Let
w be the vector with its initial point at the origin and the same length and
direction as as in the two cases shown in Figure 10.6.A-5.QP

!
,

projvu � kv
projvu

vu

Q

P

O

v

u

Q

P

O

projvu v

u

Q

P

O projvu projvu

Figure 10.6.A-4

If u and v are nonzero vectors, then the projection of u onto v
is the vector

projvu � au � v
�v�2 b v.

Projection of 
u onto v

v

w

u

O
Q

Q

projvu

P

v
wu

O

projvu

P

Figure 10.6.A-5

Because w is parallel to it is orthogonal to v. As shown in Figure
10.6.A-5, Consequently, by the properties of
the dot product:

u � projvu � w � kv � w.
QP

!



substitution

distributive

But because w and v are orthogonal. So,

Finally, multiplying both sides of the last statement by v, and substitut-
ing projvu for kv, the desired result is proved.

Example 5 Find Projection Vectors

If and find and 

Solution

Therefore,

and

■

The projection vectors from Example 5 are shown in Figure 10.6.A-6.

projuv � av � u
�u�2 bu � a26

73 b 18i � 3j2 �
208
73 i �

78
73 j

projvu � au � v
�v�2 bv � a26

20 b 14i � 2j2 �
26
5 i �

13
5 j

�v�2 � v � v � 42 � 1�222 � 20   and  �u�2 � u � u � 82 � 32 � 73
u � v � 8142 � 31�22 � 26 � v � u

projuv.projvuv � 4i � 2j,u � 8i � 3j

projvu � kv � au � v
�v�2 b v

u � v � k�v�2  or equivalently,  k �
u � v
�v�2 .

w � v � 0

v � v � �v�2 � k�v�2 � w � v
 � k1v � v2 � w � v
 � 1kv2 � v � w � v

 u � v � 1kv � w2 � v
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u

v

x

y

projuv

projvu

Figure 10.6.A-6



Projections and Components

Recall from Section 10.6 that is a unit vector in the direction of v.

Then, can be expressed as a scalar multiple of this unit vector.

The scalar is called the component of u along v, and is denoted 

Because is a unit vector, it can be used to find the length of .

Also, because where is the angle between u and v,

This result is stated formally as follows.

 � �u� cos u

 �
�u� �v� cos u

�v�

compvu � u � v
�v�

uu � v � �u� �v� cos u,

�projvu� � g compvua 1
�v�

 vb g � 0 compvu 0  g a 1
�v�

 vb g � 0 compvu 0 .
projvu1

�v�
v

projvu � au � v
�v�
b a 1

�v�
vb � compvu a 1

�v�
 vb

compvu.

u � v
�v�

projvu � au � v
�v�2 bv � au � v

�v�
b a 1

�v�
vb

projvu

1
�v�

v
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Example 6 Find Component Vectors

If and find and 

Solution

�v� � 21�522 � 22 � 229  and  �u� � 222 � 32 � 213

u � v � 2 1�52 � 3 122 � �4 � v � u

compuv.compvuv � �5i � 2j,u � 2i � 3j

If u and v are nonzero vectors, and is the angle between
them, then

and

�projvu� � 00 compvu 00 .

compvu �
u � v

�v�
� �u� cos U

u
Projections and

Components



Therefore,

■

Applications

Vectors and the dot product can be used to solve a variety of problems.

Example 7 Find Forces Due to Gravity

A 4000-pound automobile is on an inclined ramp that makes a angle
with the horizontal. Find the force required to keep it from rolling down
the ramp, assuming that the only force that must be overcome is that due
to gravity.

Solution

The situation is shown in Figure 10.6.A-7, where the coordinate system is
chosen so that the car is at the origin, the vector F representing the down-
ward force of gravity is on the y-axis, and v is a unit vector from the origin
down the ramp.

Because the car weighs 4000 pounds, The angle between v
and F is The vector is the force pulling the car
down the ramp, so a force of the same magnitude in the opposite direc-
tion is needed to keep the car motionless.

Therefore, a force of 1035.3 pounds is required to hold the car in place.
■

If a constant force F is applied to an object, pushing or pulling it a dis-
tance d in the direction of the force, as shown in Figure 10.6.A-8, the
amount of work done by the force is defined to be the product of the mag-
nitude of the force and the distance.

If the magnitude of F is measured in pounds and d in feet, then the units
for W are foot-pounds. For example, if you push a car for 35 feet along a
level driveway by exerting a constant force of 110 pounds, the amount of
work done is foot-pounds.

When a force F moves an object in the direction of a vector d rather than
in the direction of F, as shown in Figure 10.6.A-9, then the motion of the
object can be considered as the result of the vector which is a force
in the same direction as d.

projdF,

1101352 � 3850

W � 1magnitude of force2 1distance2 � �F� 1d2

 � 1035.3
 � 4000 cos 75°
 � 0 �F� cos 75° 0

 �projvF� � 0 compvF 0

projvF90° � 15° � 75°.
F � �4000j.

15°

compvu �
u � v

�v �
�

�4
229

    and    compuv �
v � u

�u�
�

�4
213
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Figure 10.6.A-7

x

y

15°
15°

75°

RampprojvF

F

v

F

d

Figure 10.6.A-8

F

dθ

projdF

Figure 10.6.A-9



Therefore, the amount of work done by F is the same as the amount of
work done by as shown below.

See note.

Consequently, work can be described as follows.

 � F � d
 � �F� 1cos u2 �d�
 � 0 compdF 0  �d�

W � �projdF� �d�

projdF,
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Solution

The situation is shown in Figure 10.6.A-10, where force F on the rope has
magnitude 20, and the sled moves along vector d of length 100.

Therefore, the work done is 1414.2 foot-pounds.
■

 � 1414.2
 � 100022

 � 20 � 100 �
22
2

 � �F� �d� �  cos u
W � F � d

This formula
reduces to the previous one
when F and d have the
same direction because in
that case, 
so that

magnitude
of force times distance
moved.

W � �F� �d� �

cos u � cos 0 � 1,

NOTE

The work W done by a constant force F as its point of
application moves along the vector d is

W � 00 compdF 00  �d�  or equivalently,  W � F � d.

Work

F

d45°

Figure 10.6.A-10

Example 8 Compute Work

How much work is done by a child who pulls a sled 100 feet over level
ground by exerting a constant 20-pound force on a rope that makes a 
angle with the ground?

45°



Section 10.6.A Excursion: The Dot Product 679

Exercises 10.6.A

In Exercises 1–6, find and 

1.

2.

3.

4.

5.

6.

In Exercises 7–12, find the dot product when
and 

7. 8.

9. 10.

11. 12.

In Exercises 13–18, find the angle between vectors
u and v.

13.

14.

15.

16.

17.

18.

In Exercises 19–24, determine whether the vectors
u and v are parallel, orthogonal, or neither.

19.

20.

21.

22.

23.

24. u � 6i � 4j, v � 2i � 3j

u � 2i � 2j, v � 5i � 8j

u � �i � 2j, v � 2i � 4j

u � H9, �6I, v � H�6, 4I
u � H�5, 3I, v � H2, 6I
u � H2, 6I, v � H3, �1I

u � 3i � 5j, v � �2i � 3j

u � 22 i � 22 j, v � i � j

u � 2j, v � 4i � j

u � 2i � 3j, v � �i

u � H2, 4I, v � H0, �5I
u � H4, �3I, v � H1, 2I

1u � 4v2 � 12u � w213u � v2 � 2w

1u � v2 � 1u � v21u � v2 � 1v � w2
u � 1v � w2u � 1v � w2

w � HH2, �1II.u � HH2, 5II, v � HH�4, 3II,

u � 4i � j, v � �i � 2j

u � 3i � 2j, v � 2i � 3j

u � i � j, v � 5j

u � 2i � j, v � 3i

u � HH�1, 6II, v � hh�4, 13 ii
u � HH3, 4II, v � HH�5, 2II

v � v.u � v, u � u, In Exercises 25–28, find a real number k such that vec-
tors u and v are orthogonal.

25.

26.

27.

28.

In Exercises 29–32, find and 

29.

30.

31.

32.

In Exercises 33–36, find 

33.

34.

35.

36.

In Exercises 37 – 39, let and
Verify that the given property of dot prod-

ucts is valid by calculating the quantities on each side
of the equal sign.

37.

38.

39.

40. Suppose and are nonzero
parallel vectors.
a. If show that u and v lie on the same

nonvertical straight line through the origin.

b. If show that (that is, v is a scalar 

multiple of u). Hint: The equation of the line on
which u and v lie is for some constant
m (why?), which implies that and

c. If , show that v is a scalar multiple of u.
Hint: If then (why?) and so 
(otherwise u � 02.

b � 0a � 0c � 0
c � 0

d � mc.
b � ma

y � mx

v �
c
a  ua � 0,

c � 0,

v � Hc, dIu � Ha, bI
0 � u � 0

ku � v � k 1u � v2 � u � kv

u � 1v � w2 � u � v � u � w

w � HHr, sII.
u � HHa, bII, v � HHc, dII

u � i � j, v � �3i � 2j

u � 3i � 2j, v � �i � 3j

u � i � 2j, v � 3i � j

u � 10i � 4j, v � 3i � 2j

compvu.

u � 5i � j, v � �2i � 3j

u � i � j, v � i � j

u � 2i � 3j, v � i � 2j

u � 3i � 5j, v � 6i � 2j

projvu.projuv

u � �4i � 5j, v � 2i � 2kj

u � i � j, v � ki � 22 j

u � �3i � j, v � 2ki � 4j

u � 2i � 3j, v � 3i � kj



41. Prove the Angle Theorem in the case when is 0
or 

42. If u and v are nonzero vectors such that 
show that u and v are orthogonal. Hint: If is the
angle between u and v, what is and what
does this say about 

43. Show that are the vertices of a
right triangle by considering the sides of the
triangle as vectors.

44. Find a number x such that the angle between the 

vectors and is radians.

45. Find nonzero vectors u, v, and such that
, , and neither v nor w is

orthogonal to u.

46. If u and v are nonzero vectors, show that the
vectors , are orthogonal.

47. A 600-pound trailer is on an inclined ramp that
makes a angle with the horizontal. Find the
force required to keep it from rolling down the
ramp, assuming that the only force that must be
overcome is due to gravity.

48. In Example 7, find the vector that represents the
force necessary to keep the car motionless.

In Exercises 49–52, find the work done by a constant
force F as the point of application of F moves along the
vector 

49.

50.

51. Hint: Find the
component form of PQ

!
.

F � 2i � 3j, P � 12, 32, Q � 15, 92
F � i � 2j, P � 10, 02, Q � 1�5, 22
F � 2i � 5j, P � 10, 02, Q � 14, 12

PQ
!
.

30°

�u�v � �v�u�u�v � �v�u

v � wu � v � u � w
w

p

4Hx, 1IH1, 1I

11, 22, 13, 42, 15, 22
u?

cos u
u

u � v � 0,

p.
u
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52.

53. A lawn mower handle makes an angle of with
the ground. A woman pushes on the handle with
a force of 30 pounds. How much work is done as
she moves the lawn mower a distance of 75 feet
on level ground?

54. A child pulls a wagon along a level sidewalk by
exerting a force of 18 pounds on the wagon
handle, which makes an angle of with the
horizontal. How much work is done as she pulls
the wagon 200 feet?

55. A 40-pound cart is pushed 100 feet up a ramp that
makes a angle with the horizontal. How much
work is done against gravity? Hint: The amount of
work done against gravity is the negative of the
amount of work done by gravity. Position the cart
on a coordinate plane so that the cart is at the
origin. Then the cart moves along vector

and the
downward force of gravity is .

56. Suppose the child in Exercise 54 is pulling the
wagon up a hill that makes an angle of with
the horizontal, and all other conditions remain 
the same. How much work is done in pulling the
wagon 150 feet?

20°

20°

F � 0i � 40j
d � 1100 cos 20°2i � 1100 sin 20°2j

20°

25°

60°

F � 5i � j, P � 1�1, 22, Q � 14, �32



Important Concepts

C H A P T E R

10
R E V I E W

Section 10.1 Standard notation for triangles . . . . . . . . . . . . . . 617
Law of Cosines . . . . . . . . . . . . . . . . . . . . . . . . . . 617

Section 10.2 Law of Sines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 625
Ambiguous case . . . . . . . . . . . . . . . . . . . . . . . . . 627
Area formulas for triangles . . . . . . . . . . . . . . . . . 632

Section 10.3 Complex plane . . . . . . . . . . . . . . . . . . . . . . . . . . 638
Real axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 638
Imaginary axis. . . . . . . . . . . . . . . . . . . . . . . . . . . 638
Absolute value of a complex number . . . . . . . . . 638
Argument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 639
Modulus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 639
Polar form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 639
Polar multiplication and division . . . . . . . . . . . . 640

Section 10.4 DeMoivre’s Theorem. . . . . . . . . . . . . . . . . . . . . . 644
Formula for nth roots . . . . . . . . . . . . . . . . . . . . . 647
Roots of unity . . . . . . . . . . . . . . . . . . . . . . . . . . . 648

Section 10.5 Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 653
Magnitude. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 655
Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . 655
Scalar multiplication . . . . . . . . . . . . . . . . . . . . . . 655
Vector addition and subtraction . . . . . . . . . . . . . 657

Section 10.6 Unit vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 661
Linear combination of i and j . . . . . . . . . . . . . . . 662
Direction angle of a vector . . . . . . . . . . . . . . . . . 663

Section 10.6.A Dot product. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 670
Angle between vectors . . . . . . . . . . . . . . . . . . . . 671
Parallel vectors . . . . . . . . . . . . . . . . . . . . . . . . . . 671
Angle theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 672
Schwarz inequality . . . . . . . . . . . . . . . . . . . . . . . 673
Orthogonal vectors . . . . . . . . . . . . . . . . . . . . . . . 673
Projection of u on v. . . . . . . . . . . . . . . . . . . . . . . 674
Component of u along v . . . . . . . . . . . . . . . . . . . 676
Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 678

681



Important Facts
and Formulas
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Law of Cosines

Law of Cosines, Alternate Form: 

Law of Sines

Area of triangle ABC:

Heron’s Formula Area of triangle 

where 

where

DeMoivre’s Theorem

The distinct nth roots of are:

The distinct nth roots of unity are:

If and then 

If and k is a scalar, then 

If and then

and u � v � Ha � c, b � dI.u � v � Ha � c, b � dI
v � Hc, dI,u � Ha, bI

ku � Hka, kbI.u � Ha, bI
� Ha, bI � � 2a2 � b2

PQ
›

� Hx2 � x1, y2 � y1I.Q � 1x2, y22,P � 1x1, y12
cos 2kp

n � i sin 2kp
n   1k � 0, 1, 2, p , n � 12

2
n

r c cosau � 2kp
n b � i sinau � 2kp

n b d  1k � 0, 1, 2, p , n � 12
r1cos u � i sin u2

3r1cos u � i sin u2 4n � rn 3cos nu � i sin nu 4

r11cos u1 � i sin u12
r21cos u2 � i sin u22 �

r1
r2

 3cos 1u1 � u22 � i sin1u1 � u22 4
r1r2 3cos1u1 � u22 � i sin1u1 � u22 4

r11cos u1 � i sin u12 � r21cos u2 � i sin u22 �

r � 2a2 � b2, a � r cos u, b � r sin u

a � bi � r1cos u � i sin u2,
0 a � bi 0 � 2a2 � b2

s �
1
2  1a � b � c2.

ABC � 2s1s � a2 1s � b2 1s � c2,

ab sin C
2

a
sin A �

b
sin B �

c
sin C

cos A �
b2 � c2 � a2

2bc

a2 � b2 � c2 � 2bc cos A
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Properties of Vector Addition and Scalar Multiplication 
For any vectors u, v, and w and any scalars r and s:

1.

2.

3.

4.

5.

6.

7.

8.

9.

If then

where is the direction angle of u.

If 

If is the angle between nonzero vectors u and v, then

Schwarz Inequality

Vectors u and v are orthogonal exactly when 

where is the angle between u and v.

Properties of Dot Products
If u, v, and w are vectors, and k is a real number, then:

1.

2.

3.

4.

5. 0 � u � 0
ku � v � k1u � v2 � u � kv

u � 1v � w2 � u � v � u � w

u � v � v � u

u � u � �u�2

ucompvu �
u � v
�v �

� �u� cos u,

projvu � au � v
�v�2 b v

u � v � 0.

0 u � v 0 � �u � �v�

u � v � �u � �v � cos u.

u

u � v � ac � bd.

u � Ha, bI � ai � bj    and    v � Hc, dI � ci � dj, then

u

a � �u� cos u    and    b � �u � sin u,

u � Ha, bI � ai � bj,

0v � 0 � r0
1v � v

1rs2v � r1sv2 � s1rv2
1r � s2v � rv � sv

r1u � v2 � ru � rv

v � 1�v2 � 0

v � 0 � v � 0 � v

u � v � v � u

u � 1v � w2 � 1u � v2 � w
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Section 10.2

Review Exercises

Section 10.1

Note: Standard notation is used for triangles.

In Exercises 1–6, use the Law of Cosines to solve triangle ABC.

1. 2.

3. 4.

5. 6.

7. Two trains depart simultaneously from the same station. The angle
between their two tracks is One train travels at an average speed of
45 miles per hour and the other at 70 miles per hour. How far apart are the
trains after 3 hours?

8. A 40-foot flagpole sits on the side of a hill. The hillside makes a angle
with the horizontal. How long is a wire that runs from the top of the pole
to a point 72 feet downhill from the base of the pole?

9. Find angle ABC in the figure below.

10. A surveyor stakes out points A and B on opposite sides of a building. Point
C is 300 feet from A and 440 feet from B. Angle ACB measures What is
the distance from A to B?

In Exercises 11–18, use the Law of Sines to solve triangle ABC.

11. 12.

13. 14.

15. 16.

17. 18.

19. Find the area of triangle ABC if 

20. Find the area of triangle ABC if 

21. A boat travels for 8 kilometers in a straight line from the dock. It is then
sighted from a lighthouse which is 6.5 kilometers from the dock. The angle
determined by the dock, the lighthouse (vertex), and the boat is How
far is the boat from the lighthouse?

22. A pole tilts from the vertical, away from the sun, and casts a 34-foot
shadow on level ground. The angle of elevation from the end of the
shadow to the top of the pole is How long is the pole?64°.

12°

25°.

a � 10, c � 14, and B � 75°.

b � 24, c � 15, and A � 55°.

A � 67°, c � 125, a � 100A � 48°, B � 57°, b � 47

a � 3.8, c � 2.8, C � 41°a � 3.5, b � 4, A � 60°

a � 5, c � 2.5, C � 30°a � 75, c � 84, C � 62°

A � 96°, B � 44°, b � 12B � 124°, C � 31°, c � 3.5

38°.

12

1018

A

B
C

17°

120°.

a � 90, b � 70, c � 40a � 5, c � 8, B � 76°

a � 7, b � 8.6, C � 72.4°a � 10, c � 14, B � 130°

a � 7.5, b � 3.2, c � 6.4a � 12, b � 10, c � 15



23. Two surveyors, Joe and Alice, are 240 meters apart on a riverbank. Each
sights a flagpole on the opposite bank. The angle from the pole to Joe
(vertex) to Alice is The angle from the pole to Alice (vertex) to Joe is

How far are Joe and Alice from the pole?

24. A straight road slopes at an angle of with the horizontal. When the
angle of elevation of the sun is a telephone pole at the side of the
road casts a 15-foot shadow downhill, parallel to the road. How high is the
telephone pole?

25. A woman on the top of a 448-foot building spots a small plane. As she
views the plane, its angle of elevation is At the same instant a man at
the ground-level entrance to the building sees the plane and notes that its
angle of elevation is 
a. How far is the woman from the plane?
b. How far is the man from the plane?
c. How high is the plane?

26. Use the Law of Sines to prove Engelsohn’s equations given below: For any
triangle ABC (standard notation),

In Exercises 27–30, find the area of the triangle described.

27. angle of adjacent side lengths 5 and 8

28. angle of adjacent side lengths 3 and 12

29. side lengths 7, 11, and 14

30. side lengths 4, 8, and 10

31. Simplify 

32. Simplify 

33. Graph the equation in the complex plane.

34. Graph the equation in the complex plane.

35. Express in polar form.

36. Express in polar form.

In Exercises 37–41, express the given number in the form 

37.

38. 3 acos p8 � i sin p8 b � 2 acos 3p8 � i sin 3p8 b

2 acos p12 � i sin p12b � 4 acos p6 � i sin p6 b
a � bi.

4 � 5i

1 � i23

0 z � 3 0 � 1

0 z 0 � 2

0 3 � 2i 0 � 0 1 � 2i 0 .
0 i14 � 2i2 0 � 0 3 � i 0 .

40°,

30°,

a � b
c �

sin A � sin B
sin C

    and    a � b
c �

sin A � sin B
sin C

.

65°.

62°.

62.5°,
10°

54°.
63°.
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39.

40. 41.

In Exercises 42–46, solve the given equation in the complex number system,
and express your answers in polar form.

42. 43. 44.

45. 46.

In Exercises 47–50, let and Find each of the following:

47. 48. 49. 50.

In Exercises 51–54, let and Find each of the following:

51. 52. 53. 54.

55. Find the components of the vector v such that and the direction
angle of v is 

56. Find the magnitude and direction angle of 

57. Find a unit vector whose direction is opposite the direction of 

58. An object at the origin is acted upon by a 10-pound force with direction
angle and a 20-pound force with direction angle Find the
magnitude and direction of the resultant force.

59. A plane flies in the direction with an air speed of 300 miles per hour.
The wind is blowing from north to south at 40 miles per hour. Find the
course and ground speed of the plane.

60. An object weighing 40 pounds lies on an inclined plane that makes a 
angle with the horizontal. Find the components of the weight parallel and
perpendicular to the plane.

In Exercises 61 –64, let Find each of the
following:

61. 62. 63.

64.

65. What is the angle between the vectors and 

66. Is orthogonal to 4i � 6j?3i � 2j

3i � j?5i � 2j

1u � w2 � 1w � 3v2
1u � v2 � wu � u � v � vu � v

u � HH3,�4II, v � HH�2, 5II, and w � HH0, 3II.

30°

120°,

30°.90°

3i � 6j.

3i � 4j.

45°.
�v� � 5

�u� � �v��u � v�u � 2v4u � v

v � 3i � 4j.u � �2i � j

3u �
1
2 v�2v � 4u���3v�u � v

v � HH8, 1II.u � HH3, �2II
x3 � 1 � ix4 � i

x8 � �23 � 3ix6 � 1x3 � i

c13 3 acos 5p36 � i sin 5p36b d
12acos p12 � i sin p12b

18

12 acos 7p12 � i sin 7p12 b
3 acos 5p12 � i sin 5p12 b

Section 10.6.A

Section 10.5

Section 10.6

Section 10.4



In Exercises 67 and 68, let and Find each of the follow-
ing:

67. 68.

69. If u and v have the same magnitude, show that and are
orthogonal.

70. If u and v are nonzero vectors, show that the vector is 

orthogonal to v, where 

71. A 3500-pound automobile is on an inclined ramp that makes a angle
with the horizontal. Find the force required to keep it from rolling down
the ramp, assuming the only force that must be overcome is due to gravity.

72. A sled is pulled along level ground by a rope that makes a angle with
the horizontal. If a force of 40 pounds is used to pull the sled, how much
work is done in pulling it 100 feet?

50°

30°

k �
u � v
�v�2 .

u � kv

u � vu � v

compuvprojvu

v � 2i � j.u � 4i � 3j
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C H A P T E R

10

Euler’s Formula

One of the most interesting and surprising identities in all of mathemat-
ics is one that relates the exponential function to the trigonometric
functions sin x and cos x and the imaginary number i.

The identity, known as Euler’s formula, is named after the mathemati-
cian Leonhard Euler (1707–1783), who discovered it in 1748. The formula
is used in many areas of calculus—most notably differential equations.

Euler's formula is true for any real number x, and many real numbers
produce surprising results.

Example 1 Evaluating Euler’s Formula

Evaluate 

Solution

Substitute for x in the formula and simplify.

Therefore, 
■

Rewriting the last equation connects the five most common constants of
mathematics: and 1.

One of the most surprising aspects of this displayed equation is that rais-
ing an irrational number to an irrational power results in an integer. In
fact, raising an imaginary number to an imaginary power can also give a
real number, as shown in the next example.

Example 2 Imaginary Numbers Raised to Imaginary Powers

Show that and find 

Solution

Substitute into Euler’s formula and simplify.

e
p
2 i � cos 

p
2 � i sin 

p
2 � 0 � i112 � i

x �
p
2

ii.i � e
p
2 i

eip � 1 � 0

e, p, i, 0,

eip � �1.

eip � cos p � i sin p � �1 � i 102 � �1

p

eip.

e 

ix � cos x � i sin x

e  

x
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To find raise both sides of the identity to the power i.

A calculator computes the value of to be 0.2078795764, as shown in
Figure 10.C-1. So 

■

Euler’s formula can be used to define complex powers of e, that is, 

The equation defines a complex power of e in
terms of a real power of e and the cosine and sine of a real number.

Example 3 Complex Power of e

Find the exact value and approximate value of 

Solution

Substitute and into the formula 

exact value

approximate value

■

 � �9.629926 � 21.041772i
 � 23.141�0.4161 � 0.9093i2

 ep�2i � ep1cos 2 � i sin 22
e 

z � e 

x1cos y � i sin y2.y � 2x � p

ep�2i.

e 

x� iy � e 

x1cos y � i sin y2
ez � e 

x� iy � e 

x � e 

iy � e 

x1cos y � i sin y2
e 

x� iy.

ii � 0.2079.
e�
p
2

ii � Aep2 i Bi � e
p
2 i2

� e
p
2   

1�12 � e�
p
2

i � e
p
2 iii,

Figure 10.C-1

Exercises

Find the exact value and the approximate value of the
following powers of e.

1. 2.

3. 4. e
p
4 ie�ie�i

Ae3i B3i
e�pie�pi

5. 6.

7. 8. ep� ie1�
p
3 i

e 2pie 1� ip
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You are there!

All planets travel in elliptical orbits around the sun, moons travel in elliptical orbits
around planets, and satellites follow elliptical paths around the earth. Parabolic
reflectors are used in spotlights, radar antennas, and satellite dishes. The long-range
navigation system (LORAN) uses hyperbolas to enable a ship to determine its exact
location. See Exercise 68 in Section 11.4.

Analytic Geometry

C H A P T E R

11



Interdependence of Sections
11.1

11.2 11.4

11.3

11.5 11.6

11.7

Sections 3.1, 3.2, and 3.4 are prerequisites for this

chapter. Except for the discussion of standard equations

for conics in Sections 11.1–11.4, Chapter 6

(Trigonometry) is also a prerequisite.

691

11.1 Ellipses

11.2 Hyperbolas

11.3 Parabolas

11.4 Translations and Rotations of Conics

11.4.A Excursion: Rotation of Axes

11.5 Polar Coordinates

11.6 Polar Equations of Conics

11.7 Plane Curves and Parametric Equations

11.7.A Excursion: Parameterizations of Conic

Sections

Chapter Review

Chapter Outline

When a right circular cone is cut by a plane, the intersection is a

curve called a conic section, as shown in the figure below. (A point,

a line, or two intersecting lines are sometimes called degenerate conic

sections.) Conic sections were studied by the ancient Greeks and are still

of interest. For example, the orbits of planets are ellipses, parabolic mir-

rors are used in telescopes, and certain atomic particles follow hyperbolic

paths.

>

>
>

Ellipse Hyperbola Parabola Point

P

Line Two intersecting linesCircle

Although the Greeks studied conic sections from a purely geometric point
of view, the modern approach is to describe them in terms of the coordi-
nate plane and distance, or as the graphs of certain types of equations.
The study of the geometric properties of objects using a coordinate sys-
tem is called analytic geometry. Circles are discussed in the appendix and
used in prior sections. In this chapter, ellipses, hyperbolas, and parabo-
las are defined in terms of points and distances, and their equations are
determined. The standard form of the equation of a conic includes the
key information necessary for a rough sketch of its graph. Techniques for
graphing conic sections with a calculator are discussed in the sections that
define each conic section, and applications are given.

⎫
⎪
⎬
⎪
⎭

can do calculus Arc Length of a Polar Graph
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11.1 Ellipses

An ellipse is a closed figure that can be thought of as a circle that has been
elongated along a line of symmetry through its center. In this section,
ellipses are defined in terms of points and distances, and then their equa-
tions are derived from the definition.

Definition of an Ellipse

Let P and Q be points in the plane and k a number greater than the distance
from P to Q. The ellipse with foci (singular: focus) P and Q is

the set of all points X such that the sum of the distance from X to P
and the distance from X to Q is k.

Written algebraically with X representing a point on the ellipse,

To draw the ellipse, pin the ends of a string of length k at points P and
Q, as shown in Figure 11.1-1. Place a pencil against the string, and keep
the string taut while moving the pencil.

XP � XQ � k

1x, y2

Objectives

• Define an ellipse

• Write the equation of an
ellipse

• Identify important
characteristics of ellipses

• Graph ellipses

P Q

P

vertex

vertex
center

foci
minor
axis

major
axis

Q

Figure 11.1-1 Figure 11.1-2

The midpoint of the segment joining the foci is the center of the ellipse.
The points where the line through the foci intercept the ellipse are its ver-
tices. The segment connecting the vertices is the major axis, and the
segment through the center of the ellipse perpendicular to the major axis
is the minor axis, as shown in Figure 11.1-2.

If the points P and Q coincide, the ellipse generated is a circle with radius

Thus, a circle is a special case of an ellipse.

Equation of an Ellipse

The simplest case is an ellipse centered at the origin, with its foci on the
x- or y-axis. Suppose that the foci are on the x-axis at the points P1�c, 02

k
2.

PQ
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and where Let so that Then is on the 

ellipse exactly when

.

Written algebraically,

which can be rewritten as

.

Square both sides and simplify the result.

Square both sides again and simplify.

[1]

To simplify the last equation, let so that

Equation [1] then becomes

Dividing both sides by shows that the coordinates of every point on
the ellipse satisfy the equation

Standard form of an ellipse

Conversely, it can be shown that every point whose coordinates satisfy
the equation is on the ellipse. The equation for an ellipse with foci 
and on the y-axis is developed similarly.10, �c2 10, c2

x˛

2

a˛

2 �
y˛

2

b˛

2 � 1

a˛

2b˛

2

b˛

2˛x˛

2 � a˛

2˛y˛

2 � a˛

2˛b˛

2

b˛

2 � a˛

2 � c˛

2

b � 2a˛

2 � c˛

2,

1a˛

2 � c˛

22  x˛

2 � a˛

2 y˛

2 � a˛

2 1a˛

2 � c˛

22

a21x � c22 � y˛

2 � a˛

2 � cx

21x � c22 � y˛

2 � 2a � 21x � c22 � y˛

2

21x � c22 � 1y � 022 � 21x � c22 � 1y � 022 � 2a

3distance from 1x, y2 to P 4 � 3distance from 1x, y2 to Q 4 � k � 2a

1x, y2k � 2a.a �
k
2,c 7 0.Q1c, 02,

Let a and b be real numbers such that Then the
graph of each of the following equations is an ellipse
centered at the origin.

Foci on the x-axis: Foci on the y-axis:
x˛

2

b˛

2 �
y˛

2

a˛

2 � 1x˛

2

a˛

2 �
y˛

2

b˛

2 � 1

0 66 b 66 a.
Standard
Equation 

of an Ellipse
Centered 

at the Origin

y

−b

−a
−c

c

b

a

x

y

−a −c

−b

ac

b

x



Notice the following facts in both cases.

• the foci are within the ellipse
• the major axis always contains the foci and is determined by which

denominator is larger
• the distance between the foci is 2c

• the center is the midpoint between the foci and the midpoint
between the vertices

• the distance between the vertices is 2a

•

When the equation of an ellipse centered at the origin is in standard form,
the denominator of the x term always gives the x-intercepts and the
denominator of the y term always gives the y-intercepts.

c˛

2 � a˛

2 � b˛

2

When the equation is in standard form, the x- and y-intercepts are easily
found.

x-intercepts y-intercepts 

The characteristics of the graph of an ellipse centered at the origin are
shown in the following box.

 y � –b x � –a
 y˛

2 � b˛

2 x˛

2 � a˛

2

 0˛

2

a˛

2 �
y˛

2

b˛

2 � 1 x˛

2

a˛

2 �
0˛

2

b˛

2 � 1

1x � 021y � 02
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For 

Foci on the x-axis: Foci on the y-axis:

x-intercepts: x-intercepts: 
y-intercepts: y-intercepts: 
major axis is on the x-axis major axis is on the y-axis
vertices and vertices and 
foci and where foci and where

c � 2a˛

2 � b˛

2c � 2a˛

2 � b˛

2

(0, c),(0, �c)(c, 0),(�c, 0)
(0, a)(0, �a)(a, 0)(�a, 0)

±±a±±b
±±b±±a

x˛

2

b˛

2 �
y˛

2

a˛

2 � 1
x˛

2

a˛

2 �
y˛

2

b˛

2 � 1

0 66 b 66 a,
Characteristics

of Ellipses

y

−b

−a
−c

c

b

a

x

foci

minor axis

center

major axis

y

−a −c

−b

ac

b

x

foci

major axisminor axis

center



Graphing an Ellipse

Example 1 Graph an Ellipse

Show that the graph of the equation is an ellipse. Label
the foci, the vertices, the major axis, and the minor axis.

Solution

Put the equation in standard form by dividing both sides by 400.

This is the equation of an ellipse with its center at the origin. The foci are
on the y-axis because the denominator of is larger. Since and

the x-intercepts are and the y-intercepts are To
graph the ellipse, plot the intercepts and draw the ellipse, as shown in
Figure 11.1-3.

To locate the foci, note that and that the foci are
on the y-axis. Therefore, the foci are and 

The vertices are and and the major axis lies on the y-axis
with endpoints at the vertices.

The minor axis lies on the x-axis, with endpoints and 
■

Example 2 Graph an Ellipse on a Calculator

Graph the ellipse with equation on a calculator.

Solution

Solve the equation for y.

The ellipse is defined by the two functions

whose graphs are shown in Figure 11.1-4.
■

Y1 �
2
3 29 � x˛

2 and Y2 � �
2
3 29 � x˛

2,

 y � ±
B

36 � 4x2

9 � ±  
2
3  29 � x˛

2

 y˛

2 �
36 � 4x˛

2

9

 9y˛

2 � 36 � 4x˛

2

4x˛

2 � 9y˛

2 � 36

14, 02.1�4, 02
10, 52,10, �52

10, 32.10, �32c � 125 � 16 � 19 � 3

±a � ±5.±b � ±4b˛

2 � 16,
a˛

2 � 25y˛

2

x˛

2

16 �
y˛

2

25 � 1

25x˛

2 � 16y˛

2 � 400
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y

x

1050

10

major axis

minor axis

vertices

foci

5

−10

−5

−10 −5

Figure 11.1-3

3.1

−3.1

4.7−4.7

Figure 11.1-4

Graph all conic sections using a square window to see the
correct shape.

NOTE



Ellipse Equations

Example 3 Find the Equation of an Ellipse

Find the equation of the ellipse that has vertices at and foci at
Then sketch its graph by using the intercepts.

Solution

The foci of the ellipse lie on the y-axis, and its center is the origin. Thus,
the equation has the form

Find b by letting and and by using the relationship among
the values for an ellipse.

Thus, the equation is

or

and the intercepts are and See Figure 11.1-5.
■

Applications of Ellipses

Elliptical surfaces have interesting reflective properties. A sound wave or
light ray that passes through one focus and reflects off an ellipse will
always pass through the other focus, as shown in Figure 11.1-6.

Example 4 Finding the Foci

The Whispering Gallery at the Museum of Science and Industry in
Chicago is elliptical in shape, with a parabolic dish at each focus. (Parabo-
las are discussed in Section 11.3.) The shape of the room and two parabolic
dishes carry the quietest sound from one focus to the other. The width of
the ellipse is 13 feet 6 inches and the length of the ellipse is 47 feet 4 inches.
Assume that the ellipse is centered at the origin. Find its equation, sketch
its graph, and locate the foci.

Solution

Because the length of the ellipse is 47 feet 4 inches, the value of a is half 

that amount, or feet. Because the width is 13 feet 6 inches, the value23 
2
3

A±212, 0 B .10, ±62
x˛

2

12 �
y˛

2

36 � 1x˛

2

A112 B 2 �
y˛

2

6˛

2 � 1

 b � 212 � 3.5
 b˛

2 � 12
 24 � 36 � b˛

2

A 216 B 2 � 1622 � b2

 c˛

2 � a˛

2 � b˛

2

c � 216a � 6

x˛

2

b˛

2 �
y˛

2

a˛

2 � 1

A0, –216 B . 10, –62
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y

x

4 8

8

4

−4

−8

−4−8

Figure 11.1-5

foci

Figure 11.1-6

The area of an
ellipse is where 2a
is the length of the major
axis and 2b is the length of
the minor axis. See Exercise
24 for a method to estimate
the circumference of an
ellipse.

A � pab,
NOTE



of b is half that, or feet. Therefore, the equation of the ellipse is

The distance from the center to each focus is c, which is given by

Therefore, the foci are approximately and as shown
in Figure 11.1-7.

■

The planets and many comets have elliptical orbits, with the Sun at one
focus. The Moon travels in an elliptical orbit with Earth at one focus, and
man-made satellites usually travel in elliptical orbits around Earth.

Example 5 Elliptical Orbits

Earth’s orbit around the Sun is an ellipse that is almost a circle. The Sun
is at one focus, the major axis is 299,190,000 km in length, and the minor
axis is 299,148,000 km in length. What are the minimum and maximum
distances from Earth to the Sun?

Solution

Choose a coordinate system with the center of the ellipse at the origin
and the Sun at the point to get a diagram of the orbit. See Figure
11.1-8a.

1c, 02

F2122.7, 02,F11�22.7, 02
 c �
B

74,095
144 � 22.7

 c˛

2 � a˛

2 � b˛

2 �
5041

9 �
729
16 �

74,095
144

 9x˛

2

5041 �
16y˛

2

729 � 1

 x˛

2

 5041
9  

�
y˛

2

 729
16  

� 1

 x˛

2

a23 
2
3b

2
�

y˛

2

a6 
3
4b

2
� 1

6 
3
4
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y

x

20100

20

10

−20

−10
−20 −10

F1 F2

Figure 11.1-7

Earth

Sun

Figure 11.1-8a

a + c
a � c

y

c

b

�b

�c�a
x

a

Figure 11.1-8b



The length of the major axis is 2a and the length of the minor axis is 2b,
so

Therefore, the distance from each focus to the center is given by

It can be proved algebraically that the minimum and maximum distances
from a focus to a point on the ellipse are at the endpoints of the major
axis. That is, the maximum distance is and the minimum distance
is See Figure 11.1-8b.

• minimum distance
• maximum distance

■
� 152,102,000 km � 94.3 million miles� a � c

� 147,088,000 km � 91.2 million miles� a � c

a � c.
a � c

c � 2a2 � b2 � 2,507,000

 b � 149,574,000 a � 149,595,000
 2b � 299,148,000 2a � 299,190,000
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Exercises 11.1

In Exercises 1–6, find the equation of the ellipse cen-
tered at the origin that satisfies the given conditions.

1. foci on x-axis; x-intercepts y-intercepts 

2. foci on y-axis; x-intercepts y-intercepts 

3. foci on x-axis; major axis of length 12; minor axis
of length 8

4. foci on y-axis; major axis of length 20; minor axis
of length 18

5. endpoints of major and minor axes: 

6. vertices and minor axis of length 8

In Exercises 7–12, match one of the following equa-
tions to the given graph.

x˛

2 � 6y˛

2 � 182x˛

2 � y˛

2 � 12

x˛

2

25 �
y˛

2

4 � 1x˛

2

4 �
y˛

2

25 � 1

x˛

2

16 �
y˛

2

9 � 1x˛

2

9 �
y˛

2

16 � 1

1�8, 02,18, 02
1�3, 02, 13, 02

10, �72, 10, 72,

±8±1,

±2±7,

7.

8. y

x

42
0

4

2

−4

−2
−4 −2

y

x

42
0

4

2

−4

−2
−4 −2
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9.

10.

11.

12.

In Exercises 13–16, find a complete graph of the 
equation.

13. 14.

15. 16. 9x˛

2 � 4y˛

2 � 724x˛

2 � 3y˛

2 � 12

x˛

2

6 �
y˛

2

16 � 1x˛

2

25 �
y˛

2

4 � 1

y

x

42
0

4

2

−4

−2
−4 −2

y

x

42
0

4

2

−4

−2
−4 −2

y

x

42
0

4

2

−4

−2
−4 −2

y

x

42
0

4

2

−4

−2
−4 −2

Calculus can be used to show that the area of the ellipse

with equation is Use this fact to find 

the area of each ellipse in Exercises 17 – 22.

17. 18.

19. 20.

21. 22.

23. Washington, D.C. has a park located next to the
White House called The Ellipse. Letting the center
of the ellipse be at the origin of a coordinate
system, the equation that defines the boundary of
the park is

Find how many square feet of grass is needed to
cover the entire park.

24. The Indian mathematician Ramanujan is credited
with developing the following formula that
approximates the circumference of an ellipse. If 2a
and 2b are the lengths of the major and minor
axes of the ellipse, the circumference can be
approximated by

Estimate the amount of fencing needed to enclose
The Ellipse park described in Exercise 23.

25. Consider the ellipse whose equation is 

Show that if then the graph is actually a
circle.

26. Complete the derivation of the equation of the
ellipse as follows.
a. By squaring both sides, show that the

equation

may be simplified as

b. Show that the last equation in part a may be
further simplified as

27. Sketch the graph of for 

and What happens to theb � 20.b � 8, b � 12,

b � 2, b � 4,
y˛

2

4 �
x˛

2

b˛

2 � 1

1a˛

2 � c˛

22x˛

2 � a˛

2 y˛

2 � a˛

21a˛

2 � c˛

22.

a21x � c2 ˛

2 � y˛

2 � a˛

2 � cx.

21x � c22 � y˛

2 � 2a � 21x � c2 ˛

2 � y˛

2

a � b,

x˛

2

a˛

2 �
y˛

2

b˛

2 � 1.

p13a � 3b2 � 21a � 3b2  1b � 3a2

x˛

2

562,500 �
y˛

2

409,600 � 1

5x˛

2 � y˛

2 � 56x˛

2 � 2y˛

2 � 14

7x˛

2 � 5y˛

2 � 353x˛

2 � 4y˛

2 � 12

x˛

2

9 �
y˛

2

5 � 1x˛

2

16 �
y˛

2

4 � 1

Pab.x˛

2

a˛

2 �
y˛

2

b˛

2 � 1



ellipse as b takes larger and larger values? Could
the graph ever degenerate into a vertical line?

28. Halley’s Comet has an elliptical orbit with the sun
at one focus and a major axis of 1,636,484,848
miles. The closest the comet comes to the sun is
54,004,000 miles. What is the maximum distance
from the comet to the sun?

29. The orbit of the Moon around Earth is an ellipse
with Earth at one focus. If the length of the major
axis of the orbit is 477,736 miles and the length of
the minor axis is 477,078 miles, find the minimum
and maximum distances from Earth to the Moon.

30. Critical Thinking An arched footbridge over a 
100-foot river is shaped like half an ellipse. The
maximum height of the bridge over the river is 20
feet. Find the height of the bridge over a point in
the river exactly 25 feet from the center of the
river.

31. Critical Thinking Find the length of the sides (in
terms of a, b, and c) of triangle FOC in the 

following ellipse. Its equation is and 

F is one focus. Justify your answer.

y

C

FO

x

x˛

2

a2 �
y˛

2

b˛

2 � 1
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11.2 Hyperbolas

Like an ellipse, a hyperbola has two foci, two vertices, and a center; but
its shape is quite different.

Definition of a Hyperbola

Let P and Q be points in the plane and k be a positive number. The hyper-
bola with foci P and Q is the set of all points X such that

the absolute value of the difference of the distance from X to P and 
the distance from X to Q is k.

That is,

where X represents the point (x, y) and k is called the distance difference.

0  XP � XQ 0 � k,

Objectives

• Define a hyperbola

• Write the equation of a
hyperbola

• Identify important
characteristics of
hyperbolas

• Graph hyperbolas
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Figure 11.2-1

vertices

foci

center

P Q

X

Let a and b be positive real numbers. Then the graph of each
of the following equations is a hyperbola centered at the
origin.

foci on the x-axis: foci on the y-axis:
y˛

2

a˛

2 �
x˛

2

b˛

2 � 1x˛

2

a˛

2 �
y˛

2

b˛

2 � 1

Standard
Equation of a

Hyperbola
Centered 

at the Origin

As shown in Figure 11.2-1, a hyperbola consists of two separate branches
(shown in red). The distances XP and XQ are shown in blue. The dotted
straight lines are the asymptotes of the hyperbola. The asymptotes are
not part of the hyperbola but are useful in graphing. A hyperbola
approaches its asymptotes, but it never touches them.

The midpoint of the segment joining the foci, is the center of the
hyperbola, and the line through P and Q is called the focal axis. The points
where the focal axis intercepts the hyperbola are its vertices.

Equation of a Hyperbola

The simplest case is a hyperbola centered at the origin with its foci on the
x- or y-axis. The equation of a hyperbola is derived by using the distance
formula, and it is left as an exercise.

PQ,

The characteristics of the graph of a hyperbola centered at the origin are
shown in the following list. Notice in both cases that

• the hyperbola bends toward the foci
• the positive term determines which way the hyperbola opens
• the distance between the foci is 2c

• the distance between the vertices is 2a

• the center is the midpoint between the foci and the midpoint
between the vertices

•

When the equation is in standard form with the x term positive and y
term negative, the hyperbola intersects the x-axis and opens left and right.

When the x term is negative and the y term is positive, the hyperbola
intersects the y-axis and opens up and down.

c˛

2 � a˛

2 � b˛

2

−b b

x
a

−a
−c

c

y

y = − xa
b

y = xa
b

y
y = xb

a

−b

b

a−a−c c
x

y = − xb
a
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For positive numbers a and b,

Foci on the x-axis: Foci on the y-axis:

x-intercepts: x-intercepts: none
y-intercepts: none y-intercepts: 
focal axis is on the x-axis focal axis is on the y-axis
vertices and vertices and 
foci and where foci and where

asymptotes: and asymptotes: and

y � �
a
b

xy � �
b
a  x

y �
a
b

 xy �
b
a  x

c � 2a2 � b2c � 2a2 � b2

(0, c),(0, �c)(c, 0),(�c, 0)
(0, a)(0, �a)(a, 0)(�a, 0)

±±a
�a

y˛

2

a˛

2 �
x˛

2

b˛

2 � 1
x˛

2

a˛

2 �
y˛

2

b˛

2 � 1

Characteristics
of Hyperbolas

Graphing a Hyperbola

Example 1 Graph a Hyperbola

Show that the graph of the equation is a hyperbola. Graph
it and its asymptotes. Find the equations of the asymptotes, and label the
foci and the vertices.

Solution

Put the equation in standard form by dividing both sides by 36 and sim-
plifying.

 x˛

2

22 �
y˛

2

32 � 1

 x˛

2

4 �
y˛

2

9 � 1

 9x˛

2

36 �
4y˛

2

36 � 1

9x˛

2 � 4y˛

2 � 36

vertices
foci

a
b

y

y = − x

x

−a
−c

a
c

a
by = x

vertices

foci

a

b
a

c

yy = − x

x
−a−c

b
ay = x
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Applying the fact in the box with and shows that the graph
is a hyperbola centered at the origin with vertices and and 

has asymptotes and First plot the vertices and sketch 

the auxiliary rectangle determined by the vertical lines and
the horizontal lines The asymptotes go through the origin
and the corners of this rectangle, as shown on the left in Figure 11.2-2. It
is then easy to sketch the hyperbola by drawing curves that are asymp-
totic to the dashed lines.

y � ±b � ±3.
x � ±a � ±2

y � �
3
2  x.y �

3
2 x

1�2, 0212, 02b � 3a � 2

y = −

y = x

(2, 0)

(0, 3)

(–2, 0)

(0, –3)

x

y

− = 1x2

4

3
2

y = x3
2

x3
2

y = − x3
2

(2, 0) (  13, 0)(–2, 0)(–  13, 0)

x

y

y2

9

Figure 11.2-2

Locate the foci by using the formula with and 

Therefore, the foci are and as shown on the graph on
the right in Figure 11.2-2.

■

Example 2 Graph a Hyperbola on a Calculator

Identify the graph of and then graph it on a calculator.

Solution

Dividing both sides of by 36 shows that it is the equation
of a hyperbola.

x˛

2

9 �
y˛

2

4 � 1

4x˛

2 � 9y˛

2 � 36

4x˛

2 � 9y˛

2 � 36,

A�113, 0 B ,A113, 0 B
 � 14 � 9 � 113 � 3.6

 c � 222 � 33

b � 3.a � 2c � 2a2 � b2



To graph this hyperbola on a calculator, solve the original equation for y.

The hyperbola is defined by the two functions

whose graphs are shown in Figure 11.2-3.
■

Writing the Equation of a Hyperbola

Example 3 Find the Equation of a Hyperbola

Find the equation of the hyperbola that has vertices at and 
and passes through the point Then sketch its graph by using the
asymptotes, and label the foci.

Solution

The vertices are on the y-axis and the equation has the form

with Because is on the graph,

Therefore, and the equation of the hyperbola is

The asymptotes of the hyperbola are the lines 

The foci are on the y-axis c units away from the center, where

Thus, the foci are at and as shown in Figure 11.2-4.
■

A0, �110 B ,A0, 110 B
c � 212 � 33 � 11 � 9 � 110

10, 02,
y � ±

1
3 x.

y˛

2

12 �
x˛˛

2

32 � 1  or  y˛

2 �
x˛

2

9 � 1

b � 3

 b2 � 9.

 2 �
9
b2 � 1

 
A12 B 2

12 �
32

b2 � 1

A3, 12 Ba � 1.

y˛

2

a˛

2 �
x˛

2

b˛

2 � 1,

A3, 12 B . 10, �1210, 12

Y1 �
2
32x˛

2 � 9  and  Y2 � �
2
32x˛

2 � 9

 y � ±
B

4x˛

2 � 36
9 � ±

2
32x2 � 9

 y˛

2 �
4x˛

2 � 36
9

 9y˛

2 � 4x˛

2 � 36

704 Chapter 11 Analytic Geometry

The two branches
of the hyperbola in Figure
11.2-3 do not correspond to
the two functions shown in
Example 2. One function
gives the part above the 
x-axis and the other gives
the part below the x-axis.

NOTE

y

x

420

4

2

−4

−2

−4 −2

(0,   10)

(3,    2)

(0, −  10)

Figure 11.2-4

6.2

9.4

−6.2

−9.4

Figure 11.2-3
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Applications of Hyperbolas

Applications modeled by hyperbolas occur in science, business, and eco-
nomics. Unlike Halley’s comet, which as an elliptical orbit, some comets
have hyperbolic orbits. These comets pass through the solar system once
and never return.

Additionally, the reflective properties of hyperbolas are used in the design
of camera and telescope lenses. The Hubble Space Telescope incorporates
a Cassegrain telescope (invented in 1672), which has both a hyperbolic
mirror and a parabolic mirror. If a light ray passes through one focus of
a hyperbola and reflects off the hyperbola at a point P, then the reflected
ray moves along the straight line determined by P and the other focus,
as shown in Figure 11.2-5.

focus focus

P

focus
focus

P

Figure 11.2-5

The next example illustrates the way hyperbolas are used in location
systems.

Example 4 Determine Locations

An explosion was heard on a passenger ship and on a naval ship that 

are mile apart. Passengers on Ship A heard the sound second before 

sailors on Ship B. The speed of sound in air is approximately 1100 feet
per second. Describe the possible locations of the explosion.

Solution

In second, the sound traveled or 550 feet. Therefore, the explo-

sion occurred at a point 550 feet closer to ship A than to ship B. That is,
the difference between the distance from the explosion to ship B and from
the explosion to ship A is 550 feet. Whenever a difference is constant, a
hyperbola is usually a good model.

Draw a coordinate system and place A and B on the x-axis equidistant
from the origin. The locations of the ships are the foci of the hyperbola,
and the hyperbola contains all possible locations of the explosion.

1
2  111002,1

2

1
2

1
2



Because the distance from A to B is mile, or 2640 feet, the coordinates 

of A and B are and as shown in Figure 11.2-6a.

The explosion occurred on one branch of the hyperbola with foci 
and such that for every point X on the 
hyperbola.

Let be the vertex of the hyperbola closer
to focus A. Because is on the hyperbola,
the difference between the distances and

is 550 feet. As shown in Figure 11.2-6b,

Because 

Thus, and

Therefore, the equation of the hyperbola is

The explosion occurred somewhere on the branch of the hyperbola closer
to the passenger ship at A, as illustrated in Figure 11.2-6c.

x2

a2 �
y2

b2 �
x2

75,625 �
y2

1,666,775 � 1.

 b2 � 1,666,775
 � 1,742,400 � 75,625

 b2 � c2 � a2 � 13202 � 2752

a � 275, c � 1320,

a 7 0, a � 275
 0  2a 0 � 550

 0  1c � a2 � 1c � a2 0 � 550
 0  BV1 � AV1 0 � 550

BV1

AV1

V1

V1

0  XB � XA 0 � 55011320, 02 1�1320, 02
11320, 02,1�1320, 02

1
2
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y

xA B

c c

V1

a a

c − a c + a

Figure 11.2-6b

To find the exact location of the explosion, the sound must be detected at
a third location that is the focus of another hyperbola that shares one of
the two foci given in the original problem. The intersection of the two
hyperbolas will identify the precise location of the explosion, but the sec-
ond hyperbola will not have its center at the origin. See Example 10 in
Section 11.4, which gives the procedure for finding the exact location.

■

y

xA B

(−275, 0)
(1320, 0)

(275, 0)
(−1320, 0)

x2

75,625
y2

1,666,775
− = 1

Figure 11.2-6c

y

tBA

0

1000

1000

−1000

−1000

Figure 11.2-6a

For every point X
on the branch of the
hyperbola closer to A,

For every point X on the
branch of the hyperbola
closer to B,

XB � XA � �550.

XB � XA � 550.

NOTE
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Exercises 11.2

In Exercises 1–6, find the equation of the hyperbola
centered at the origin that satisfies the given condi-
tions.

1. x-intercepts asymptote 

2. y-intercepts asymptote 

3. vertex passing through 

4. vertex passing through 

5. focus and vertex 

6. focus and vertex 

In Exercises 7–12, match one of the following equa-
tions to the given graph.

7.

8. y

t

4 8
0

4

8

−8

−4
−8 −4

y

x

4 8
0

4

8

−8

−4
−8 −4

16y˛

2 �
25x˛

2

9 � 1x˛

2

9 �
y˛

2

4 � 1

8x2 � y 2 � 88x˛

2 � y˛

2 � 8

y˛

2

16 �
x˛

2

9 � 1x˛

2

9 �
y˛

2

4 � 1

A0, 112 B10, 42
1�2, 021�3, 02

A213, 6 BA0, 112 B ,
A4, 13 B12, 02,

y �
3x
2±12,

y � 2x±3,

9.

10.

11.

12.

In Exercises 13–18, sketch a complete graph of the
equation. Label the foci and the asymptote equations.

13. 14.

15. 16.

17. 18. x˛

2 � 2y˛

2 � �118y˛

2 � 8x˛

2 � 2 � 0

3y˛

2 � 5x˛

2 � 154x˛

2 � y˛

2 � 16

x2

4 � y 2 � 1x˛

2

6 �
y˛

2

16 � 1

y

x

42
0

4

2

−4

−2
−4 −2

y

x

42
0

4

2

−4

−2
−4 −2

y

x

21
0

2

1

−2

−1
−2 −1

y

x

4 8
0

4

8

−8

−4
−8 −4



708 Chapter 11 Analytic Geometry

In Exercises 19–24, graph each equation using a graph-
ing calculator.

19. 20.

21. 22.

23. 24.

25. Sketch the graph of for 

and What happens to the
hyperbola as b takes larger and larger values?
Could the graph ever degenerate into a pair of
horizontal lines?

26. Sketch the graph of for 

and What happens to the
hyperbola as a takes smaller and smaller values?
Could the graph ever degenerate into a pair of
horizontal lines?

27. April and Marty, 2 miles apart, are talking on the
phone when lightning strikes nearby. They each
hear the thunder, but April hears it 2.4 seconds
after Marty. Sketch a graph of the locations where
the lightning could have struck. [Sound travels at
approximately 1100 feet per second.]

28. In Exercise 27, suppose that later in the
conversation Marty hears the thunder 3 seconds
after April. Sketch a graph of the locations where
the lightning could have struck.

For Exercises 29–30, write the equation of the tangent
line to the given curve at the given point by using the
following facts. The slope m of the tangent line to a
hyperbola at the point is

for

for

29. x2

8 �
y2

4 � 1 at 14, 22

y2

a2 �
x2

b2 � 1m �
a2x
b2 y

x2

a2 �
y2

b2 � 1m �
b2x
a2 y

(x, y)

a � 0.5.a � 2, a � 1,

a � 8, a � 4,
y2

a2 �
x2

16 � 1

b � 20.b � 8, b � 12,

b � 2, b � 4,
y2

4 �
x2

b2 � 1

18y 

2 � 8x 

2 � 2 � 03y 

2 � 5x 

2 � 15

x2

6 �
y2

16 � 1x 

2 � 2y 

2 � �1

x2

4 � y2 � 14x2 � y 2 � 16

30.

31. Show that the difference between the distance
from each focus to any point on a hyperbola is
equal to the distance between the vertices.

32. Derive the equation of a hyperbola centered at the
origin as follows.
a. Let be a point on the hyperbola with

foci and Assume that
By the definition of a hyperbola,

the distance formula, and Exercise 31,

Show that the last equation simplifies as
shown.

b. Show that the last equation in part a may be
further simplified as shown.

c. Let and show that the equation in
b simplifies to the standard form of a
hyperbola centered at the origin.

33. Critical Thinking The following hyperbola is
centered at the origin with vertex V and the
auxiliary rectangle as shown. Use the length of
one of the sides of triangle POV to locate the foci.
Justify your answer.

y

x

O V

P

b2 � c2 � a2

x 

21c2 � a22 � a2 y2 � a21c2 � a22

cx � a2 � a21x � c22 � y 

2

21x � c22 � y 

2 � 21x � c22 � y 

2 � 2a

F1 P � F2 P � k

F1 P 7 F2 P.
F21c, 02.F11�c, 02

P1x, y2

y2

8 �
x2

36 � 1 at 16, 42
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11.3 Parabolas

Parabolas appeared in Section 3.3 as the graphs of quadratic functions,
which are a special case of the following more general definition.

Definition of a Parabola

Let L be a line in the plane and P be a point not on L. If X is any point
not on L, the distance from X to L is defined to be the length of the per-
pendicular line segment from X to L. The parabola with focus P and
directrix L is the set of all points X such that

as shown in Figure 11.3-1.

distance from X to P � distance from X to L

Objectives

• Define a parabola

• Write the equation of a
parabola

• Identify important
characteristics of parabolas

• Graph parabolas

axis

focus

vertex

directrix

X

P

L

Figure 11.3-1

The line through P perpendicular to L is called the axis. The intersection
of the axis with the parabola, which is the midpoint of the segment of the
axis from P to L, is the vertex of the parabola, as shown in Figure 11.3-1.

Equation of a Parabola

Suppose that the focus is on the y-axis at the point where p is a
nonzero constant, and that the directrix is the horizontal line If

is any point on the parabola, then the distance from to the
horizontal line is the length of the vertical segment from to

as shown in Figure 11.3-2.

By the definition of a parabola,

 21x � 022 � 1y � p22 � 21x � x22 � 3y � 1�p2 4 2
distance from 1x, y2 to 10, p2 � distance from 1x, y2 to 1x, �p2
 distance from 1x, y2 to 10, p2 � distance from 1x, y2 to y � �p

1x, �p2, 1x, y2y � �p
1x, y21x, y2 y � �p.

10, p2,

Figure 11.3-2

(x, y)

(0, p)

(0, −p)

(x, −p)

x

y
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The equations of a parabola in standard form can also be
written as

and

. x �
1

4 p  y˛

2

 y �
1

4 p  x˛

2

NOTE

Let p be a nonzero real number. Then the graph of each of
the following equations is a parabola with vertex at the
origin.

focus at focus at 
directrix: directrix:

y2 � 4pxx2 � 4py

x � �py � �p
(p, 0)(0, p)

Standard
Equation of a

Parabola 
with Vertex 

at the Origin

One of the variables is quadratic and the other variable is linear. When
the y term is linear, the parabola opens up or down; when the x term is
linear, the parabola opens left or right. The characteristics of the graph of
a parabola with vertex at the origin are shown in the following box. Notice
the following facts in both cases.

• the parabola bends toward the focus and away from the directrix
• the linear term determines the orientation of the parabola and the

axis of symmetry—left/right or up/down
• the sign of p determines which way the parabola opens
• the distance between the focus and the directrix is 2p

• the distance from the vertex to the focus and the distance from the
vertex to the directrix is p

• the vertex is the midpoint of the line segment joining the focus and
the directrix

Square both sides of the equation and simplify.

standard form of a parabola

Conversely, it can be shown that every point whose coordinates satisfy
this equation is on the parabola. A similar argument works for the
parabola with focus on the x-axis and directrix the vertical line

and leads to the following conclusion.x � �p,
1p, 02

x˛

2 � 4py
 x˛

2 � y˛

2 � 2py � p2 � 02 � y˛

2 � 2py � p2

 1x � 022 � 1y � p22 � 1x � x22 � 1y � p22
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For a nonzero real number p, parabolas have the following
characteristics.

• focus on the y axis at • focus on the x-axis at 

• directrix • directrix 

• axis of symmetry is the • axis of symmetry is the
y-axis x-axis

• If , then the parabola:
opens up opens right

• If , then the parabola:
opens down opens left

p 66 0

p 77 0

x � �py � �p

(p, 0)(0, p)

y2 � 4pxx2 � 4py

Characteristics
of Parabolas

Example 1 Graphing a Parabola

Show that the graph of the equation is a parabola. Draw its
graph, and then find and label its focus and directrix.

Solution

Write the equation in standard form: This equation is of the
form so the graph is a parabola. To find the value of p, note that

 p � �2
 4p � �8

x˛

2 � 4py,
x˛

2 � �8y.

x˛

2 � 8y � 0

y

x
focus

vertex

directrix

y

xfocus
vertex

directrix

y

x

focus

vertex

directrix

y

xfocus
vertex

directrix
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Therefore, the following statements are true, as shown in Figure 11.3-3.

• the focus is 
• the directrix is 
• the parabola opens downward because p is negative

■

Example 2 Graph a Parabola on a Calculator

On a calculator, graph the parabola 

Solution

Solve the equation for y and enter both functions into a calculator.

The graphs of and are shown in Figure 11.3-4.
■

Writing the Equation of a Parabola

Example 3 Find the Equation of a Parabola

Find the focus, directrix, and equation of the parabola that passes through
the point has vertex and has its focus on the x-axis.
Sketch the graph of the parabola, and label its focus and directrix.

Solution

Because the focus is on the x-axis, the equation has the form 
Since is on the graph,

Therefore, the focus is and the directrix is the vertical line 
The equation of the parabola is whose graph is shown in
Figure 11.3-5.

■

Applications of Parabolas

Projectiles follow a parabolic curve, a fact that is used in the design of
water slides in which the rider slides down a sharp incline, then up and
over a hill, before plunging downward into a pool. At the peak of the hill,
the rider shoots up along a parabolic arc several inches above the slide,
experiencing a sensation of weightlessness.

y˛

2 � �12x,
x � 3.1�3, 02

 �3 � p
 12 � �4p

 A112 B 2 � 4p1�12
A�1, 112 B y˛

2 � 4˛px.

10, 02,A�1, 112 B ,

Y2 � �112xY1 � 112x

y � ±112x

y2 � 12x.

y � �p � �1�22 � 2
10, p2 � 10, �22

�1

�10

10

10

Figure 11.3-4

y

x

84
0

8

4

−8

−4

−8 −4

x = 3

F(−3, 0)

Figure 11.3-5

y

x

4 8
0

4

−8

−4

−8 −4

y = 2

F(0, −2)

Figure 11.3-3
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Certain laws of physics show that sound waves or light rays from a source
at the focus of a parabola will reflect off the parabola in rays parallel to
the axis of the parabola, as shown in Figure 11.3-6. This is the reason that
parabolas are used in automobile headlights and searchlights.

Figure 11.3-6

axis
focus

Figure 11.3-7

axis
focus

Conversely, a sound wave or light ray coming toward a parabola will be
reflected into the focus, as shown in Figure 11.3-7. This fact is used in the
design of radar antennas, satellite dishes, and field microphones used at
outdoor sporting events to pick up conversations on the field.

Example 4 Parabola Application

A radio telescope in the Very Large Array at Socorro, New Mexico, shown
in Figure 11.3-8a, has the shape of a parabolic dish (a cross section through
the center of the dish is a parabola). It is approximately 12 feet deep at
the center and has a diameter of 82 feet. How far from the vertex of the
parabolic dish should the receiver be placed in order to “catch” all the
radio waves that hit the dish?

Figure 11.3-8a



All radio waves hitting the dish are reflected into the focus, so the receiver
should be located there. To find the focus, draw a cross section of the dish,
with the vertex at the origin, as shown in Figure 11.3-8b. The equation of
this parabola is of the form Because the point (41, 12) is on the
parabola,

Substitute

Simplify

Divide both sides by 48

The focus is the point which is p units from the vertex There-
fore, the receiver should be placed about 35 feet from the vertex.

■

10, 02.10, p2,
 p �

1681
48 � 35 feet

 p �
412

48

 412 � 48p
 412 � 4p1122
 x2 � 4py

x2 � 4py.
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Exercises 11.3

In Exercises 1–6, find the equation of the parabola with
vertex at the origin that satisfies the given condition.

1. axis passing through 

2. axis passing through 

3. focus 

4. focus 

5. directrix 

6. directrix 

In Exercises 7–10, match one of the following equa-
tions to the given graph.

x˛

2 � �8yy �
x2

4

y˛

2 � �4x6x � y˛

2

y � 3

x � �2

10, 3.52
15, 02

12, 122y � 0,

12, 122x � 0,

7.

8. y

x

84
0

8

4

−8

−4

−8 −4

y

x

840

8

4

−8

−4

−8 −4

Figure 11.3-8b

y

x

40200

20

40

−40 −20

(41, 12)
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9.

10.

In Exercises 11–14, sketch a complete graph of the
equation.

11. 12.

13. 14.

In Exercises 15–18, find the focus and directrix of the
parabola.

15. 16.

17. 18. x � �6y˛

2y �
1
4  x2

x �
1
2  y2y � 3x2

4y � x˛

28x � 2y˛

2

1
2  y2 � 2xx � �6y˛

2

y

x

840

8

4

−8

−4

−8 −4

y

x

840

8

4

−8

−4

−8 −4

In Exercises 19–22, find the equation of the parabola
with vertex at the origin passing through the given
points.

19. and 20. and 

21. and 22. and 

23. Find the point on the graph of that is
closest to the focus of the parabola.

24. Find the point on the graph of that is
closest to the focus of the parabola.

25. The receiver in a parabolic television dish is 2 feet
from the vertex and is located at the focus. Find
an equation of a cross section of the receiver.
(Assume that the dish is directed to the right and
that the vertex is at the origin.)

26. The receiver in a parabolic television dish is 
1.5 feet from the vertex and is located at the focus.
Find an equation of a cross section of the receiver.
(Assume that the dish is directed upward and that
the vertex is at the origin.)

27. The filament of a flashlight bulb is located at the 

focus, which is inch from the vertex of a parabolic

reflector. Find an equation of a cross section of the
reflector. (Assume that the flashlight is directed to
the left and that the vertex is at the origin.)

28. The filament of a flashlight bulb is located at the 

focus, which is inch from the vertex of a parabolic 

reflector. Find an equation of a cross section of the
reflector. (Assume that the flashlight is directed
downward and that the vertex is at the origin.)

1
4

1
2

x˛

2 � �3y

y˛

2 � 8x

12, �521�2, �521�1, 221�1, �22

a3, 32ba3,�3
2b11, 221�1, 22

5910ac11_690-775  9/21/05  2:00 PM  Page 715
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11.4 Translations and Rotations of Conics

Now that you are familiar with conic sections centered at the origin, the
discussion will be expanded to include both conics centered at other
points in the plane and ones with axes that may not be parallel to the
coordinate axes.

As you saw in Section 3.4, replacing a variable x with in the rule of
a function shifts the graph of the function 5 units to the right,
whereas replacing x with that is, shifts the graph 5 units
to the left. Similarly, if the rule of a function is given by then
replacing y with shifts the graph 4 units upward, because

is equivalent to For equations that are not func-
tions, a similar result applies.

y � f 1x2 � 4.y � 4 � f 1x2 y � 4
y � f 1x2,x � 1�52,x � 5,

y � f 1x2 x � 5

Objectives

• Write the equation of a
translated conic

• Graph a translated conic

• Determine the shape of a
translated conic without
graphing

• Apply translated conics to
real-world problems

Horizontal and
Vertical Shifts Let h and k be constant. Replacing x with and y with

in an equation shifts the graph of the equation:

• units to the right for positive h and to the left for
negative h

• units upward for positive k and downward for
negative k
00  k 00
00  h 00

y � k
x � h

The process of writing the equation of a conic is the same as that dis-
cussed in Sections 11.1 through 11.3, except that x and y are replaced with

and where (h, k) is the vertex of a parabola or the center of
an ellipse or a hyperbola.

Example 1 Graph a Translated Conic

Identify and sketch the graph of

and find its center, major axis, and minor axis.

Solution

The given equation can be obtained from the equation 

whose graph is known to be an ellipse, as follows:

replace x by and replace y by 

This is the situation described in the previous box with and 

Therefore, the graph is the ellipse shifted 5 units to the right x2

9 �
y 2

36 � 1

k � �4.h � 5

y � 1�42 � y � 4.x � 5

x2

9 �
y 2

36 � 1,

1x � 522
9 �

1y � 422
36 � 1

y � k,x � h
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and 4 units downward, as shown in Figure 11.4-1.

• The center of the ellipse is 
• The major axis lies on the vertical line 
• The minor axis is on the horizontal line y � �4.

x � 5.
15, �42.

y

x

4 8
0

4

8

−8

−4
−8 −4

Figure 11.4-1
■

Before identifying a conic section and determining its characteristics, the
corresponding equation should be rewritten in standard form.

Example 2 Identify a Conic

Identify and sketch the graph of

Solution

Rewrite the equation as

Complete the square in and 

Be careful here: 16 and 25 were not added to the left side of the equation.
Actually and were added, when the left side is
multiplied out. Therefore, to leave the original equation unchanged, 64
and 225 must be added to the right side.

 
1x � 422

9 �
1y � 522

4 � 1

 
41x � 422

36 �
91y � 522

36 � 1

 41x � 422 � 91y � 522 � 36
 41x 

2 � 8x � 162 � 91y 

2 � 10y � 252 � �253 � 64 � 225

9 �  25 � 2254 �  16 � 64

41x 

2 � 8x � 162 � 91y 

2 � 10y � 252 � �253 � ? � ?

y 

2 � 10y.x 

2 � 8x

 41x2 � 8x2 � 91y2 � 10y2 � �253
 14x 

2 � 32x2 � 19y 

2 � 90y2 � �253

4x 

2 � 9y 

2 � 32x � 90y � 253 � 0.

Review the
technique of completing the
square in Section 2.2, if
needed.

NOTE
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The graph of this equation is the ellipse shifted 4 units to the 

right and 5 units upward. Its center is at (4, 5), its major axis lies on the
horizontal line and its minor axis lies on the vertical line as
shown in Figure 11.4-2.

x � 4,y � 5,

x˛

2

9 �
y˛

2

4 � 1

y

x

4 80

4

8

−4

−4

Figure 11.4-2

y

x

4 8
0

4

8

−8

−4
−8 −4

Figure 11.4-3

■

Example 3 Writing the Equation of a Translated Conic

Find the equation of an ellipse with center at such that the end-
points of its major and minor axes are and 
Find the coordinates of the foci.

Solution

The major axis has length 12 and is parallel to the y-axis. The minor axis
has length 6 and is parallel to the x-axis. Therefore, and the
equation of the ellipse has the form

Because it has its center at the equation of the ellipse has the 
form

Since and and in an ellipse, 

The foci of are units from the center 

on the major axis. That is, the foci are and 
as shown in Figure 11.4-3.

■

A5, �4 � 313 B ,A5, �4 � 313 B
15, �42313

1x � 522
9 �

1y � 422
36 � 1

c � 262 � 32 � 136 � 9 � 127 � 313

c � 2a2 � b2,b � 3,a � 6

 
1x � 522

9 �
1y � 422

36 � 1.

 
1x � 522

32 �
1y � 1�42 22

62 � 1

15, �42,

1x � h22
32 �

1y � k22
62 � 1

a � 6, b � 3,

18, �42.15, 22, 15, �102, 12, �42,15, �42
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Example 4 Identify a Translated Conic

Identify and sketch the graph of Label all character-
istics of the conic.

Solution

Rewrite the equation and complete the square in y, being careful to add
the appropriate amounts to both sides of the equation.

Thus, the graph is the graph of the parabola shifted 4 units to 

the left and 3 units downward, as shown in Figure 11.4-4.

y˛

2 �
1
2  x

 1y � 1�32 22 �
1
2  1x � 1�42 2

 1y � 322 �
1
2  1x � 42

 21y˛ � 322 � x � 4
 21y˛

2 � 6y � 92 � x � 14 � 2192
 21y˛

2 � 6y2 � x � 14
 2y˛

2 � 12y � x � 14

x � 2y˛

2 � 12y � 14.

y

x

2

axis

directrixdirectrix

focus

focus

0

2

−4

−6

−2

−4 −2

Figure 11.4-4

The parabola has its vertex at the x-axis as its axis of sym-

metry, as its focus, and as its directrix. After the graph is 

shifted, the parabola will have its vertex at and the horizontal
line as its axis.

The translated parabola has its focus at or and 

directrix 

■

x � �
1
8 � 4 � �˛

33
8 .

a�31
8 , �3ba1

8 � 4, �3b,
y � �3

1�4, �32
x � �

1
8a1

8, 0b
10, 02,y˛

2 �
1
2  x



When the equation of a conic section is in standard form, the techniques
in previous sections can be used to obtain its graph on a calculator.
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major axis on the horizontal line 
minor axis on the vertical line 
vertices: 
foci: and where

c � 2a2 � b2

(h � c, k),(h � c, k)
(h � a, k)

x � h
y � k

major axis on the vertical line 
minor axis on the horizontal line 
vertices: 
foci: and where 

c � 2a2 � b2
(h, k � c),(h, k � c)

(h, k � a)
y � k

x � h

focal axis on the horizontal line 
vertices: and 
foci: and where 

asymptotes: y � ±±±
b
a (x � h) � k

c � 2a2 � b2

(h � c, k),(h � c, k)
(h � a, k)(h � a, k)

y � k

focal axis on the vertical line 
vertices: and 
foci: and where 

asymptotes: y � ±±±
a
b

(x � h) � k

c � 2a2 � b2

(h, k � c),(h, k � c)
(h, k � a)(h, k � a)

x � h

focus: 
directrix: the horizontal line 
axis: the vertical line 
opens upward if downward if p 66 0p 77 0,

x � h
y � k � p

(h, k � p)

focus: 
directrix: the vertical line 
axis: the horizontal line 
opens to right if to left if p 66 0p 77 0,

y � k
x � h � p

(h � p, k)

⎧
⎪
⎪
⎨
⎪
⎪
⎩

⎧
⎪
⎪
⎨
⎪
⎪
⎩

⎧
⎪
⎨
⎪
⎩

⎧
⎪
⎨
⎪
⎩

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

Standard
Equations of

Conic Sections

Let (h, k) be any point in the plane.

• If a and b are real numbers with then the graph
of each of the following equations is an ellipse with center
(h, k).

• If a and b are positive real numbers, then the graph of each
of the following equations is a hyperbola with center (h, k).

• If p is a nonzero real number, then the graph of each of the 
following equations is a parabola with vertex (h, k).

(y � k)2 � 4p(x � h)

(x � h)2 � 4p(y � k)

(y � k)2

a2 �
(x � h)2

b2 � 1

(x � h)2

a2 �
(y � k)2

b2 � 1

(x � h)2

b2 �
(y � k)2

a2 � 1

(x � h)2

a2 �
(y � k)2

b2 � 1

a 77 b 77 0,

The following is a summary of the standard equations of conic sections
whose axes are parallel to the coordinate axes.



Example 5 Calculator Graph of a Conic

Graph the equation .

Solution

The graph is a hyperbola centered at To graph on a calculator,
solve the equation for y.

Graph the last two functions on the same screen. The graph of the first is
the top half and the graph of the second is the bottom half of the graph
of the original equation, as shown in Figure 11.4-5.

■

When a second-degree equation is not in standard form, the fastest way
to graph it is to use the method in Example 5, modified as in the next
example.

Example 6 Graph a Conic Not in Standard Form

Graph the equation without putting it in
standard form.

Solution

Write the equation as

This is a quadratic equation of the form with

which can be solved by using the quadratic formula.

 �
�9 ± 281 � 321x˛

2 � 6x � 42
16

 �
�9˛ ± 292 � 4 � 81x˛

2 � 6x � 42
2 � 8

 y �
�b ± 2b2 � 4ac

2a

a � 8,  b � 9,  and  c � x˛

2 � 6x � 4,

ay˛

2 � by � c � 0,

8y˛

2 � 9y � 1x˛

2 � 6x � 42 � 0.

x˛

2 � 8y˛

2 � 6x � 9y � 4 � 0

 Y1 �
B

2 �
1x � 322

2 � 1 or Y2 � �
B

2 �
1x � 322

2 � 1

 y � 1 � ±
B

2 �
1x � 322

2

 1y � 122 � 2 c1 �
1x � 322

4 d � 2 �
1x � 322

2

 
1y � 122

2 � 1 �
1x � 322

4

13, �12.

1y � 122
2 �

1x � 322
4 � 1
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Technology 
Tip

Casio has a conic sec-
tion grapher, on the main
menu, that produces the
graphs of equations in
standard form when the
various coefficients are
entered.

�7 13

8

�10

Figure 11.4-5



The graphs of both of the functions

are shown on the same screen in Figure 11.4-6. The conic is an ellipse.
■

Rotations and Second-Degree Equations

A second-degree equation in x and y is one that can be written in the form

[1]

for some constants A, B, C, D, E, and F, with at least one of A, B, or C
nonzero. Every conic section is the graph of a second-degree equation.
The terms Dx, Ey, and F determine the translation of the conic from the
origin. When the term Bxy determines a rotation of the conic so
that its axes are no longer parallel to the coordinate axes. For instance, 

the ellipse equation can be written as

The last equation above has the form of equation [1] with
and 

Conversely, it can be shown that the graph of every second-degree equa-
tion is a conic section (possibly degenerate—see page 691). When the
equation has an xy term, the conic may be rotated from standard position
such that its axis or axes are not parallel to the coordinate axes.

Example 7 Identify a Conic

Graph the equation and identify the
conic.

Solution

Rewrite the equation as

The last equation has the form with 
and It can be solved for y by using the quadratic
formula.

c � 3x˛

2 � x � 7.
a � 1, b � 6x � 2,ay˛

2 � by � c � 0,

 y˛

2 � 16x � 22y � 13x˛

2 � x � 72 � 0
 y˛

2 � 6xy � 2y � 3x˛

2 � x � 7 � 0

3x˛

2 � 6xy � y˛

2 � x � 2y � 7 � 0

F � 6.E � �12,A � 3, B � 0, C � 2, D � 0,

 3x˛

2 � 2y˛

2 � 12y � 6 � 0
 3x˛

2 � 2y˛

2 � 12y � 18 � 12
 3x˛

2 � 21y˛

2 � 6y � 92 � 12
 3x˛

2 � 21y � 322 � 12

 12 ax˛

2

4 b � 12 S 1y � 322
6 T � 12

x˛

2

4 �
1y � 322

6 � 1

B � 0,

Ax˛

2 � Bxy � Cy˛

2 � Dx � Ey � F � 0

 Y2 �
�9 � 281 � 321x˛

2 � 6x � 42
16

 Y1 �
�9 � 281 � 321x˛

2 � 6x � 42
16   and 
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�8

�4.3

2

2.3

Figure 11.4-6



Half of the graph is obtained by graphing

and the other half by graphing

The graph is a hyperbola whose focal axis is tilted.
■

The Discriminant

The following fact makes it easy to identify the graphs of second-degree
equations without graphing.

 Y2 �
�16x � 22 � 216x � 222 � 4 � 1 � 13x 

2 � x � 72
2

 Y1 �
�16x � 22 � 216x � 222 � 4 � 1 � 13x 

2 � x � 72
2

 y �
�16x � 22 – 216x � 222 � 4 � 1 � 13x 

2 � x � 72
2 � 1

 y �
�b ± 2b 

2 � 4ac
2a
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�8 8

�10

8

Figure 11.4-7

The graph of the equation

with A, B, C not all zero,

• is a circle, an ellipse, or a point, if 

• is a parabola, a line, or two parallel lines, if 

• is a hyperbola or two intersecting lines, if 

The expression is called the discriminant.B2 � 4AC

B2 � 4AC 77 0

B2 � 4AC � 0

B2 � 4AC 66 0

Ax2 � Bxy � Cy2 � Dx � Ey � F � 0,

Graphs of
Second-Degree

Equations

Example 8 Identify a Conic

Identify the graph of and confirm
your conclusions by graphing.

Solution

Compute the discriminant with and 

Hence, the graph is an ellipse, a circle, or a single point. Use the quad-
ratic formula to solve for y.

Graph both solutions on the same screen, as shown in Figure 11.4–8.

■

y �
�1�4x � 62 ± 21�4x � 622 � 4 � 3 � 12x 

2 � 5x � 82
2 � 3

3y 

2 � 1�4x � 62y � 12x 

2 � 5x � 82 � 0

B 

2 � 4AC � 1�422 � 4 � 2 � 3 � 16 � 24 � �8

C � 3.A � 2, B � �4,

2x 

2 � 4xy � 3y 

2 � 5x � 6y � 8 � 0

�20 5

�15

5

Figure 11.4-8



Example 9 Use the Discriminant

Identify the graph of , and sketch a com-
plete graph.

Solution

The discriminant of the equation is So the
graph is a hyperbola—or two intersecting lines in the degenerate case.

To graph the equation, write the equation in quadratic form in y.

Then use the quadratic formula to solve for y.

Graphing these two functions in the standard window produces 
Figure 11.4-9a, which looks like a parabola. This cannot be correct: because
the discriminant is positive, the graph must be a hyperbola. A different
viewing window is needed for a complete graph of this hyperbola, which
is shown in Figure 11.4-9b.

■

Applications

The long-range navigation system (LORAN) uses hyperbolas to enable a
ship to determine its exact location by radio, as illustrated in the follow-
ing example.

Example 10 LORAN Application

Three LORAN radio transmitters Q, P, and R are located 200 miles apart
along a straight line and simultaneously transmit signals at regular inter-
vals. These signals travel at a speed of 980 feet per microsecond, the speed
of light. Ship S receives a signal from P and, 528 microseconds later, a sig-
nal from Q. It also receives a signal from R 305 microseconds after the
one from P. Determine the ship’s location.

Solution

Let the x-axis be the line through the LORAN stations, with the origin
located midway between Q and P, so that the situation looks like Figure
11.4-10. If the signal takes t microseconds to go from P to S, then

so that

0 d1 � d2 0 � 0 980t � 9801t � 5282 0 � 980 � 528 � 517,440 feet.

d1 � 980t  and  d2 � 9801t � 5282

y �
�15x � 82 ± 215x � 822 � 4 � 2 � 13x˛

2 � 12
4

 2y˛

2 � 15x � 82y � 13x˛

2 � 12 � 0
 2y˛

2 � 5xy � 8y � 3x˛

2 � 1 � 0
 3x˛

2 � 5xy � 2y˛

2 � 8y � 1 � 0

B˛

2 � 4AC � 5˛

2 � 4 � 3 � 2 � 1.

3x˛

2 � 5xy � 2y˛

2 � 8y � 1 � 0
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Figure 11.4-9a

10

�10

�10 10

Figure 11.4-9b

300

�300

�300 300

x

y

Q P R

−100 100 300

S

d2 d3
d1

Figure 11.4-10



Since one mile is 5280 feet,

In other words,

This is the definition of a hyperbola given in Section 11.2; thus, S is on
the hyperbola with foci and and distance dif-
ference This hyperbola has an equation of the form

where are the vertices, are the foci and

Figure 11.4-11 and the fact that the vertex is on the hyperbola show that

Consequently, and 
Thus, the ship lies on the hyperbola

[2]

A similar argument using P and R as foci shows that the ship also lies on
the hyperbola with foci and and center (200, 0),
whose distance difference r is

As before, you can verify that and 

This hyperbola has center (200, 0) and its foci are 
and which implies that 

The ship also lies on the hyperbola

[3]

Since the ship lies on both hyperbolas, its coordinates are solutions of both
equations [2] and [3]. They can be found algebraically by solving each of
the equations for setting the results equal, and solving for x. They can
be found geometrically by graphing both hyperbolas and finding the points
of intersection. Since the signal from P was received first, the ship is closer
to P. So it is located at the point S in Figure 11.4–12 or at the intersection
point directly below it. A graphical intersection finder shows that point S
is at approximately (130.48, 215.14), where the coordinates are in miles from
the origin.

■

y˛

2,

1x � 20022
801.17 �

y˛

2

9198.83 � 1.

b2 � c˛

2 � a˛

2 � 100˛

2 � 801.17 � 9198.83

c � 100.1200 � c, k2 � 1300, 02,1100, 02 1200 � c, k2 �801.17.

a˛

2 � 28.305˛

2 �a �
56.61

2 � 28.305

0  d1 � d3 0 � 980 � 305 � 298,900 feet � 56.61 miles.

R � 1300, 02P � 1100, 02

x˛

2

2401 �
y˛

2

7599 � 1.

b˛

2 � c˛

2 � a˛

2 � 100˛

2 � 49˛

2 � 7599.a˛

2 � 49˛

2 � 2401

 0 a 0 � 49
 0�2a 0 � 98

 0 1100 � a2 � 1100 � a2 0 � 98
 0 3distance from P to 1a, 02 4 � 3distance Q to 1a, 02 4 0 � r � 98

1a, 02
c˛

2 � a˛

2 � b˛

2.
1–c, 02 � 1–100, 021±a, 02

x˛

2

a˛

2 �
y˛

2

b˛

2 � 1,

r � 98.
Q � 1�100, 02P � 1100, 02

0 1distance from P to S2 � 1distance from Q to S2 0 � 98 miles.

ƒ d1 � d2 ƒ �
517,440

5280 � 98 miles.
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y

PQ
a−100 100

100 − a100 + a

(a, 0) x

Figure 11.4-11

S

Q P R

�900

�500 500

900

Figure 11.4-12
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Exercises 11.4

In Exercises 1–16, find the equation of the conic sec-
tions satisfying the given conditions.

1. ellipse with center (2, 3); endpoints of major and
minor axes: 

2. ellipse with center endpoints of major and
minor axes: 

3. ellipse with center foci on the line 
major axis of length 12; minor axis of length 5

4. ellipse with center ; foci on the line
major axis of length 15; minor axis of

length 7

5. hyperbola with center ; vertex 
passing through 

6. hyperbola with center vertex 
passing through 

7. hyperbola with center (4, 2); vertex (7, 2);
asymptote 

8. hyperbola with center vertex 
asymptote 

9. parabola with vertex (1, 0); axis passing
through (2, 13)

10. parabola with vertex axis passing
through 

11. parabola with vertex (2, 1); axis passing
through (5, 0)

12. parabola with vertex axis passing
through 

13. ellipse with center passing through 
and 

14. ellipse with center (2, 5); passing through (2, 4)
and 

15. parabola with vertex and focus 

16. parabola with vertex and focus 

a�5, �99
20b

1�5, �52
a�47

16, �2b
1�3, �22

1�3, 52

19, �22
13, �6213, �22;

1�1, �42
y � �3;11, �32;

y � 1;

1�1, 12
y � 0;1�3, 02;

x � 1;

6y � 5x � 15
1�3, 02;1�3, �52;

3y � 4x � 10

A�1, 1 � 413 B 1�3, 12;1�5, 12;
A�2 � 3110, 11 B 1�2, 12;1�2, 32

y � �9;
1�3, �92

x � 7;17, �42
10, 22, 1�5, 172, 1�10, 22, 1�5, �132

1�5, 22
12, �12, 10, 32, 12, 72, 14, 32

In Exercises 17–22, assume that the graph of the 
equation is a nondegenerate conic section. Without
graphing, determine whether the graph is a circle,
ellipse, hyperbola, or parabola.

17.

18.

19.

20.

21.

22.

In Exercises 23–34, sketch a complete graph of each
conic section.

23.

24.

25.

26.

27. 28.

29. 30.

31.

32.

33.

34.

In Exercises 35–52, use the discriminant to identify the
conic section whose equation is given, and find a view-
ing window that shows a complete graph.

35.

36. 4x˛

2 � 5y˛

2 � 8x � 30y � 29 � 0

9x2 � 4y2 � 54x � 8y � 49 � 0

1y � 522
9 �

1x � 222
1 � 1

1x � 322
1 �

1y � 222
4 � 1

1y � 122
9 �

1x � 122
25 � 1

1y � 322
25 �

1x � 122
16 � 1

x � �31y � 122 � 2x � 21y � 222
y � 31x � 222 � 3y � 41x � 122 � 2

1x � 522
4 �

1y � 222
12 � 1

1x � 122
16 �

1y � 422
8 � 1

1x � 222
16 �

1y � 322
12 � 1

1x � 122
4 �

1y � 522
9 � 1

2x˛

2 � 4xy � 2y˛

2 � 3x � 5y � 10 � 0

17x˛

2 � 48xy � 31y˛

2 � 50 � 0

2x˛

2 � 4xy � 5y˛

2 � 6 � 0

x˛

2 � 2xy � y˛

2 � 212x � 212y � 0

xy � 1 � 0

x˛

2 � 2xy � 3y˛

2 � 1 � 0
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60. Find the points of intersection of the parabola
and the line 

In Exercises 61–64, write the resulting equation in
standard form.

61. Translate the hyperbola defined by the equation
up 3 units and to the

right 5 units.

62. Translate the hyperbola defined by the equation
down 2 units and to

the right 3 units.

63. Translate the hyperbola defined by the equation
up 1 unit and to the

left 4 units.

64. Translate the hyperbola defined by the equation
down 5 units and to

the left 4 units.

65. Suppose a golf ball driven off the tee travels 
210 yards down the fairway. During flight it
reaches a maximum height of 55 yards. Find 
an equation that describes the ball’s parabolic 
path if the tee is at the origin and the positive 
x-axis is along the ground in the direction of the
drive.

66. Suppose a golf ball driven off the tee travels 
175 yards down the fairway. During flight it
reaches a maximum height of 40 yards. Find an
equation that describes the ball’s parabolic path if
the tee is at the origin and the positive x-axis is
along the ground in the direction of the drive.

67. Two listening stations 1 mile apart record an
explosion. One microphone receives the sound 2
seconds after the other does. Use the line through
the microphones as the x-axis, with the origin
midway between the microphones, and the fact
that sound travels at 1100 feet/second to find the
equation of the hyperbola on which the explosion
is located. Can you determine the exact location of
the explosion?

68. Two transmission stations P and Q are located 200
miles apart on a straight shoreline. A ship 50 miles
from shore is moving parallel to the shoreline. A
signal from Q reaches the ship 400 microseconds
after a signal from P. If the signals travel at 
980 feet per microsecond, find the location of the
ship (in terms of miles) in the coordinate system
with x-axis through P and Q, and origin midway
between them.

7x2 � 5y2 � 48 � 20y � 14x

4x2 � 9y2 � 8x � 54y � 113

16x2 � 9y2 � 64x � 89 � 18y

3y2 � 20x � 23 � 5x2 � 12y

y � 15.4x˛

2 � 8x � 2y � 5
37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

In Exercises 53 and 54, find the equations of two
distinct ellipses satisfying the given conditions.

53. Center at major axis of length 14; minor
axis of length 8.

54. Center at major axis of length 15; minor
axis of length 6.

55. Critical Thinking Show that the asymptotes of the 

hyperbola are perpendicular to each 

other.

56. Find a number k such that is on the graph
of Then graph the equation.

57. Find the number b such that the vertex of the
parabola lies on the y-axis.

58. Find the number d such that the parabola
passes through 

59. Find the points of intersection of the parabola
and the line x � 9.4y˛

2 � 4y � 5x � 12

1�6, 32.1y � 122 � dx � 4

y � x˛

2 � bx � c

3x˛

2 � ky˛

2 � 4.
1�2, 12

x˛

2

a˛

2 �
y˛

2

a˛

2 � 1

12, �62;

1�5, 32;

3x˛

2 � 212xy � 2y˛

2 � 12 � 0

3x˛

2 � 213xy � y˛

2 � 4x � 413y � 16 � 0

11x˛

2 � 24xy � 4y˛

2 � 30x � 40y � 45 � 0

17x˛

2 � 12xy � 8y˛

2 � 80 � 0

x˛

2 � 2xy � y˛

2 � 1212x � 1212y � 0

23x˛

2 � 2613xy � 3y˛

2 � 16x � 1613y � 128 � 0

x˛

2 � 10xy � y˛

2 � 1 � 0

9x˛

2 � 24xy � 16y˛

2 � 90x � 130y � 0

52x˛

2 � 72xy � 73y˛

2 � 200

17x˛

2 � 48xy � 31y˛

2 � 49 � 0

x˛

2 � 213xy � 3y˛

2 � 813x � 8y � 32 � 0

41x˛

2 � 24xy � 34y˛

2 � 25 � 0

x˛

2 � 6x � y � 5 � 0

3y˛

2 � x � 2y � 1 � 0

x˛

2 � 16y˛

2 � 0

4y˛

2 � x˛

2 � 6x � 24y � 11 � 0
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11.4.A Excursion: Rotation of Axes

The graph of an equation of the form

with is a conic section that is rotated so that its axes are not par-
allel to the coordinate axes, as in Figure 11.4.A-1. Although the graph is
readily obtained with a calculator, as in Examples 7–9 of Section 11.4, use-
ful information about the center, vertices, etc., cannot be read directly from
the equation, as it can be with an equation in standard form. However, if
the xy coordinate system is replaced by a new coordinate system, as indi-
cated by the blue uv axes in Figure 11.4.A-1, then the conic is not rotated
in the new system and has a uv equation in standard form that will pro-
vide the desired information.

Rotation Equations

In order to use this approach, first determine the relationship between the
xy coordinates of a point and its coordinates in the uv system. Suppose
the uv coordinate system is obtained by rotating the xy axes about the ori-
gin, counterclockwise through an angle If a point P has coordinates 
(x, y) in the xy system, its coordinates (u, v) can be found in the rotated
coordinate system by using Figure 11.4.A-2.

u.

B � 0,

Ax˛

2 � Bxy � Cy˛

2 � Dx � Ey � F � 0,

Objectives

• Write the equation of a
rotated conic section in
terms of u and v

• Determine the angle of
rotation of a rotated conic
section

y

x

(x, y)
(u, v)

u

u

r

v

R

x

y

v

O

Q

P

θ
β

y

v

u

x

Figure 11.4.A-2

Figure 11.4.A-1
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Triangle OPQ shows that

Therefore,

Similarly, triangle OPR shows that

so that

Applying the addition identity for cosine shows that

A similar argument with and the addition identity for
sine leads to the following result.

y � r sin1u � b2
 � u cos u � v sin u

 � 1r cos b2cos u � 1r sin b2sin u

 � r˛1cos u cos b � sin u sin b2
 x � r cos1u � b2

x � r cos1u � b2  and  y � r sin1u � b2

cos1u � b2 �
OR
OP �

x
r   and  sin1u � b2 �

PR
OP �

y
r

u � r cos b  and  v � r sin b

cos b �
OQ
OP �

u
r   and  sin b �

PQ
OP �

v
r

If the xy coordinate axes are rotated through an angle to
produce the uv coordinate axes, then the coordinates (x, y)
and (u, v) of a point are related by the following equations.

y � u sin U � v cos U

x � u cos U � v sin U

U
The Rotation

Equations

Example 1 A Rotated Conic in the uv System

If the xy axes are rotated radians, find the equation relative to the uv 

axes of the graph of

Identify and graph the equation.

Solution

Because sin and the rotation equations are

 y � u sin 
p
6 � v cos 

p
6 �

1
2  u �

13
2  v

 x � u cos 
p
6 � v sin 

p
6 �

13
2  u �

1
2  v

cos 
p
6 �

13
2 ,p

6 �
1
2

3x˛

2 � 213xy � y˛

2 � x � 13y � 0

p
6

Recall that 

represents about 0.5236
radians, or 30°.

p
6

NOTE



Substitute these expressions into the original equation.

Then multiply out the result.

You can verify that the last equation simplifies to

In the uv system, is the equation of an upward-opening parabola 

with vertex at (0, 0), focus at , and directrix , as shown in 

Figure 11.4.A-3.
■

Rotation Angle to Eliminate xy Term

Rotating the axes in the preceding example changed the original equa-
tion, which included an xy term, to an equation that had no uv term. This
can be done for any second-degree equation by choosing an angle of rota-
tion that will eliminate the xy term.

v � �
1
8a0, 18b

u2 �
1
2 v

4u2 � 2v � 0  or equivalently, u2 �
1
2 v � 4a1

8bv

� a1
4  u2 �

13
2  uv �

3
4  v˛

2b � a13
2  u �

1
2  vb � 13 a12  u �

13
2  vb � 0

3 a34  u2 �
13
2  uv �  

1
4  v2b � 213 a13

4  u2 �
1
2  uv �

13
4  v2b

 � a1
2  u �

13
2  vb2

� a13
2  u �

1
2  vb � 13 a1

2  u �
13
2  vb � 0

3 a13
2  u �

1
2  vb2

� 213 a13
2  u �

1
2  vb  a1

2  u �
13
2  vb

3x˛

2 � 213xy � y˛

2 � x � 13y � 0
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The equation 
can be rewritten as by
rotating the xy axes through an angle such that

cot 2U �
A � C

B     a0 66 U 66 P2 b
U

A�u2 � C�v2 � D�u � E�v � F � 0
Ax˛

2 � Bxy � Cy˛

2 � Dx � Ey � F � 0 (B � 0)
Rotation Angle

6
π

y
v

u

x

2

2

−2

−2

20−2

−2

2

Figure 11.4.A-3

The restriction insures that 

Example 2 Find the Rotation Angle

What angle of rotation will eliminate the xy term in the equation

and what are the rotation equations?

153x˛

2 � 192xy � 97y˛

2 � 1710x � 1470y � 5625 � 0,

0 6 2u 6 p.0 6 u 6 p2



Solution

Letting and the figure should be rotated 
through an angle of where

Because and is positive, the terminal side of the angle
lies in the first quadrant, as shown in Figure 11.4.A-4. The hypotenuse 

of the triangle shown has length 

Hence, The half-angle identities show that

Using and the key on a calculator, the angle of rotation 

is approximately 0.6435 radians, or about The rotation equations are

■

Identifying Rotated Conics

The rotation equations can be used to find the equation of the rotated
conic in the uv coordinate system. Substitute the x rotation equation for
x and the y rotation equation for y, and simplify the result to eliminate
the xy term.

Example 3 Graph a Rotated Conic

Graph the equation without using a calculator.

Solution

The angle and the rotation equations for eliminating the xy term were
found in the preceding example. Substitute the rotation equations into the
given equation and simplify the result to eliminate the xy term.

u

153x˛

2 � 192xy � 97y˛

2 � 1710x � 1470y � 5625 � 0

 y � u sin u � v cos u �
3
5  u �

4
5  v.

 x � u cos u � v sin u �
4
5  u �

3
5  v

36.87°.

uSIN�1sin u �
3
5

 cos u �
B

1 � cos 2u
2 �

Q

1 �
7
25

2 �
B

16
25 �

4
5

 sin u �
B

1 � cos 2u 
2 �

Q

1 �
7
25

2 �
B

9
25 �

3
5

cos 2u �
7
25.

272 � 242 � 1625 � 25.
2u

cot 2u0 6 2u 6 p

cot 2u �
153 � 97

192 �
56
192 �

7
24

u,
C � 97,A � 153, B � 192,
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2θ

24

7

y

x

Figure 11.4.A-4



Finally, complete the square in u and v by adding the appropriate amounts
to the right side so as not to change the equation.

Therefore, the graph is an ellipse centered at (5, 3) in the uv coordinate
system, as shown in Figure 11.4.A-5.

 
1u � 522

1
�
1v � 322

9
� 1

 91u � 522 � 1v � 322 � 9
 91u˛

2 � 10u � 252 � 1v˛

2 � 6v � 92 � �225 � 91252 � 9

 91u2 � 10u2 � 1v2 � 6v2 � �225
 9u2 � v2 � 90u � 6v � 225 � 0

 225u˛

2 � 25v˛

2 � 2250u � 150v � 5625 � 0

 � 97 a 9
25  u2 �

24
25  uv �

16
25  v2b � 2250u � 150v � 5625 � 0

153 a16
25  u˛

2 �
24
25  uv �

9
25  v˛

2b � 192 a12
25  u˛

2 �
7

25  uv �
12
25  v˛

2b

 � 97 a35  u �
4
5  vb2

� 1710 a4
5  u �

3
5  vb � 1470 a3

5  u �
4
5  vb � 5625 � 0

153 a4
5  u �

3
5  vb2

� 192 a4
5  u �

3
5  vb  a3

5  u �
4
5  vb

 153x˛

2 � 192xy � 97y˛

2 � 1710x � 1470y � 5625 � 0
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1

1

y

x

u

v

36.87°

5
3

Figure 11.4.A-5
■
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Exercises 11.4.A

In Exercises 1–4, rotate the axes through the given
angle to form the uv coordinate system. Express the
given equation in terms of the uv coordinate system.

1.

2.

3.

4.

In Exercises 5–8 find the angle of rotation that will
eliminate the xy term of the equation and list the rota-
tion equations in this case.

5.

6.

7.

8.

9. Critical Thinking
a. Given an equation 

with and an angle , use the rotation
equations to rewrite the equation in the form 

,

where are expressions involving
and the constants 

b. Verify that

c. Use the double-angle identities to show that

d. If is chosen so that , show 

that This proves the rotation angle
formula.

B¿ � 0.

cot 2u �
A � C

B
u

B¿ � 1C � A2 sin 2u � B cos 2u

� B1cos2 u � sin2 u2B¿ � 21C � A2 sin u cos u

A, . . . , F.cos usin u,
A¿, . . . , F¿

B¿uv � C¿v2 � D¿u � E¿v � F¿ � 0A¿u2 �

uB � 0

Ey � F � 0Ax2 � Bxy � Cy2 � Dx �

52x˛

2 � 72xy � 73y˛

2 � 200

17x2 � 48xy � 31y2 � 49 � 0

x˛

2 � 213xy � 3y˛

2 � 813x � 8y � 32 � 0

41x2 � 24xy � 34y˛

2 � 25 � 0

sin u �
1
15

 ; x˛

2 � 4xy � 4y˛

2 � 515y � 1 � 0

u �
p

6  ;  7x˛

2 � 613xy � 13y˛

2 � 16 � 0

u �
p

4  ;  13x˛

2 � 10xy � 13y˛

2 � 72

u �
p

4  ;  xy � 1

10. Critical Thinking Assume that the graph of
(with at least

one of or nonzero) in the uv coordinate
system is a nondegenerate conic. Show that its
graph is an ellipse if and have
the same sign), a hyperbola if and

have opposite signs), or a parabola if 

11. Critical Thinking Assume the graph of 

is a nondegenerate conic section. Prove the
statement in the box on page 723 as follows.
a. In Exercise 9 a. show that

b. Assume has been chosen so that Use
Exercise 10 to show that the graph of the
original equation is 
an ellipse if 
a parabola if and 
a hyperbola if 

12. Critical Thinking Suppose an xy- and uv-
coordinate system have the same origin and is
the angle between the positive x-axis and the
positive u-axis. Show that the point in the
rotated system is related to the point by the
following equations. Hint: If the rotation from 
the xy-coordinate system to the uv-coordinate
system is positive, then the rotation from the 
uv-coordinate system to the xy-coordinate system
is negative.

In Exercises 13–16, find the new coordinates of the
point when the coordinate axes are rotated through the
given angle by using the equations in Exercise 12.

13. 14.

15. 16. 13, 32; sin u �
5
1311, 02; u �

p

6

1�2, 42; u �
p

313, 22; u �
p

4

v � y cos u � x sin u.
u � x cos u � y sin u

1x, y2
1u, v2

u

B2 � 4AC 7 0.
B2 � 4AC � 0,

B2 � 4AC 6 0,

B¿ � 0.u

1B¿ 22 � 4A¿C¿ � B2 � 4AC.

Ax˛

2 � Bxy � Cy˛

2 � Dx � Ey � F � 0

A¿C¿ � 0.C¿
1A¿A¿C¿ 6 0

C¿1A¿A¿C¿ 7 0

C¿A¿
C¿v2 � D¿u � E¿v � F¿ � 0A¿u2 �
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11.5 Polar Coordinates

The coordinate system most commonly used is the rectangular coordinate
system, which is based on two perpendicular axes. However, other coor-
dinate systems are possible.

The Polar Coordinate System

Choose a point O in the plane, called the origin, or pole. The horizontal
ray extending to the right with endpoint O is called the polar axis. A point
P in the plane has polar coordinates

where r is the length of and is the angle with the polar axis as its 
initial side and as its terminal side, as shown in Figure 11.5-1. Unless
otherwise stated, will be measured in radians.u

OP
uOP

1r, u2

Objectives

• Locate points in a polar
coordinate system

• Convert between
coordinates in rectangular
and polar systems

• Create graphs of equations
in polar coordinates

• Recognize equations and
graphs of:

cardioid

rose

circle

lemniscate

limaçon

The coordinates
of the origin can be written
as where is any
angle.

u10, u2,
NOTE

polar
axis

(r,    )

Origin
Pole

θ

θ

r

P

O

polar axis(2, π)

5, π
2)(

5, π
6)(

3, − π
4)(

4, 4π
3 )(

Figure 11.5-1

Figure 11.5-2

The -coordinate may be either positive or negative, depending on
whether it is measured as a counterclockwise or clockwise rotation. Fig-
ure 11.5-2 shows some points in a polar coordinate system, and the
“circular grid” that a polar coordinate system imposes on the plane.

u



Section 11.5 Polar Coordinates 735

The polar coordinates of a point P are not unique. For example, because 

and are coterminal angles, the coordinates and

all represent the same point, as shown in Figure 11.5-3.a2, �5p
3 b ˛

a2, p3b , a2, 7p3 b ,�5p
3

7p
3 ,

p
3 ,

O

2, π
3)(

π
3

O

2,

7π
3

)( 7π
3 2, – 5π

3 )(

– 5π
3

Opolar axis polar axispolar axis

Figure 11.5-3

O

2, π
4)(

π
2

–2, π
4)(

π
4

O
O

–3, 7π
6 )(

7π
6

3, 7π
6 )(

2.5,

−

)( π
2−

−2.5, )( π
2−

polar axis polar axis polar axis

Figure 11.5-4

The r-coordinate may also be negative, as shown in Figure 11.5-4. For
the point lies on the line containing the terminal side of 

at a distance r from the origin—but on the opposite side of the origin from
the point 1r, u2.

u1�r, u2r 7 0,

Example 1 Polar Coordinates of a Point

Determine if the given coordinates represent the same point as 
in a polar coordinate system.

a. b. c. a�3, 7p6 ba3, �5p
6 ba3, 13p

6 b

a3, p6 b
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polar axis

x-axis

y-axis
(x, y)(r,   ) P

= 0
θ

θ

=θ
θ

r

π
2

Figure 11.5-6

Let r be as shown in Figure 11.5-6, with r positive. Since r is the distance
from (0, 0) to the distance formula shows that

Also, by the definitions of the trigonometric functions in the coordinate
plane,

These equations can be used to obtain the relationship between polar and
rectangular coordinates.

cos u �
x
r   sin u �

y
r   tan u �

y
x

r � 2x2 � y2

1x, y2,

P

Q

polar axis

7π
6

13π
6

π
6

−5π
6

Figure 11.5-5

The point labeled Q in Figure 11.5-5 can be represented by the coordi-

nates or The point labeled P can be repre-

sented by the coordinates Thus, the coordinates in a and c

represent the same point as but the coordinates in b do not.

■

Polar and Rectangular Coordinates

Suppose that a polar and rectangular system of coordinates are drawn in
the same plane, with the origins at the same point, so that the polar axis 

is the positive x-axis, and the polar line is the y-axis. The coordi-

nates of point P in the plane can be written as or as as shown
in Figure 11.5-6.

1x, y2,1r, u2
u �

p
2

a3, p6 b,
a3, �5p

6 b.
a�3, 7p6 b.a3, p6 b, a3, 13p

6 b ,
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Polar Rectangular
Point P with polar coordinates has rectangular
coordinates where

and

Rectangular Polar
Point P with rectangular coordinates has polar
coordinates where

and tan U �
y
xr˛

2 � x˛

2 � y˛

2

(r, U),
(x, y)

S

y � r sin Ux � r cos U

(x, y),
(r, U)

S
Coordinate
Conversion

Formulas

Technology 
Tip

Keys to convert from
rectangular to polar 

coordinates, or vice versa,
are in the TI ANGLE
menu and in the ANGLE
submenu of the Casio
OPTN menu.

The conversion formulas from polar to rectangular coordinates give a
unique solution for all values of r and .

Example 2 Polar Rectangular

Convert each point from polar coordinates to rectangular coordinates.

a. b.

Solution

a. For , apply the conversion formulas using and 

So the rectangular coordinates are 

b. For (3, 4), apply the conversion formulas using and 

So the approximate rectangular coordinates are 

Figure 11.5-7 displays the rectangular coordinates of the points in part a
and part b, along with both a rectangular grid and a polar grid.

■

The conversion formulas from rectangular to polar coordinates do not 

have unique solutions for r and . In particular, the equation 

has no solutions when and infinitely many solutions when x � 0.x � 0

tan u �
y
xu

1�1.96, �2.272.
 y � 3 sin 4 � �2.27
 x � 3 cos 4 � �1.96

u � 4.r � 3

A13, 1 B .
y � 2 sin 

p
6 � 2 �

1
2 � 1

x � 2 cos 
p
6 � 2 �

13
2 � 13

u �
p
6 .r � 2a2, p6 b

13, 42a2, p6 b

S

u

y

x

A(  3, 1)

B(−1.97, −2.27)

−2

−2

2

20

Figure 11.5-7
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(k is any integer)

Not every solution works for a specific point P. To find solutions that 
represent the point P, you need to know which quadrant contains P. 

can be used for points in Quadrants I and IV because it would 

be an angle between and Similarly, can be used 

for points in Quadrants II and III because it would be an angle between 

and 

Example 3 Rectangular Polar

Convert each point from rectangular coordinates to polar coordinates.

a. b. c. d.

Solution

a. For , the second set of equations of the coordinate 
conversion formulas with and shows that

and or

The point is in Quadrant IV, so two possible 

answers are or 

b. For , . A calculator shows that

Because the point is in Quadrant III, 
Therefore, one possible answer is .

c. For , Because the point is on the nega-

tive y-axis, Therefore, two possible answers are or 

.

d. For , .

and which is in Quadrant IV.

Because is in Quadrant II, 

Therefore, one possible answer is .

Figure 11.5-8 displays the polar coordinates of the points in parts a–d,
along with both a rectangular grid and a polar grid.

■

1215, 2.032
u � �1.11 � p � 2.03.1�2, 42

tan�1 1�22 � �1.11,tan u � �
4
2 � �2,

r � 21�222 � 42 � 14 � 16 � 120 � 2151�2, 42
a5, �p2 b

a5, 3p2 bu �
3p
2 .

r � 202 � 1�522 � 5.10, �52
A134, 4.17 B u � 1.0304 � p � 4.17.1�3, �52

tan�1 �5
�3 � 1.0304

r � 21�322 � 1�522 � 1341�3, �52
a212, 7p

4 b .a212, �p4 b
u � tan�1 �2

2 � �
p
4 .

tan u �
�2
2 � �1,r � 222 � 1�222 � 18 � 212

y � �2x � 2
12, �22

1�2, 4210, �521�3, �5212, �22

S

3p
2 .p

2

u � tan�1 
y
x � p

p
2 .�

p
2

u � tan�1 
y
x

u � tan�1 
y
x � kp

B(  34, 4.17)

D(2  5, 2.03)

A(2  2, −   )π
4

C(5,     )3π
2

y

x

Figure 11.5-8



a. The graph consists of all points
, that is, all points whose

distance from the pole is 3. So,
the graph is a circle of radius 3
with its center at the pole.

b. The graph consists of all

points These points 

lie on the straight line that
contains the terminal side of

an angle of radians, whose

initial side is the polar axis.

p
6

Qr, p6 R.13, u2
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■

polar axisO

r = 3

54321

Figure 11.5-9

polar axis

=θ π
6

π
6

O

Figure 11.5-10

Polar Graphs

An equation like , where r and are the variables, is a polar
equation. Equations in x and y are called rectangular or Cartesian equa-
tions. Many useful curves have simple polar equations, although they
may have complicated rectangular equations.

Like other graphs, the graph of a polar equation in r and is the set of
points (r, ) in the plane that make the equation true. It is possible to write
a polar equation in rectangular form or a rectangular equation in polar
form by using the coordinate conversion formulas, definitions, and basic
facts about trigonometric functions.

Graphs of the Form and 

Several types of graphs have equations that are simpler in polar form than
in rectangular form. For example, the graph of consists of points of
the form (1, ), which is all points that are 1 unit from the pole. That is,
the graph of is the unit circle centered at the pole. The equation 

consists of all points of the form . That is, all points that lie 

on the line that makes a , or , angle with the polar axis.

Example 4 Polar Graphs

Graph each polar equation below.

a. b.

Solution

u �
p
6r � 3

45°p
4

Qr, p4 Ru �
p
4

r � 1
u

r � 1

U � br � a

u

u

ur � 2 cos u



Graphs of Other Polar Equations

Other types of graphs have simple equations in polar form. Several types
of polar graphs have specific forms that can be classified by special names
like cardioid, limaçon, and rose.

Many polar equations are functions, with independent variable , and
dependent variable r. Therefore, polar functions are written as 

Example 5 Polar Graphs

Graph 

Solution

Consider the behavior of sin in each quadrant.u

r � 1 � sin u.

r � f 1u2.u
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θ =

θ = π

θ = 2π

π
2

1

O 1 O 1

2

1

θ = 3π
2

2

O

11

O

1�1

θ
θ θAs     increases from 0 to    , sin

increases from 0 to 1. So r = 1 + sin
increases from 1 to 2.

π
2

θ θ
θ

As     increases from π to     , sin

decreases from 0 to −1. So r = 1 + sin
decreases from 1 to 0.

3π
2 θ θ

θ

As     increases from      to 2π, sin

increases from −1 to 0. So r = 1 + sin
increases from 0 to 1.

3π
2

θ

θ

θAs     increases from     to π, sin

decreases from 1 to 0. So r = 1 + sin
decreases from 2 to 1.

π
2

Figure 11.5-11
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�0.55

�2.35 2.35

2.55

Figure 11.5-12

For and sin repeats the same pattern, so the full graph,
as shown in the lower right drawing of Figure 11.5-11, is called a car-
dioid. The graph of displayed on a graphing calculator is
shown in Figure 11.5-12.

■

The easiest way to graph a polar function of the form is to use a
calculator in polar graphing mode. The following Tip should be helpful.

r � f 1u2

r � 1 � sin u

uu 6 0,u 7 2p

Technology 
Tip

The viewing window of a calculator in polar graphing mode has the
usual settings for the x- and y-values, and also min, max, and step.

(Casio has pitch instead of step.) For a complete graph of a polar equa-
tion that contains a trigonometric function, the interval from min to max
should be at least as large as the period of the function.

The value of step determines the number of points plotted by the calcula-
tor. A smaller value of step will generally result in a more accurate curve
but will also take longer to graph.

To view the polar coordinates using the Trace feature, from the Format
menu choose PolarGC on TI models. Casio models automatically display
coordinates for the type of graph shown.

u

u

uu

uu

uuu

?

?

? ?

Figure 11.5-13

Graphing Exploration

Graph on a cal-
culator in polar graphing mode.
Experiment with the size of the
window and the values of min,

max, and step to find (approx-
imately) the graph shown in
Figure 11.5-13. What window
settings did you use to obtain the
graph?

uu

u

4 cos ur � 2 �

Common Polar Graphs

The following is a summary of commonly encountered polar graphs. In
each case, a and b are constants, and is measured in radians.

Depending on the plus or minus sign and whether sine or cosine is used,
the basic shape of each graph may differ from those shown by a rotation,
reflection, or horizontal or vertical shift.

u
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Equation Name of Graph Shape of Graph

Archimedian spiral 

cardioid

rose
For n odd, there are n petals.

For n even, there are 2n petals.

circle
r � a cos u

r � a sin u

1n � 22
r � a cos nu
r � a sin nu

r � a 11 – cos u2
r � a 11 – sin u2

r � au 1u � 02
r � au 1u � 02

π 0

θr = a(1 + cos ) θr = a(1 − sin )

π
2

3π
2

π 0

π
2

3π
2

π 0

n = 4

a

π
2

3π
2

π 0

θr = a sin nθr = a cos n

n = 5

a

π
2

3π
2

π 0

π
2

3π
2

π 0
a

a

π
2

3π
2

θr = a sinθr = a cos

0

r = a ≥( 0)θθ r = a ≤( 0)θθ

π

π
2

3π
2

0π

π
2

3π
2
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π 0

π
2

3π
2

π 0

a

a

π
2

3π
2

r2 = a2 sin 2θ r2 = a2 cos 2θ

Equation Name of Graph Shape of Graph

lemniscate

limaçon
1a, b 7 0, a � b2
r � a � b sin u

r � a � b sin u

r˛

2 � – a2 cos 2u
r˛

2 � – a2 sin 2u

π 0

π
2

3π
2

π 0

π
2

3π
2

π 0

π
2

3π
2

   a < b
r = a + b cos θ

  b < a < 2b
r = a + b sin θ

   a ≥ 2b
r = a − b sin θ

Exercises 11.5

1. What is one possible pair of polar coordinates of 
each of the points P, Q, R, S, T, U, V in the figure?

P
Q

Rπ

7π
6

S
T

U

V
1 3 5 7 polar axis

π
3−

π
4

π
22π

3

In Exercises 2–6, list four other pairs of polar coordi-
nates for the given point, each with a different
combination of signs (that is, 

and 

2. 3. 4.

5. 6.

In Exercises 7–10, convert the polar coordinates to rec-
tangular coordinates.

7. 8.

9. 10. 12, 02a�1, 5p6 b

a�2, p4 ba3, p3 b

a13, 3p4 ba�1, �p6 b

a2, �2p
3 b1�5, p2a3, p3 b

r 66 0, U 66 0).r 66 0, U 77 0;U 66 0;
r 77 0,U 77 0;r 77 0,



In Exercises 11–16, convert the rectangular coordinates
to polar coordinates.

11. 12. 13.

14. 15. 16.

In Exercises 17–22, sketch the graph of the equation
without using a calculator.

17. 18. 19.

20. 21. 22.

In Exercises 23–46, sketch the graph of the equation.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41. (cissoid)

42. (conchoid)

43. (logarithmic spiral)

44. 45. 46.

47. a. Find a complete graph of 
b. Predict what the graph of will

look like. Then check your prediction with a
calculator.

c. Predict what the graph of will
look like. Then check your prediction with a
calculator.

r � 1 � 2 sin 5u

r � 1 � 2 sin 4u
r � 1 � 2 sin 3u.

r˛

2 � ur �
1
u
 1u 7 02r2 �

1
u

r � eu

r � 4 � 2 sec u

r � sin u tan u

r � 4 tan ur � sin 
u

2

r � 4 cos u � 4 sin ur � sin u � cos u

r � 1 � 2 cos ur � 2 � 4 cos u

r2 � sin 2ur2 � 4 cos 2u

r � sin 4˛ur � sin 3u

r �  cos 3ur � cos 2u

r � �6˛ sin ur � �2˛ cos u

r � 3 � 3 cos ur � 1 � sin u

r � 3u 1u � 02r � u 1u � 02

u � �4u � 1u �
5p
6

u � �
p

3r � �1r � 4

1�6.2, �321�5, 2.5213, �22
12, 42A213, �2 BA313, �3 B

48. a. Find a complete graph of 
b. Predict what the graph of will

look like. Then check your prediction with a
calculator.

c. Predict what the graph of will
look like. Then check your prediction with a
calculator.

49. If a and b are constants such that , show
that the graph of is a circle.
Hint: Multiply both sides by r and convert to
rectangular coordinates.

50. Critical Thinking Prove that the coordinate
conversion formulas are valid when Hint: If
P has coordinates and with 
verify that the point Q with rectangular coordinates

has polar coordinates Since
is positive and the conversion formulas

proved in the text apply to Q. For instance,
which implies that 

51. Critical Thinking Distance Formula for Polar
Coordinates: Prove that the distance from to

is . Hint: If 
and then the triangle with vertices

has an angle of whose
sides have lengths r and s. Use the Law of Cosines.

52. Critical Thinking Explain why the following
symmetry tests for the graphs of polar equations
are valid.
a. If replacing by produces an equivalent

equation, then the graph is symmetric with
respect to the line (the x-axis).

b. If replacing by produces an equivalent
equation, then the graph is symmetric with
respect to the line (the y-axis).

c. If replacing r by produces an equivalent
equation, then the graph is symmetric with
respect to the pole (origin).

�r
u � p�2

p � uu

u � 0

�uu

u � b,10, 021r, u2, 1s, b2,
u 7 b,s 7 0,

r 7 0,2r˛

2 � s2 � 2rs cos 1u � b21s, b2
1r, u2

x � r cos u.�x � �r cos u,

r 6 0, �r
1�r, u2.1�x, �y2

r 6 0,1r, u2,1x, y2
r 6 0.

r � a sin u � b cos u

ab � 0

r � 1 � 3 sin 4u

r � 1 � 3 sin 3u
r � 1 � 3 sin 2u.
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11.6 Polar Equations of Conics

In a rectangular coordinate system, each type of conic section has a dif-
ferent definition. By using polar coordinates, it is possible to give a unified
treatment of conics and their equations. A key concept in this develop-
ment is eccentricity.

Eccentricity

Recall that ellipses and hyperbolas are defined in terms of two foci, and
both have two vertices that lie on the line through the foci. The eccen-
tricity, e, of an ellipse or a hyperbola is the ratio

If a conic is centered at the origin with foci on the x-axis, the situation is
as follows.

Ellipse Hyperbola

For 

foci: vertices: foci: vertices: 

c � 2a2 � b2c � 2a2 � b2

1±a, 021±c, 021±a, 021±c, 02
a 7 b,

x2

a2 �
y2

b2 � 1x2

a2 �
y2

b2 � 1

e �
distance between the foci

distance between the vertices

Objectives

• Define eccentricity of an
ellipse, a parabola, and a
hyperbola

• Develop and use the
general polar equation of 
a conic section

Do not confuse
the eccentricity of a conic
section, which is denoted
as e and whose value
varies, with the number e,
which is the constant
2.718281828.... The meaning
should be clear in context.

NOTE

−a −c c a

2c

2a

vertices

foci

−a a c−c

2c

2a

vertices

foci

e �
2c
2a �

c
a �

2a2 � b2

ae �
2c
2a �

c
a �

2a2 � b2

a

Figure 11.6-1 Figure 11.6-2
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A similar analysis shows that the formulas for e are also valid for conics
whose foci lie on the y-axis. These formulas can be used to compute the
eccentricity of any ellipse or hyperbola whose equation is in standard
form.

As Figure 11.6-1 shows, the distance between the foci of an ellipse is
always less than the distance between its vertices, so that

for all ellipses.

Similarly, the distance between the foci of a hyperbola is greater than the
distance between its vertices, as shown in Figure 11.6-2, so that

for all hyperbolas.

Example 1 Eccentricity of a Conic

Find the eccentricity of each given conic.

a. b.

Solution

a. represents a hyperbola with and so

b. From Example 2 in Section 11.4, can
be written in standard form, as

The graph of this equation has the same shape as the ellipse

with a horizontal and a vertical shift. Since the distances between the
foci or vertices are the same in both ellipses, the eccentricity is the same
for both. Using and the eccentricity is

■

The eccentricity of an ellipse measures its distortion from a circle, which
is a special case of an ellipse. In a circle, the two foci coincide at the cen-
ter, so the distance between the foci is 0 and its eccentricity is 0. As the
foci move farther apart, the eccentricity increases, and the ellipse becomes
more distorted from a circle. In Figure 11.6-3, the foci and eccentricities
are shown in the same color as the corresponding ellipse.

e �
2a2 � b2

a �
19 � 4

3 �
15
3 � 0.745

b2 � 4,a2 � 9

x˛

2

9 �
y˛

2

4 � 1

1x � 422
9 �

1y � 522
4 � 1

4x2 � 9y2 � 32x � 90y � 253 � 0

e �
2a˛2 � b2

a �
14 � 21

2 �
125

2 �
5
2 � 2.5

b2 � 21,a2 � 4
y˛

2

4 �
x˛2

21 � 1

4x˛2 � 9y˛2 � 32x � 90y � 253 � 0
y˛

2

4
�

x˛2

21
� 1

e 77 1

0 66 e 66 1

y

x

10.5
0

1

0.5

−1

−0.5
−1 −0.5

e = 0.9

e = 0.5
e = 0

Figure 11.6-3



In Figure 11.6-4, colors of the foci and the eccentricities correspond to each
hyperbola. As the foci move farther from the vertices, the branches of the
hyperbola become straighter and approach vertical lines.

The preceding discussion does not apply to parabolas because they have
only one focus. For reasons explained below, the eccentricity of any
parabola is defined to be the number 1.

Alternate Definition of Conics

The following description, whose proof is omitted, is sometimes used to
define the conic sections because it provides a unified approach instead
of the variety of descriptions given in Sections 11.1, 11.2, and 11.3. It is
also used to determine the polar equations of conic sections.

Section 11.6 Polar Equations of Conics 747

y

x

5
0

−5

−5

5

e = 1.1

e = 2
e = 5

Figure 11.6-4

Let L be a fixed line called a directrix, P a fixed point not on
L, and e a positive constant. The set of all points X in the
plane such that

is a conic section with P as one focus.

• For the conic is an ellipse.

• For the conic is a parabola.

• For the conic is a hyperbola.e 77 1,
e � 1,

0 66 e 66 1,

distance between X and the fixed point
distance between X and the fixed line

�
XP
XL � e

Alternate
Definition of

Conic Sections

Recall that the
distance from a point to a
line is measured along the
perpendicular segment
from the point to the line.

NOTE

The distance from X to P is 

the distance from X to L. The
conic is an ellipse.

The distance from X to P equals
the distance from X to L. The
conic is a parabola.

The distance from X to P is twice
the distance from X to L. The
conic is a hyperbola.

XP
XL � 2 S XP � 2XLXP

XL � 1 S XP � XL

3
4

XP
XL �

3
4 S XP �

3
4XL

X

P

L

e = 3
4

X

P

L

e = 1

X

P

L

e = 2

Recall that the definition of a parabola was all points equidistant from a
fixed point and a fixed line. Therefore, the alternate definition coincides
with the original definition given in Section 11.3. Examples of this defi-
nition are shown in the following diagram.
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X(r,   )

P

r

θ

d r cos θ

θ

L

Figure 11.6-6

Polar Equations of Conics

To generate polar equations of conics from the alternate definition, let P
be the pole, and L be a vertical line d units to the left of the pole, as shown
in Figure 11.6-5.

A point on a general conic satisfies the condition

By the definition of polar coordinates, the r-coordinate of X, shown in Fig-
ure 11.6–6, is the distance from the origin to X.

Figure 11.6-6 also shows that

So the polar equation of the conic is given by

If L is to the right of the pole, it can be shown that

If L is a horizontal line, it can also be shown that

depending on whether L is below the pole or above it.

If an equation has another value in place of 1, divide both numerator and
denominator by that number to rewrite the equation in the desired form.
When the constant term in the denominator is 1, the eccentricity is the
coefficient of the trigonometric function. For example, suppose a conic is
given by

Divide both numerator and denominator by 4.

The conic is a hyperbola because the eccentricity is 2.

r �
5

1 � 2 cos u

r �
20

4 � 8 cos u

r �
ed

1 � e sin u
  or  r �

ed
1 � e sin u

r �
ed

1 � e cos u

 r �
ed

1 � e cos u

 r˛11 � e cos u2 � ed
 r � e r cos u � ed

 r � ed � e r cos u

 XP
XL �

r
d � r cos u

� e

XL � d � r cos u

XP � r

XP
XL � e

X � 1r, u2

L

P

d
polar axis

Figure 11.6-5
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r �
ed

1 � e sin U

r �
ed

1 � e sin U

r �
ed

1 � e cos U

r �
ed

1 � e cos U

Equations Graph Example

Ellipse
• Vertices and 
• One focus at (0, 0)

Parabola
• Vertex or ; 

r is not defined for the 
other value of 

• Focus at (0, 0)

Hyperbola
• Vertices and 
• One focus at (0, 0)

Ellipse

• Vertices and 

• One focus at (0, 0)

Parabola

• Vertices or 

; r is not defined 

for the other value of 
• Focus at (0, 0)

Hyperbola

• Vertices and

and 

• One focus at (0, 0)

U �
3P
2

U �
P
2

e 77 1

U

U �
3P
2

U �
P
2

e � 1

U �
3P
2

U �
P
2

0 66 e 66 1

U � PU � 0
e 77 1

U

U � PU � 0
e � 1

U � PU � 0
0 66 e 66 1

Polar Equations
of Conic
Sections

d is the distance
from the focus at the pole
to the directrix.

NOTE
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�15 15

�10

10

�10

�15 15

10

−10

10

−15 15

Figure 11.6-7

Example 2 Polar Equations of Conic Sections

Find a complete graph of for the following eccentricities.

a. b. c.

Solution

From the first equation in the preceding chart, with the graphs are
an ellipse, a parabola, and a hyperbola, respectively, as shown in Figure
11.6-7. In each case, .0 � u � 2p

d � 3,

e � 2e � 1e � 0.7

r �
3e

1 � e cos u

a.

ellipse

r �
310.72

1 � 0.7 cos u
�

2.1
1 � 0.7 cos u

e � 0.7 b.

parabola

r �
3112

1 � 1 � cos u
�

3
1 � cos u

e � 1 c.

hyperbola

r �
3122

1 � 2 cos u
�

6
1 � 2 cos u

e � 2

■

Example 3 Polar Equations of Conic Sections

Identify the conic section that is the graph of

and find its eccentricity and vertices.

Solution

First, rewrite the equation in one of the forms listed in the preceding box.

According to the equation, . Thus, the graph is a hyperbola with
eccentricity 2.5.

e � 2.5

r �
20

4 � 10 sin u
�

20
411 � 2.5 sin u2 �

5
1 � 2.5 sin u

r �
20

4 � 10 sin u



The vertices occur when and To find the r-coordinates, 

substitute into the original equation.

The vertices are and 

■

a10
7 , 3p

2 b .a�10
3 , p2 b

�
10
7�

20
14�

20
4 � 101�12 r �

20

4 � 10 sin 
3p
2

S u �
3p
2

� �
10
3�

20
�6�

20
4 � 10 � 1 r �

20
4 � 10 sin 

p
2

S u �
p
2

u �
3p
2 .u �

p
2
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Example 4 Polar Equations of Conic Sections

Find a polar equation of the ellipse with one focus at (0, 0) and vertices
(3, 0) and 

Solution

Because the vertices occur when and the polar equation is
of the form

Select one of these equations, say

and proceed as follows. If the selected equation leads to a contradiction,
start again with the other form.

Substitute the values of r and given by the vertices to obtain two equa-
tions.

(3, 0)

and  611 � e2 � ed 311 � e2 � ed

 6 �
ed

1 � e 3 �
ed

1 � e

 6 �
ed

1 � e cos p
 3 �

ed
1 � e cos 0

16, p2
u

r �
ed

1 � e cos u

r �
ed

1 � e cos u
  or  r �

ed
1 � e cos u

.

u � p,u � 0

16, p2.

Graphing Exploration

Find a viewing window that shows a complete graph of the hyper-
bola in Example 3.

(6, π) (3, 0)

Figure 11.6-8



Therefore,

Substituting this value of e into the equation and solving
for d shows that Hence, and the equation of the ellipse is

If you had started this process with the equation you 

would have obtained which is impossible since the eccentricity 

is always positive.
■

e � �
1
3,

r �
ed

1 � e cos u
,

r �
4

1 �
1
3 cos u

  or equivalently,  r �
12

3 � cos u

ed � 4d � 12.
311 � e2 � ed

 e �
1
3

 9e � 3
 3 � 3e � 6 � 6e

 311 � e2 � 611 � e2
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a. b.

d.

c.

f.e.

Exercises 11.6

In Exercises 1–6, which of the graphs a–f above could
be the graph of the given equation?

1. 2. r �
6

2 � cos u
r �

3
1 � cos u

3. 4.

5. 6. r �
6

3
2 �

3
2 sin u

r �
6

3 � 2 sin u

r �
15

1 � 4 cos u
r �

6
2 � 4 sin u
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In Exercises 7–12, identify the conic section whose
equation is given; if it is an ellipse or hyperbola, state
its eccentricity.

7. 8.

9. 10.

11. 12.

In Exercises 13–18, find the eccentricity of the conic
whose equation is given.

13.

14.

15.

16.

17.

18.

19. a. Using a square viewing window, graph these
ellipses on the same screen, if possible.

b. Compute the eccentricity of each ellipse in part a.
c. Based on parts a and b, how is the shape of an

ellipse related to its eccentricity?

20. a. Graph these hyperbolas on the same screen, if
possible.

b. Compute the eccentricity of each hyperbola in
part a.

c. Based on parts a and b, how is the shape of a
hyperbola related to its eccentricity?

In Exercises 21–32, sketch the graph of the equation
and label the vertices.

21. 22.

23. 24. r �
5

1 � cos u
r �

4
2 � 4 cos u

r �
5

3 � 2 sin u
r �

8
1 � cos u

y˛ 2

4 �
x˛ 2

1 � 1  
y˛ 2

4 �
x˛ 2

12 � 1  
y˛ 2

4 �
x˛2

96 � 1

x˛ 2

16 �
y˛ 2

1 � 1 x˛ 2

16 �
y˛ 2

6 � 1 x˛ 2

16 �
y ˛2

14 � 1

4x˛ 2 � 5y ˛2 � 16x � 50y � 71 � 0

16x˛2 � 9y˛ 2 � 32x � 36y � 124 � 0

4x˛ 2 � 9y˛ 2 � 24x � 36y � 36 � 0

1x � 622
10 �

y˛2

40 � 1

1x � 422
18 �

1y � 522
25 � 1

x˛

2

100 �
y˛2

99 � 1

r �
�6

5 � 2 cos u
r �

2
6 � 4 cos u

r �
20

5 � 10 sin u
r �

8
3 � 3 sin u

r �
�10

2 � 3 cos u
r �

12
3 � 4 sin u

25. 26.

27. 28.

29. 30.

31. 32.

In Exercises 33–46, find the polar equation of the conic
section that has focus (0, 0) and satisfies the given con-
ditions.

33. parabola; vertex 

34. parabola; vertex 

35. ellipse; vertices and 

36. ellipse; vertices and 

37. hyperbola; vertices and 

38. hyperbola; vertices and 

39. eccentricity 4; directrix 

40. eccentricity 2; directrix 

41. eccentricity 1; directrix 

42. eccentricity 1; directrix 

43. eccentricity ; directrix 

44. eccentricity ; directrix 

45. hyperbola; vertical directrix to the left of the pole; 

eccentricity 2; is on the graph.

46. hyperbola; horizontal directrix above the pole; 

eccentricity 2; is on the graph.

47. A comet travels in a parabolic orbit with the sun
as the focus. When the comet is 60 million miles
from the sun, the line segment from the sun to the 

comet makes an angle of radians with the axis 

of the parabolic orbit. Using the sun as the pole

p

3

a1, 2p3 b

a1, 2p3 b

r � 3 csc u
4
5

r � 2 sec u
1
2

r � 5 sec u

r � �3 csc u

r � 4 csc u

r � �2 sec u

a4, 3p2 ba�2, p2 b
1�3, p211, 02

14, p212, 02
a8, 3p2 ba2, p2 b

a2, p2 b
13, p2

r �
15

4 � 4 cos u
r �

10
2 � 3 sin u

r �
10

3 � 2 cos u
r �

3
1 � sin u

r �
32

3 � 5 sin u
r �

15
3 � 2 cos u

r �
12

3 � 4 sin u
r �

10
4 � 3 sin u



and assuming the axis of the orbit lies along the
polar axis, find a polar equation for the orbit.

48. Halley’s Comet has an elliptical orbit, with
eccentricity 0.97 and the sun as a focus. The
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length of the major axis of the orbit is 3364.74
million miles. Using the sun as the pole and
assuming the major axis of the orbit is
perpendicular to the polar axis, find a polar
equation for the orbit.

11.7 Plane Curves and Parametric Equations

Many curves in the plane cannot be represented as the graph of a func-
tion Parametric graphing makes it possible to represent such
curves in terms of functions and also provides a formal definition of a
curve in the plane.

Plane Curves

Consider an object moving in the plane during a particular time interval.
In order to describe both the path of the object and its location at a partic-
ular time, three variables are needed: the time t, and the coordinates 
of the object at time t. For example, the coordinates might be given by

During the time interval the object traces out the curve
shown in Figure 11.7-1. The points labeled on the graph show the loca-
tion of the point at various times. Note that the object may be at the same
location at different times, the points where the graph crosses itself.

0 � t � 12.5,

x � 4 cos t � 5 cos 3t  and  y � sin 3t � t

1x, y2

y � f 1x2.Objectives

• Define plane curves and
parameterizations

• Find parametric equations
for projectile motion and
cycloids

t = 1

t = 3

t = 2
t = 0

t = 12.5

–3 1–9 9

x

y

Figure 11.7-1
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A pair of parametric equations that describe a given curve is called a 
parameterization of the curve. More than one parameterization is possi-
ble for a given curve.

Example 1 Parameterizations of a Line

Find three parameterizations of the line through with slope 

Solution

The equation of the line in rectangular coordinates is

or equivalently [1]

Choose three expressions in terms of t to represent x, and substitute each
into equation [1] to find corresponding expressions for y.

a. b. c.

for any t

for any t

Notice in a and b that when t runs through all real numbers, both x and 

y take on all real numbers as well. In c when t runs from to 

takes all possible real number values, and hence so does y. Therefore, each
parameterization represents the entire line.

■

Graphing Parametric Equations

Parametric equations may be graphed by hand by plotting points, or by
using a calculator in parametric mode. When choosing a viewing win-
dow, you must specify values not only for x and y, but also for t. You
must also choose a t-step (or t-pitch), which determines how much t
changes each time a point is plotted. A t-step between 0.05 and 0.15 usually
produces a relatively smooth graph in a reasonable amount of time.

p
2 , x � tan t�

p
2

�
p
2 6 t 6 p2 � �2t � 3

 y � �2 tan t � 1 y � �2 1t � 12 � 1 y � �2t � 1

 x � tan t x � t � 1 x � t

y � �2x � 1y � 3 � �2 1x � 12

�2.11, �32

Let f and g be continuous functions of t on an interval I. The
set of all points where

is called a plane curve. The variable t is called a parameter
and the equations that define x and y are called parametric
equations.

x � f (t) and y � g (t)

(x, y),

Definition of a
Plane Curve

CAUTION

Not every substitution
of an expression for x
gives a complete pa-
rameterization of the
graph. For example, the
parametric equations

give a nonnegative x-
coordinate and a nega-
tive y-coordinate for
every value of t, so the
parameterization pro-
duces only part of the
graph.

 y � �2t 

2 � 1
 x � t 

2
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Example 2 Parameterization of a Parabola

By hand, graph the curve given by

Confirm your sketch by using the parametric mode on a calculator.

Solution

For there is a value of x and a value of y that corresponds to
each specific value of t. Find several points by picking values for t, find-
ing the corresponding values of x and y, plotting the points, and
connecting the points in the order determined by the least to greatest 
values of t.

�1 � t � 2,

x � �2t   and   y � 4t˛

2 � 4,  �1 � t � 2.

Graphing Exploration

Graph the curve shown in Figure 11.7-1 at the beginning of this sec-
tion using the window

and t-step 0.1. Does the graph look like Figure 11.7-1? Now change
the t-step to 1.5 and graph the equations again. Now how does the
graph look? Experiment with different t-steps to see how they affect
the graph.

0 � t � 12.5  �10 � x � 10  0 � y � 15

Technology 
Tip

For parametric graph-
ing mode, choose PAR
or PARM respectively
in the TI MODE menu
or the TYPE submenu
of the Casio GRAPH
menu.

y

x

840

4

12

8

−8 −4
−4

�6

�10 10

14

Figure 11.7-2a Figure 11.7-2b

t (x, y)

2 0

0 0

1 0

2 12 1�4, 122�4

1�2, 02�2

10, �42�4

12, 02�1

y � 4t˛

2 � 4x � �2t
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The points are plotted and the direction of the curve is indicated in Fig-
ure 11.7-2a, and a calculator-generated graph is shown in Figure 11.7-2b.

■

The direction in which a parametric curve is traced is called its orienta-
tion.

Eliminating the Parameter

Some curves given by parametric equations can also be expressed as part
of the graph of an equation in x and y. The process for doing this, called
eliminating the parameter, is as follows.

Solve one of the parametric equations for the parameter t and
substitute this result in the other parametric equation.

Example 3 Eliminate the Parameter

Consider the curve given in Example 2.

Find an equation in x and y whose graph includes the graph of the given
curve.

Solution

Solve one of the parametric equations for t and substitute the result into 

the other equation. Solving for t shows that Substituting

this into the equation for y and simplifying the result will eliminate t.

The graph of is the parabola shown in Figure 11.7-3.

Every point on the curve given by the parametric equations is also on the
graph of However, the curve given by the parametric equa-
tion is not the entire parabola, but only the part shown in red, which joins
the points These points correspond to the minimum
and maximum values of t, 

■

Example 4 Parameterization of Transformations

Given the parent relation write a set of parametric equations to
represent the relation, and sketch the graph.

Then write the parametric equations of the following successive trans-
formations of the parent relation, and sketch each graph.

x � y˛

2,

t � �1 and t � 2.
12, 02 and 1�4, 122.

y � x˛

2 � 4.

y � x˛

2 � 4

y � 4t˛

2 � 4 � 4 a�x
2b

2

� 4 � 4 ax˛

2

4 b � 4 � x˛

2 � 4

t � �
x
2.x � �2t

x � �2t   and   y � 4t˛

2 � 4,  �1 � t � 2

y

x

40

4

12

8

−4
−4

Figure 11.7-3



Figure 11.7-4a

y

x

102 4 6 80

4

2

−4

−2

a. A horizontal stretch b. Then a horizontal c. Then a vertical shift 
by a factor of 5 shift 3 units to the down 2 units

right

for any t for any t for any t
y � t � 2y � ty � t

x � 5t˛

2 � 3x � 5t˛

2 � 3x � 5t˛

2

y

x

102 4 6 80

4

2

−4

−2

y

x

102 4 6 80

4

2

−4

−2

y

x

102 4 6 80

4

2

−4

−2

Recall that the equation of a parabola has the form Solving for
x, the equation can be written as

Therefore, the coefficient of the squared term can be used to find the value
of p, which in turn can be used to find both the focus and the directrix of
the parabola.

Setting the coefficient of the squared term, 5, equal to yields

5 �
1

4p  or  p �
1
20

1
4p

x �
1
4p  y2

y˛

2 � 4px.

a. a horizontal stretch by a factor of 5
b. then a horizontal shift 3 units to the right
c. then a vertical shift down 2 units

Finally, find the focus and a parameterization of the directrix of the
parabola found in step c.

Solution

The parent relation can be parameterized as

whose graph is shown in Figure 11.7-4a.

x � t˛

2  and  y � t t any real number,
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Figure 11.7-4b Figure 11.7-4c Figure 11.7-4d



0 600
0

100

31°

140 t

x
x

y

y

(x, y)

Figure 11.7-5a

Figure 11.7-5b

Note that the vertex has been translated to and that the focus is 

of a unit to the right of the vertex. Thus, the focus is at or 

The directrix is the vertical line that is of a unit to the left 

of the vertex, that is, 

■

Applications

Example 5 Application of Parameterization of a Parabola

A golfer hits a ball with an initial velocity of 140 feet per second so that
its path as it leaves the ground makes an angle of with the horizontal.

a. When does the ball hit the ground?
b. How far from its starting point does it land?
c. What is the maximum height of the ball during its flight?

Solution

Imagine that the golf ball starts at the origin and travels in the direction
of the positive x-axis. If there were no gravity, the distance traveled by
the ball in t seconds would be 140t feet. As shown in Figure 11.7-5a, the
coordinates of the ball would satisfy

However, gravity at time t exerts a force of 16t2 feet per second per sec-
ond downward, that is, in the negative direction on the y-axis.
Consequently, the coordinates of the golf ball at time t are

The path given by these parametric equations is shown in Figure 11.7-5b.

a. The ball is on the ground when that is, at the x-intercepts of the
graph, which can be found geometrically by using trace and zoom-in.
To find the intercepts algebraically, set and solve for t.

Thus, the ball hits the ground after approximately 4.5066 seconds.

 t �
140 sin 31°

16 � 4.5066

 t � 0 or 140 sin 31° � 16t � 0
 t1140 sin 31° � 16t2 � 0

 1140 sin 31°2t � 16t˛

2 � 0

y � 0

y � 0,

x � 1140 cos 31°2t  and  y � 1140 sin 31°2t � 16t˛

2.

 y � 1140 sin 31°2t. x � 1140 cos 31°2t
 

y
140t � sin 31° x

140t � cos 31°

1x, y2

31°

x � 3 �
1

20 �
59
20 .

1
20a61

20, �2b .

a3 �
1

20, �2b ˛,

1
2013,�22

Section 11.7 Plane Curves and Parametric Equations 759

In the
applications in this section,
air resistance is ignored
and some facts about
gravity that are proved in
physics are assumed.

NOTE
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138 t

x
x

y − 3

3

y (x, y)

Figure 11.7-6a

0

75

0 600

(400, 25)

Figure 11.7-6b

b. The horizontal distance traveled by the ball is given by the x-coordinate
of the second intercept. The x-coordinate when is

c. The graph in Figure 11.7-5 looks like a parabola—and it is, as you can
verify by eliminating the parameter t (see Exercise 40). The y-coordi-
nate of the vertex is the maximum height of the ball. It can be found
graphically by using trace and zoom-in, or algebraically as follows. 

The vertex occurs halfway between the two x-intercepts at and 

that is, when 

Therefore, the y-coordinate of the vertex, which is the maximum height
of the ball, is

■

Example 6 Projectile Motion

A batter hits a ball that is 3 feet above the ground. The ball leaves the bat
with an initial velocity of 138 feet per second, making an angle of with
the horizontal and heading toward a 25-foot fence that is 400 feet away.
Will the ball go over the fence?

Solution

Suppose that home plate is at the origin and that the ball travels in the
direction of the positive x-axis. The vertical and horizontal distances trav-
eled by the ball, disregarding gravity, are

as shown in Figure 11.7-6a.

Allowing for the effect of gravity on the y-coordinate, the ball’s path is
given by the parametric equations

The graph of the ball’s path, shown in Figure 11.7-6b, was made with the
grid-on feature and vertical tick marks 25 units apart. It shows that the 
y-coordinate of the ball is greater than 25 when its x-coordinate is 400. So,
the ball goes over the fence.

■

x � 1138 cos 26°2t  and  y � 1138 sin 26°2t � 3 � 16t˛

2.

 x � 1138 cos 26°2t   y � 1138 sin 26°2t � 3,

 x
138t � cos 26°   

y � 3
138t � sin 26°

26°

y � 1140 sin 31°2 12.25332 � 1612.253322 � 81.237 feet.

 � 2.2533

 t �
270.405

140 cos 31°

1140 cos 31°2t � x � 270.405

x � 0 � 540.81
2 � 270.405.x � 540.81,

x � 0

x � 1140 cos 31°2 14.50662 � 540.81 feet.

t � 4.5066
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Technology 
Tip

The graphical root
finder and maximum

finder do not operate in
parametric mode.



Cycloids
Imagine a bug that is sitting at a point P at the edge of a wheel. The path
traced out by the bug as the wheel rolls is a curve called a cycloid, as
shown in Figure 11.7-7.

When a projectile

• is fired from the position (0, k) on the positive y-axis at an
angle with the horizontal,

• in the direction of the positive x-axis, 

• with initial velocity v feet per second,

• with negligible air resistance,

then its position at time t seconds is given by the parametric
equations

x � (v cos U)t  and  y � (v sin U)t � k � 16t˛

2.

U

Projectile
Motion

Technology 
Tip

In parametric graphing
zoom-in can be very 

time-consuming. It is often
more effective to limit the
t range to the values near
the points you are inter-
ested in and set the t step
very small. The picture
may be hard to read, but
trace can be used to deter-
mine coordinates.

Graphing Exploration

Will the ball in Example 6 go over the fence if its initial velocity is
135 feet per second? Use degree mode and the viewing window of
Figure 11.7-6b with and to graph the ball’s
path. You may need to use trace if the graph is hard to read. If the
answer still is not clear, try changing the t step to 0.02.

t step � 0.10 � t � 4

P
P

P

x

Figure 11.7-7

P

cycloid

Q

Figure 11.7-8

Cycloids have a number of interesting applications. For example, of all
the possible paths joining P and Q in Figure 11.7-8, an arch of an inverted
cycloid (in red) is the curve along which a particle subject only to grav-
ity will slide from P to Q in the shortest possible time.

The Dutch physicist Christiaan Huygens, who invented the pendulum
clock, proved that a particle takes the same amount of time to slide to the
bottom point, Q, of an inverted cycloid (see Figure 11.7-9) starting from
any point P on the curve.

The procedure used in Example 6 applies to the general case. Replacing
3 by k, by and 138 by v leads to the following conclusion.u,26°
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Example 7 Parameterization of a Cycloid

Find a parameterization of a cycloid generated by point P on a circle of
radius 3 that rolls along the x-axis.

Solution

Begin with P at the origin and the center C of the circle at (0, 3). As the
circle rolls along the x-axis, the segment rotates through an angle of
t radians, as shown in Figure 11.7-10.

CP
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The distance from T to the origin is the length of the arc of the circle from
T to P. From the formula for arc length in Section 6.3, 

Therefore, the center C has coordinates (3t, 3). For triangle 

PQC in Figure 11.7-11 shows that

or, equivalently,

Thus, the point (x, y) in Figure 11.7-11 has the following coordinates.

y � CT � CQ � 3 � 3 cos t � 311 � cos t2
 x � OT � PQ � 3t � 3 sin t � 31t � sin t2

PQ � 3 sin t  and  CQ � 3 cos t

sin t �
PQ
3   and  cos t �

CQ
3

0 6 t 6 p2 ,

� � ru � 3t.

P

P
P

P

P

Q

Figure 11.7-9

3

3 6 9 12

6

P T

P

CC t

x

y

3t

Figure 11.7-10

3 3

O T

P
Q(x, y)

C
t

x

y

Figure 11.7-11



A similar analysis for other values of t shows that these equations are
valid for all values of t. (See Exercises 44–46.) Therefore, the parametric
equations of the cycloid are

■

In general, a cycloid generated by a point on a circle of radius r has the
following parameterization.

and , for any ty � r (1 � cos t)x � r (t � sin t)

x � 31t � sin t2 and y � 311 � cos t2, for any t.
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−10

20

0 14π

Figure 11.7-12

Exercises 11.7

In Exercises 1–14, find a viewing window that shows
a complete graph of the curve.

1.

2.

3.

4.

5.

6.

7.

8.

9. ,

10.

11.

12.

13.

14.

In Exercises 15–24, the given curve is part of the graph
of an equation in x and y. Eliminate the parameter by
solving one equation for t and substituting the result
into the other equation.

x � 9 sin t,  y � 9t cos t, 0 � t � 20

x � t sin t,  y � t cos t, 0 � t � 8p

0 � t � 2p
x � 2 cos 3t � 6,  y � 2 cos 3t sin t � 7,

0 � t � 2p
x � 12 cos 3t cos t � 6,  y � 12 cos 3t sin t � 7,

x � 3t 

2 � 10, y � 4t 

3, t any real number

0 � t � 2p
x � 6 cos t � 5 cos 3t,  y � 6 sin t � 5 sin 3t

x � 12 cos t,  y � 12 sin 2t, 0 � t � 2p

0 � t � 2p
x � 6 cos t � 12 cos 

2t,  y � 8 sin t � 8 sin t cos t,

x � t 

3 � 3t � 8,  y � 3t 

2 � 15, �4 � t � 4

x � 4 sin 2t � 9,  y � 6 cos t � 8, 0 � t � 2p

x � t � 1,  y �
t � 1
t � 1,  t � 1

x � 2t,  y � t 

2 � 1,  �1 � t � 2

x � 3t 

2,  y � 2 � 5t,  0 � t � 2

x � t 

2 � 4,  y �
t
2,  �2 � t � 3

15.

16.

17. , for any t

18. , for any t

19. , for any t

20.

21.

22.

23.

24.

In Exercises 25 and 26, sketch the graphs of the given
curves and compare them. Do they differ? If so, how?

25. a.
b.

26. a. , for any t
b. , , for any t
c. , for any t

27. By eliminating the parameter, show that the curve
with parametric equations

for any t
is a straight line.

In Exercises 28–30, find a parameterization of the
given curve. Confirm your answer by graphing.

28. line segment from to Hint: See
Exercise 27.

15, �142114, �52

x � a � 1c � a2t,  y � b � 1d � b2t

y � e 

2tx � e 

t,
y � tx � 1t
y � t 

2x � t,

0 � t � 1y � �5 � 12t,x � 2 � 6t,
0 � t � 1y � 7 � 12t,x � �4 � 6t,

x � 2 sin t � 3,  y � 2 cos t � 1, 0 � t � p

x � 3 cos t,  y � 4 sin t, 0 � t � 2p

x � 4 sin 2t,  y � 2 cos 2t, 0 � t � 2p

x � 3 cos t,  y � 3 sin t, 0 � t � 2p

x � 2e 

t,  y � 1 � e 

t, t � 0

x � e 

t,  y � t

x � t 

2 � 1,  y � t 

2 � 1

x � �2 � t 

2,  y � 1 � 2t 

2

x � t � 5,  y � 1t, t � 0

x � t � 3,  y � 2t � 1, t � 0
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29. line segment from to 

30. line segment from (18, 4) to 

In Exercises 31–34, locate all local maxima and min-
ima (other than endpoints) of the curve.

31.

32.

33.

34.

35. Show that the ball’s path in Example 5 is a
parabola by eliminating the parameter in the
parametric equations below.

In Exercises 36–41, use a calculator in degree mode, and
assume that air resistance is negligible.

36. A ball is thrown from a height of 5 feet above the
ground with an initial velocity of 60 feet/second
at an angle of with the horizontal.
a. Graph the ball’s path.
b. When and where does the ball hit ground?

37. A medieval bowman shoots an arrow which
leaves the bow 4 feet above the ground with an
initial velocity of 88 feet/second at an angle of 
with the horizontal.
a. Graph the arrow’s path.
b. Will the arrow go over the 40-foot-high castle

wall that is 200 feet from the archer?

38. A golfer at a driving range stands on a platform 
2 feet above the ground and hits the ball with an
initial velocity of 120 feet/second at an angle of

with the horizontal. There is a 32-foot-high
fence 400 feet away. Will the ball fall short, hit the
fence, or go over it?

39. A golf ball is hit off the tee at an angle of and
lands 300 feet away. What was its initial velocity?
Hint: The ball lands when and Use
this fact and the parametric equations for the
ball’s path to find two equations in the variables t
and v. Solve for v.

40. A football kicked from the ground has an initial
velocity of 75 feet/second.
a. Set up the parametric equations that describe

the ball’s path. Experiment graphically with
different angles to find the smallest angle

y � 0.x � 300

30°

39°

48°

50°

 y � 1140 sin 31°2t � 16t˛

2
 x � 1140 cos 31°2t

x � 4t˛

3 � cos t � 5,  y � 3t˛

2 � 8, �2 � t � 2

x � 4t˛

3 � t � 4,  y � �3t˛

2 � 5, �2 � t � 2

x � t˛

3 � sin t � 4,  y � cos t, �1.5 � t � 2

x � 4t � 6,  y � 3t˛

2 � 2, �10 � t � 10

1�16, 142
112, �1021�6, 122 (within one degree) needed so that the ball

travels at least 150 feet.
b. Use algebra and trigonometry to find the angle

needed for the ball to travel exactly 150 feet.
Hint: The ball lands when and 
Use this fact and the parametric equations for
the ball’s path to find two equations in the
variables t and Solve the “x equation’’ for t
and substitute this result into the other one;
then solve for The double-angle identity may
be helpful for putting this equation into a form
that is easy to solve.

41. A skeet is fired from the ground with an initial
velocity of 110 feet/second at an angle of 
a. Graph the skeet’s path.
b. How long is the skeet in the air?
c. How high does it go?

42. A golf ball is hit off the ground at an angle of 
degrees with an initial velocity of 100 feet/second.
a. Graph the path of the ball when and

when In which case does the ball land
farthest away?

b. Do part a when and 
c. Experiment further and make a conjecture as to

the results when the sum of the two angles is

d. Prove your conjecture algebraically. Hint: Find
the value of t at which a ball hit at angle hits
the ground (which occurs when this
value of t will be an expression involving 
Find the corresponding value of x (which is the
distance of the ball from the starting point).
Then do the same for an angle of , and
use the cofunction identities (in degrees) to
show that you get the same value of x.

43. A golf ball is hit off the ground at an angle of 
degrees with an initial velocity of 100 feet/second.
a. Graph the path of the ball when 

and 
b. For what angle in part a does the ball land

farthest from where it started?
c. Experiment with different angles, as in parts a

and b, and make a conjecture as to which angle
results in the ball landing farthest from its
starting point.

In Exercises 44–46, complete the derivation of the para-
metric equations of the cycloid in Example 7.

44. a. If , verify that angle in the figure 

has measure and thatt �
p

2

u
p

2 6 t 6 p

u � 80°.u � 60°,u � 40°,
u � 20°,

u

90° � u

u.
y � 02;

u

90°.

u � 65°.u � 25°

u � 60°.
u � 30°

u

28°.

u.

u.

y � 0.x � 150



b. Use the addition and subtraction identities for
sine and cosine to show that in this case

and y � 311 � cos  t2.x � 31t � sin t2

 y � CT � PQ  � 3 � 3 sin Qt �
p

2 R.
 x � OT � CQ � 3t � 3 cos Qt �

p

2 R
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b. Use the addition and subtraction identities for
sine and cosine to show that in this case

and y � 3 11 � cos t2.x � 3 1t � sin t2

θ

y

3t

3
(x, y)

3

TO

Q
C

t

P

x

θ

y

3t

(x, y)

3

TO

Qt
C

P
x

θ

y

3t

3
(x, y)

3

TO

Qt C

P

x

45. a. If verify that angle in the 

figure has measure and that

b. Use the addition and subtraction identities for
sine and cosine to show that in this case

and .y � 3 11 � cos t2x � 3 1t � sin t2

 y � CT � PQ  � 3 � 3 sin at �
3p
2 b .

 x � OT � CQ � 3t � 3 cos at �
3p
2 b

t �
3p
2

u
3p
2 6 t 6 2p,

47. Critical Thinking Set your calculator for radian
mode and for simultaneous graphing mode.
Check your instruction manual for how to do this.
Particles A, B, and C are moving in the plane,
with their positions at time t seconds given by:
A:
B:
C:
a. Graph the paths of A and B in the window

with and The
paths intersect, but do the particles actually
collide? That is, are they at the same point at
the same time? For slow motion, choose a very
small t-step, such as 0.01.

b. Set and trace to estimate the time
at which A and B are closest to each other.

c. Graph the paths of A and C and determine
geometrically, as in part b, whether they
collide. Approximately when are they closest?

d. Confirm your answers in part c as follows.
Explain why the distance between particles A
and C at time t is given by

A and C will collide if at some time.
Using function graphing mode, graph this
distance function when . Zoom-in if
necessary, and show that d is always positive.
Find the value of t for which d is smallest.

48. Critical Thinking A particle moves on the
horizontal line Its x-coordinate at time t
seconds is given by This
exercise explores the motion of the particle.
a. Graph the path of the particle in the viewing

window with 
and Note that the

calculator seems to pause before completing the
graph.

t-step � 0.05.0 � t � 4.3,
�10 � x � 10, �2 � y � 4,

x � 2t˛˛

3 � 13t˛

2 � 23t � 8.
y � 3.

0 � t � 2

d � 0
d � 218 cos t � 3t22 � 15 sin t � 4t22.

t-step � 0.05

0 � t � 2.0 � x � 12, 0 � y � 6,

x � 3t and y � 4t
x � 3t and y � 5t
x � 8 cos t and y � 5 sin t

46. a. If , verify that angle in the figure

measures and that

 y � CT � PQ  � 3 � 3 sin a3p
2 � tb .

 x � OT � CQ � 3t � 3 cos a3p
2 � tb

3p
2 � t

up 6 t 6 3p
2



c. At what times t does the particle change
direction? What are its x-coordinates at these
times?

11.7.A Excursion: Parameterizations of Conic Sections

Conic sections can often be graphed more conveniently in parametric
mode. Parameterizations for conic sections can be found by using
Pythagorean identities, as shown in the following examples.

Circles

Example 1 Parameterization of a Circle

The equation of the circle with center (4, 1) and radius 3 is

Show that the following equations provide a parameterization of this
circle.

[1]

Solution

To show that the parametric equations satisfy the circle equation, substi-
tute into the equation of the circle and use the Pythagorean identity.

With this parameterization the circle is traced out in a counterclockwise
direction from the point (7, 1), as shown in Figure 11.7.A-1. Another pa-
rameterization is given by

Verify that this last parameterization traces out the circle in a clockwise
direction twice as fast as the parameterization given in [1], because t runs
from 0 to rather than to 

■
2p.p,

x � 3 cos 2t � 4  and  y � �3 sin 2t � 1,  0 � t � p

 � 9
 � 9112
 � 9 1cos2 t �  sin2 t2
 � 9 cos2 t � 9 sin2 t
 � 13 cos t22 � 13 sin t22

 1x � 422 � 1y � 122 � 13 cos t � 4 � 422 � 13 sin t � 1 � 122

x � 3 cos t � 4  and  y � 3 sin t � 1,  0 � t � 2p

1x � 422 � 1y � 122 � 9.

Objectives

• Define parametric equations
for a circle, an ellipse, a
hyperbola, and a parabola

�2

�3

5

10

Figure 11.7.A-1

When the values
of t are given in radian
measure, such as make
sure your calculator is in
radian mode when
graphing.

2p,

NOTE

b. Use trace (starting with and watch the
path of the particle as you press the right arrow
key at regular intervals. How many times does
it change direction? When does it appear to be
moving the fastest?

t � 02
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The procedure used in Example 1 works in the general case. Example 1
is the special case where and 

Ellipses

Because an ellipse is a generalization of a circle, a similar parameteriza-
tion can be used.

Example 2 Parameterization of an Ellipse

Find a parameterization of the following ellipse.

Solution

Let

.

Use the Pythagorean identity to show that these parametric equations sat-
isfy the equation of an ellipse.

The graph is shown in Figure 11.7.A-2. Its major axis has length 
and its minor axis has length 

■

The parameterization in Example 2, where the center of the ellipse is at
(0, 0), can be extended to the general case.

2 � 2 � 4.
2 � 5 � 10,

 � 1
 � cos2 t � sin2 t

 � 25 cos2 t
25 �

4 sin2 t
4

 x˛

2

25 �
y˛

2

4 �
15 cos t22

25 �
12 sin t22

4

x � 5 cos t  and  y � 2 sin t,  0 � t � 2p

x˛

2

25 �
y˛

2

4 � 1

1c, d2 � 14, 12.r � 3

The circle with center (c, d) and radius r is given by the
parametric equations

.x � r cos t � c  and  y � r sin t � d (0 �� t �� 2P)

Parametric
Equations of a

Circle

�6.4

6.4

�9.4 9.4

Figure 11.7.A-2

The ellipse with center and a horizontal axis of length
2a and a vertical axis of length 2b is given by the parametric
equations

x � a cos t � c  and  y � b sin t � d (0 �� t �� 2P).

(c, d)
Parametric

Equations of an
Ellipse



Example 3 Parameterization of a Conic

Identify the conic section whose equation is given below, and find a pa-
rameterization for it.

Solution

The equation is a hyperbola with center at It has the same form
as the second equation in the preceding box, with and

Therefore, its parametric equations are

■
x � 4 tan t � 2  y � 3 sec t � 5,  0 � t � 2p.

1c, d2 � 1�2, 52. a � 3, b � 4,
1�2, 52.

1y � 522
9 �

1x � 222
16 � 1

Hyperbolas with center at (c, d) have the following
parameterizations.

Equation Parameterization

(0 �� t �� 2P)

x � b tan t � c  y � a sec t � d
(y � d)2

a2 �
(x � c)2

b2 � 1

(0 �� t �� 2P)

x � a sec t � c  y � b tan t � d
(x � c)2

a2 �
(y � d)2

b2 � 1

Parametric
Equations of a

Hyperbola

Hyperbolas

The hyperbola centered at (c, d) with equation

can be obtained from the following parameterization.

By a Pythagorean identity, Therefore,

A similar argument works for other hyperbolas and leads to the follow-
ing conclusion.

 � sec2 t � tan2 t � 1

 � a2 sec2 t
a2 �

b2 tan2 t
b2

 �
1a sec t22

a2 �
1b tan t22

b2

 
1x � c22

a2 �
1y � d22

b2 �
1a sec t � c � c22

a2 �
1b tan t � d � d22

b2

1 � tan2 t �  sec2 t.

x � a sec t � c  y � b tan t � d,  0 � t � 2p

1x � c22
a˛

2 �
1y � d22

b˛

2 � 1
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Exercises 11.7.A

In Exercises 1–4, find a parameterization of the given
curve. Confirm your answer by graphing.

1. circle with center (9, 12) and radius 5

2. Hint: see Example 2
in Section 11.4.

3.

4. circle with center and radius 6

In Exercises 5–26, find parametric equations for the
curve whose equation is given, and use these para-
metric equations to find a complete graph of the curve.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15.
1x � 122

4 �
1y � 522

9 � 1

4y � x˛

28x � 2y˛

2

2x˛

2 � y˛

2 � 4x˛

2 � 4y˛

2 � 1

y2

9 �
x2

16 � 1x2

10 �
y2

36 � 1

x˛

2 � 4y˛

2 � 14x˛

2 � 4y˛

2 � 1

y2

49 �
x2

81 � 1x2

10 � 1 �
�y2

36

17, �42
x˛

2 � y˛

2 � 4x � 6y � 9 � 0

x˛

2 � y˛

2 � 14x � 8y � 29 � 0

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.
1y � 522

9 �
1x � 222

1 � 1

1x � 322
1 �

1y � 222
4 � 1

1y � 122
9 �

1x � 122
25 � 1

1y � 322
25 �

1x � 122
16 � 1

x � �31y � 122 � 2

x � 21y � 222
y � 3˛1x � 222 � 3

y � 4˛1x � 122 � 2

1x � 522
4 �

1y � 222
12 � 1

1x � 122
16 �

1y � 422
8 � 1

1x � 222
16 �

1y � 322
12 � 1

Parametric Equations of a Parabola

When a parabola has an equation such as

in which y is a function of x, then it can be graphed on a calculator either
in function mode or in parametric mode with

A parabola with an equation such as

in which x is a function of y, cannot be graphed (by using a single equa-
tion) in function mode on a calculator, but it can be graphed in parametric
mode by letting

Similar techniques work for other parabolas.

x � 21t � 322 � 4  and  y � t.

x � 21y � 322 � 4,

x � t  and  y � 41t � 522 � 7.

y � 41x � 522 � 7,

Section 11.7.A Excursion: Parameterizations of Conic Sections 769
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Important Facts 
and Formulas

Equation of an ellipse with center (h, k) and axes on the lines

Equation of a hyperbola with center (h, k) and vertices on the line

Equation of hyperbola with center (h, k) and vertices on the line

Equation of a parabola with vertex (h, k) and axis 

Equation of a parabola with vertex (h, k) and axis 

Rotation equations:

Rotation Angle:

To eliminate the xy term in 

rotate the axes through an angle such that 

The rectangular and polar coordinates of a point are related by

and

and  tan u �
y
x r2 � x˛

2 � y2

 y � r sin u x � r cos u

cot 2u �
A � C

B .u

Ax2 � Bxy � Cy2 � Dx � Ey � F � 0,

 y � u sin u � v cos u

 x � u cos u � v sin u

1y � k22 � 4p1x � h2
y � k:

1x � h22 � 4p1y � k2
x � h:

1y � k22
a2 �

1x � h22
b2 � 1

x � h:

1x � h22
a2 �

1y � k22
b2 � 1

y � k:

1x � h22
a2 �

1y � k22
b2 � 1

x � h, y � k:

Section 11.7 Plane curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 755
Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 755
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If e and d are constants with then the graph of a polar equa-
tion of the form

is an ellipse if a parabola if and a hyperbola if
e 7 1.

e � 1,0 6 e 6 1,

r �
ed

1 – e cos u
  or  r �

ed
1 – e sin u

e 7 0,

In Exercises 1–10, find the foci and vertices of the conic, and find a viewing
window that shows a complete graph of the equation.

1. 2.

3. 4.

5. Find the equation of the ellipse with center at the origin, one vertex at 
(0, 4), passing through 

6. Find the equation of the ellipse with center at the origin, one vertex

at (3, 0), passing through .

7. 8.

9. Find the equation of the hyperbola with center at the origin, one vertex at
passing through 

10. Find the equation of the hyperbola with center at the origin, one

vertex at (3, 0), passing through 

In Exercises 11–16, find the equation of the parabola with vertex at the origin
that satisfies the given condition

11. axis passing through 

12. axis passing through 

13. focus 

14. focus 

15. directrix 

16. directrix 

17. Find the focus and directrix of the parabola 

18. Find the focus and directrix of the parabola 3y2 � x � 4y � 4 � 0.

10y � 7x2.

y � 2

x � �4

10, �32
1�4, 02

1�1, 52y � 0,

1�1, 52x � 0,

a5, �8
3b.

A�1, 212 B .10,�22,

x 2

16 �
y2

4 � 1x 2

9 �
y2

16 � 1

a1, 
212

3 b

A13, 213 B .

4x2 � 9y2 � 3625x2 � 4y2 � 100

x2

4 �
y2

25 � 1x2

16 �
y2

20 � 1

Review Exercises

Section 11.1

Section 11.2

Section 11.3
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In Exercises 19–28, sketch the graph of the equation and identify the conic. If
there are asymptotes, give their equations and label all characteristic points.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. What is the center of the ellipse 

30. Find the equation of the hyperbola with center at the origin, one vertex at
(0, 5), passing through .

31. Find the equation of the hyperbola with center at (3, 0), one vertex at (3, 2),
passing through .

32. Find the equation of the parabola with vertex (2, 5), axis passing
through (3, 12).

33. Find the equation of the parabola with vertex axis 

passing through 

34. Find the equation of the parabola with vertex (5, 2) that passes through the
points (7, 3) and (9, 6).

35. Find the equation of the ellipse with center at (3, 1), one vertex at (1, 1), 

passing through .

In Exercises 36–39, assume that the graph of the equation is a nondegenerate
conic. Use the discriminant to identify the graph.

36. 37.

38. 39.

In Exercises 40–45, find a viewing window that shows a complete graph of the
equation.

40. 41.

42. 43.

44. 45. x˛ 2 � xy � y˛ 2 � 6 � 0x˛2 � 2xy � y˛ 2 � 412y � 0

x˛ 2 � 3xy � y˛ 2 � 212x � 212y � 0x˛2 � 4xy � y˛ 2 � 5 � 0

x˛ 2 � xy � 2 � 0x˛ 2 � xy � y˛ 2 � 3y � 6 � 0

3x˛ 2 � 212xy � 2y2 � 12 � 04x˛ 2 � 4xy � y˛ 2 � 15x � 215y � 0

4xy � 3x˛ 2 � 20 � 0x˛ 2 � y˛ 2 � xy � 4y � 0

a2, 1 �
A

3
2 b

1�3, 12.
y � �

1
2,a3

2, �1
2b,

x � 2,

A1, 15 B

A1, 3˛15 B

4x˛2 � 3y˛2 � 32x � 36y � 124 � 0?

y � x˛ 2 � 2x � 3x � y˛2 � 2y � 2

3y � 6˛1x � 122 � 92y � 4 1x � 322 � 6

x2 � 4y2 � 10x � 9 � 04x2 � 9y2 � 144

1y � 422
25

�
1x � 122

4
� 1

1x � 322
9

�
1y � 522

4
� 1

3x2 � 1 � 2y2
1x � 122

7
�
1y � 322

16
� 1

Section 11.4
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In Exercises 46–47, find the rotation equations when the x- and y-axes are rotated
through the given angle.

46. 47.

In Exercises 48–49, find the angle through which the x- and y-axes should be
rotated to eliminate the xy term in the equation.

48. 49.

50. List four other pairs of polar coordinates for the point .

51. Plot the points and on a polar coordinate graph.

In Exercises 52–61, sketch the graph of the polar equation.

52. 53.

54. 55.

56. 57.

58. 59.

60. 61.

62. Convert from rectangular to polar coordinates.

63. Convert from polar to rectangular coordinates.

64. What is the eccentricity of the ellipse 

65. What is the eccentricity of the ellipse 

In Exercises 66–69, sketch the graph of the equation, labeling the vertices and
identifying the conic.

66. 67.

68. 69.

In Exercises 70–73, find a polar equation of the conic that has focus 
(0, 0) and satisfies the given conditions.

70. hyperbola; vertices and 

71. eccentricity 1; directrix 

72. eccentricity 0.75; directrix 

73. ellipse; vertices (4, 0) and 16, p2
r � �3 csc u

r � 2 sec u

a�3, 3p2 ba5, p2 b

r �
12

2 � sin u
r �

10
3 � 4 sin u

r �
�24

3 � 9 cos u
r �

14
7 � 7 cos u

3x˛2 � y˛2 � 84?

24x˛2 � 30y˛2 � 120?

a3, �2p
3 b

A3, 13 B
r � 5r � 1 � 2 sin u

r˛

2 � cos 2ur � cos 3u

r � 2 � 2 sin ur � 4 cos u

r � 2u 1u � 02u � �
5p
6

u �
2p
3r � �2

a�3, �2p
3 ba2, 3p4 b

a�2, p4 b
x ˛2 � xy � y ˛2 � 3y � 6 � 0x ˛2 � 4xy � y ˛2 � 5 � 0

60°45°

Section 11.5

Section 11.6

Section 11.4.A
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In Exercises 74–77, find a viewing window that shows a complete graph of the
curve with the given parametric equations.

74.

75.

76.

77.

In Exercises 78–81, sketch the graph of the curve whose parametric equations
are given, and by eliminating the parameter, find an equation in x and y whose
graph contains the given curve.

78.

79.

80.

81.

82. Which of the following is not a parameterization of the curve 
a. any real number t
b. any real number t
c. any real number t
d. any real number t

83. Which of the curves in Questions 74–77 appear to be the graphs of
functions of the form 

In Exercises 84–87, find a parameterization of the given curve. Confirm your
answer by graphing.

84. circle with center and radius 4

85. circle with center and radius 5

86. 87.

In Exercises 88–97, find parametric equations for the curve whose equation is
given, and use these parametric equations to find a complete graph of the curve.

88. 89.

90. 91.

92. 93.

94. 95.

96. 97. x � �321y � 422 � 5y � 31x � 222 � 5

1y � 322
4 �

1x � 222
12 � 1

1x � 222
81 �

1y � 522
100 � 1

1x � 222
49 �

1y � 522
64 � 1

1x � 322
9 �

1y � 422
25 � 1

x2 � 36y2 � 116x2 � y2 � 1

4x2 � 9y2 � 19x2 � 9y2 � 1

4x2 � y 2 � 16x � 6y � 21 � 09x2 � 4y 2 � 54x � 16y � 61 � 0

1�3, 52
13, �22

y � f 1x2?

y � t3,x � t˛ 6 � 1,
y � t˛ 2,x � t˛ 4 � 1,
y � sin t,x � sin2 t � 1,
y � t,x � t2 � 1,

x � y˛ 2 � 1?

x � 2t � 1, y � 2 � t, �3 � t � 3

x � et, y � 1t � 1, t � 1

x � cos t, y � 2 sin2 t, 0 � t � 2p

x � 3 cos t, y � 5 sin t, 0 � t � 2p

x � 8 cos t � cos 8t and y � 8 sin t � sin 8t, 0 � t � 2p

x � t2 � t � 3 and y � t3 � 5t, �3 � t � 3

x � t˛

3 � t � 1 and y � t2 � 2t, �3 � t � 3

x � 364 cos 1p�62 4t and y � �16t2 � S64 sin 
p

6 T t, 0 � t � p

Section 11.7

Section 11.7.A
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Arc Length of a Polar Graph

Many applications of calculus involve finding the distance along a curve,
or arc length. Although calculus is usually needed to find the exact value
of the arc length, approximations are often sufficient.

A curve may be approximated by straight segments with endpoints on
the curve, as shown in Figure 11.C-1. In polar coordinates, the curve,
which is a circle, can be represented by the function for some con-
stant c. The circumference of the circle is The length of each
blue segment is also c, since the dashed lines form equilateral triangles.
Thus, the approximate length of the curve is the total length of the blue
segments, or 6c.

In general, the Law of Cosines may be used to find the length of a seg-
ment with two endpoints on the curve, as shown in the following example. 

Example 1 Estimating the Length of a Curve

Estimate the length of the spiral with the equation from 0 to 

Solution

The dashed lines in Figure 11.C-2 divide the spiral into triangles with an 

angle of at the origin. The table below shows the value of r for each 

value of that is an endpoint of a segment.u

p
3

2p.r � 2u

2pc � 6.28c.
r � c

Figure 11.C-1

Figure 11.C-2

r2

r1

a

π
3

Figure 11.C-3

0

r 0 4p10p
3

8p
32p4p

3
2p
3

2p5p
3

4p
3p

2p
3

p

3u

The first segment has one endpoint at the origin, so its length is the value

of r at the other endpoint, which is 

Every remaining segment is the side of a triangle that is opposite an angle

at the origin of as shown in Figure 11.C-3.

By the Law of Cosines,

 a � 2r 1 

2 � r 2 

2 � r1r2

 a2 � r 1 

2 � r 2 

2 � 2 r1r2 cos 
p
3

p
3 ,

2p
3 .
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The lengths of the segments can be calculated using this formula.

Exercises

In Exercises 1 – 4, approximate each curve for
by six segments and estimate each arc

length.

1.

2.

3.

4.

5. Use the figure to estimate the length of the cardioid
with the equation r � 1 � sin u.

r �
1

2 � sin u

r � 1 � cos u

r � 3 � 2 cos u

r � 1.5u

0 � U � 2P

6. Use Heron’s formula for the area of a triangle (see
page 633) and your results from Exercise 5 to
estimate the area of the cardioid with the equation
r � 1 � sin u

0π

2
3

2

3

π

π

π

π

3
2

π4
3

π5
3

Segment from to 

Segment from to 

Segment from to 

Segment from to 

Segment from to 

Segment from to 
B
a10p

3 b
2

� 14p22 � a10p
3 b  14p2 � 11.66u � 2p :u �

5p
3

Ba8p
3 b

2

� a10p
3 b

2

� a8p
3 b  a10p

3 b � 9.60u �
5p
3  :u �

4p
3

B
12p22 � a8p

3 b
2

� 12p2  a8p
3 b � 7.55u �

4p
3  :u � p

BQ4p3 R
2

� 12p22 � Q4p3 R 12p2 � 5.54u � p :u �
2p
3

BQ2p3 R
2

� Q4p3 R2 � Q2p3 R Q4p3 R � 3.63u �
2p
3  :u �

p
3

2p
3 � 2.09u �

p
3  :u � 0

The approximate length of the spiral is the sum of the segments.

■
arc length � 2.09 � 3.63 � 5.54 � 7.55 � 9.60 � 11.66 � 40.07



778

Is this a diamond in the rough?

The structure of certain crystals can be defined by a large system of linear equations
with more than a hundred equations and variables. A variety of resource allocation
problems involving many variables can be handled by solving an appropriate system of
equations. The fastest solution methods involve matrices and are easily implemented on
a computer or calculator. See Exercise 36 in Section 12.2.

Systems 
and Matrices

C H A P T E R

12
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12.1 Solving Systems of Equations

12.1.A Excursion: Graphs in Three Dimensions

12.2 Matrices

12.3 Matrix Operations

12.4 Matrix Methods for Square Systems

12.5 Nonlinear Systems

12.5.A Excursion: Systems of Inequalities

Chapter Review

can do calculus Partial Fractions

Chapter Outline
Interdependence of Sections
Readers who are familiar with solving systems of linear

equations may omit section 12.1.

Real-world situations often require a common solution to several

equations with multiple variables. Such a collection of equations is

known as a system of equations. Solutions to a system of equations in two

or three variables may be represented geometrically by intersections of

lines or planes. In this chapter, systems will be solved graphically, alge-

braically by substitution or elimination, and by two matrix methods: row

reduction and inverse matrices.

12.1 Solving Systems of Equations

A system of equations is a set of two or more equations in two or more
variables. When a system has 3 equations in 2 variables, it is called a 
system. In the examples of systems of equations shown below, the first is
a system, the second is a system, and the third is a 
system.

Three equations in Three equations in Two equations in
three variables four variables two variables

The first two systems above are called linear systems because the variables
in each equation are all to the power of one, thus they are all linear. The
third is a nonlinear system because at least one equation is nonlinear—
in this case, quadratic.

 3x � 7y � 5z � 8w � �6 3x � y � 2z � 11
 x2 � y � 7 2y � 4z � 41w � 5 x � 2y � z � 2
 x2 � y2 � 25 2x � 5y � z � w � 0 2x � 5y � 3z � 1

2 � 23 � 43 � 3

3 � 2
Objectives

• Solve systems of equations
by graphing, substitution,
and elimination

• Recognize consistent and
inconsistent systems

• Solve applications using
systems

• Recognize consistent, inconsistent, and dependent systems.
• Solve application s using systems.

12.1 12.2 12.3 12.4

12.5

> > >
>



Solutions of a System of Equations

A solution of a system of equations is a set of values that satisfy all the
equations in the system. In the first system of equations on the previous
page, substituting and gives the following:

Because the set of values makes all equations true, the
set is a solution of the system. The set of values is a
solution of the first two equations, but not the third, so it is not a solu-
tion of the system.

Solutions of systems of equations in two variables can be found numeri-
cally by comparing tables of values for the equations.

Example 1 Solving a System Numerically

Find a solution of the system of equations below by using tables of val-
ues for the equations.

Solution

First, solve each equation for y. Then create a table of values for each 
equation. The table in Figure 12.1-1 shows solutions to each equation. To
solve the system, find a common output.

Notice that at the y-values are the same for the two equations. Thus,
is a solution of the system of equations.

■

Solving systems numerically has several disadvantages. First, there is no
way of knowing whether all possible solutions have been found. Second,
many values may have to be checked before a solution is found. And
third, if a solution lies between the values in the table, it may be missed.

Solving Systems with Graphs

One method of solving systems of equations in two variables is graphing
the equations and finding the point(s) of intersection. Since the graph of
each equation represents all possible solutions of that equation, a point of
intersection of two graphs represents a solution of both equations. The
advantage of solving a system graphically is that the solution is shown visu-
ally, but solving systems graphically is limited to two-variable systems.

y � 3x � 2,
x � 2,

 y � �
3
2 x � 6

 y �   2x � 1

 3x � 2y � 12
 2x � y �  1

z � 12y � 7,x � 0,
z � 3y � 2,x � 1,

 3x �  y � 2z � 3112 �  122 � 2132 � 3 �  2 � 6 � 11
 x � 2y �  z �  112 � 2122 � 3  � 1 �  4 � 3 �  2

 2x � 5y � 3z � 2112 � 5122 � 3132 � 2 � 10 � 9 �  1

z � 3y � 2,x � 1,

780 Chapter 12 Systems and Matrices

Figure 12.1-1

Technology 
Tip

Table setup is accessed
from the TBLSET key 

of TI and RANG in the
Casio TABLE menu.

The increment is TBL on
TI and PITCH on Casio.
The table type is labeled
INDPNT on TI.

¢



Example 2 Graphical Solutions of a Linear System

Find a solution of the system of equations below by graphing the 
equations.

Solution

Solve each equation for y, graph each equation, and find the coordinates
of all points of intersection.

The system of equations has exactly one solution, and 
as shown in Figure 12.1-2.

■

Type of System and Number of Solutions

Systems of equations may be classified according to the number of solu-
tions. A system with no solutions is called inconsistent, and a system with
at least one solution is called consistent.

Linear Systems
Because the graphs in a linear system with two variables are lines, there
are exactly three geometric possibilities.

• the lines can be parallel and have no point of intersection
• the lines can intersect at a single point
• the lines can coincide

Each of these possibilities leads to a different number of solutions for the
system. The three types of linear systems are shown below.2 � 2

y � 0.71,x � 0.86

 y � �
3
2 x � 2

 y �    2x � 1

3x � 2y � 4
2x �  y � 1

Section 12.1 Solving Systems of Equations 781

3.1

�3.1

4.7�4.7

Figure 12.1-2

no solutions
inconsistent system

Lines are parallel

x

y

one solution
consistent system

Lines intersect at
a single point

x

y

infinitely many solutions
consistent system

Lines coincide

x

y

Figure 12.1-3
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Solving Systems Algebraically

Solving systems of equations by graphing often gives approximate solu-
tions, while algebraic methods produce exact solutions. Furthermore,
algebraic methods are often as easy to use as graphical methods. Two
common algebraic methods are substitution and elimination.

Substitution Method

To solve a system using the substitution method:

1. Solve one equation for x (or y).

2. Substitute the expression for x (or y) into the other
equation.

3. Solve for the remaining variable.

4. Substitute the value found in Step 3 into one of the
original equations, and solve for the other variable.

5. Verify the solution in each equation.

Solving 
Systems with

Substitution

Example 3 Solving a System by Substitution

Solve the system of equations below by substitution.

Solution

Solve the first equation for y.

Substitute the expression for y in the second equation and solve
for x.

 x    �
38
11 � 3.45

   11x   � 38
 2x �   9x � 36 � 2
 2x � 313x � 122 � 2

3x � 12

y � 3x � 12

 2x � 3y �  2
 3x �  y � 12

CAUTION

When solving a
system of equations,
remember to find
values for all of the
variables.

There are exactly three possibilities for the number of
solutions of a system of linear equations.

• no solutions (inconsistent system)

• one solution (consistent system)

• infinitely many solutions (consistent system)

2 � 2

Number of
Solutions of a
Linear System



To find the value of y, substitute the value of x, into and 

simplify.

The exact solution to the system is , and the approxi-

mate solution is  , 
■

The solution may be confirmed by graphing, as shown in Figure 12.1-4,
where and 

Elimination Method
Elimination is another algebraic method used to solve systems.

y � �1.64.x � 3.45

y � �1.64.x � 3.45

y � �
18
11x �

38
11,

y � 3 a38
11b � 12 � �

18
11 � �1.64

y � 3x � 1238
11,
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To solve a system using the elimination method:

1. Multiply one or both of the equations by a nonzero
constant so that the coefficients of x (or y) are opposites
of each other.

2. Eliminate x (or y) by adding the equations, and solve for
the remaining variable.

3. Substitute the value found in Step 2 into one of the
original equations, and solve for the other variable.

4. Verify the solution in each equation.

Solving 
Systems by
Elimination

3.1

�4.7 4.7

�3.1

Figure 12.1-4

Example 4 Solving a System by Elimination

Solve the system of equations below by elimination.

Solution

Multiply the first equation by 

Add the equations to eliminate x, and solve the resulting equation.

 y � �1
 7y � �7

 �  2x �  y �  1

 �2x � 6y � �8

  2x �  y �  1
 �2x � 6y � �8

�2.

 2x �  y � 1
  x � 3y � 4



Substitute for y in one of the original equations and solve for x.

The solution of the system is The solution is confirmed
graphically in Figure 12.1-5.

■

Solutions of Consistent and Inconsistent Systems

The following examples show how the elimination method may be used
to solve consistent systems with infinitely many solutions or inconsistent
systems.

Example 5 Recognizing an Inconsistent System

Solve the system of equations below by elimination.

Solution

Multiply the first equation by then add the two equations.

The last statement, , is always false. This indicates that the origi-
nal system has no solutions. Thus, the system is inconsistent.

0 � �9

 0 �  �9
 �  4x � 6y �   1

 �4x � 6y � �10

�2,

 4x � 6y � 1
 2x � 3y � 5

y � �1.x � 1,

 x � 1
 x � 31�12 � 4

�1
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3.1

�4.7 4.7

�3.1

Figure 12.1-5

■

Example 6 Recognizing a System with Infinitely Many Solutions

Solve the system of equations below by elimination.

Solution

Multiply the first equation by 3 and the second equation by 2, then add
the two equations.

 �3x � 6y � �9
  2x � 4y �  6

Graphing Exploration

Confirm the result of Example 5 geometrically by graphing the two
equations in the system. Do the lines intersect, or are they parallel?



The last equation, is always true. This indicates that the two equa-
tions represent the same line, and every ordered pair that satisfies the first
equation must also satisfy the second equation. Thus, the system has infi-
nitely many solutions.

■

Using a Parameter to Write Solutions
It is common to represent solutions of consistent systems that have infi-
nitely many solutions in terms of a variable called a parameter, which
represents any real number. In Example 6, let and substitute this
value into one of the equations.

t is any real number.

Solve for x.

The solutions can be written as Individual numerical
solutions can be found by substituting real values for t, as follows.

Solving Larger Systems by Elimination

It is possible to use elimination to solve larger systems. Equations are
combined in pairs to create a system of equations with one fewer vari-
able that can be solved using the techniques discussed in this section. The
solutions of the reduced system are then substituted back into the origi-
nal equations to find the remaining variables.

Example 7 Solving a System by Elimination

Solve the system of equations below by elimination.

[1]
[2]
[3]

Solution

Eliminate z by adding equations [1] and [2].

[1]
[2]
[4] x � 2y   �  4

 � �x � 3y � z �  5
 2x �  y � z � �1

 x � 4y � 2z � �10
 �x � 3y �  z �   5
 2x �  y �  z �  �1

3 � 3

x � �3, y � 0 t � 0
x � �1, y � �2 t � �2
x � �5, y � �1  t � 1

y � t.x � 3 � 2t,

 x � 3 � 2t
 2x � 4t � 6

y � t

0 � 0,

 0  �   0
 � �6x � 12y � �18

 6x � 12y �  18
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3.1

�4.7 4.7

�3.1

Figure 12.1-6



Eliminate the same variable, in this case z, by combining two other equa-
tions. One possible way is to multiply equation [2] by 2 and add it to
equation [3].

[2]
[3]
[5]

The two resulting equations, [4] and [5], form a system of two equations
in two variables, which can be solved by elimination, substitution, or
graphing.

[4]
[5]

Find the value of x by substituting into equation [4].

To find the value of z, substitute the values and into equa-
tion [1] from the original system, and solve.

The solution is 

The solution should be checked in all equations of the original system.
■

Applications of Systems

Systems of equations occur in many real-world applications. The simplest
situations involve two quantities and two linear relationships between
these quantities, as shown in the following example.

Example 8 Linear System Application

A ball game is attended by 575 people, and total ticket sales are $2575. If
tickets cost $5 for adults and $3 for children, how many adults and how
many children attended the game?

Solution

Let x be the number of adults and y be the number of children. The first
equation is based on the total number of people at the game.

number of adults number of children total attendance

The second equation is based on the ticket sales. Notice that the term for
each type of ticket sales is found by multiplying the price per ticket by

575�y�x

2 � 2

z � 4.y � �1,x � 2,

 z �  4
 2122 � 1�12 � z � �1

y � �1x � 2

 x    � 2
 x � 21�12 � 4

y � �1

 y � �1
 �4y �  4

 � �x � 2y �  0
 x � 2y �  4

 �x � 2y   �   0
 �   x � 4y � 2z � �10

2 � �2x � 6y � 2z �  10
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price weight price weight
per of per of

pound coffee pound coffee

$5.00�7.00y�4.50x

price of blend�price of Kenyan�price of Costa Rican

the number of tickets sold, and total ticket sales is the sum of the sales of
the different types of tickets.

Solve the system of equations.

number of tickets
total ticket sales

Multiply the first equation by and add the result to the second 
equation.

So 425 adults and children attended the game. Con-
firm by graphing, as shown in Figure 12.1-7.

■

Example 9 Mixture Application

A cafe sells two kinds of coffee in bulk. The Costa Rican sells for $4.50
per pound, and the Kenyan sells for $7.00 per pound. The owner wishes
to mix a blend that would sell for $5.00 per pound. How much of each
type of coffee should be used in the blend?

Solution

Let x be the amount of Costa Rican coffee and y be the amount of Kenyan
coffee in each pound of the blend. The first equation is based on the weight
of the coffee.

The second equation is based on the price of the coffee.

1�y�x
KenyanRican

one pound of blend�weight of�weight of Costa

y � 575 � 425 � 150

 x  �   425
 2x  �   850

 �  5x � 3y �  2575
 �3x � 3y � �1725

�3

 5x � 3y � 2575
 x �  y �  575

2575�3y�5x

total ticket sales�child ticket sales�adult ticket sales
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Solve the system of equations.

Multiply the first equation by and add it to the second equation.

The owner should use 0.8 pounds of Costa Rican coffee and 
pounds of Kenyan coffee in each pound of blend, or 80% Costa Rican and
20% Kenyan. See Figure 12.1-8 for graphical confirmation.

■

1 � 0.8 � 0.2

 x   � 0.8
 �2.5x   � �2

 �  4.5x � 7y �  5
 �7x � 7y � �7

�7

 4.5x � 7y � 5
 x �  y � 1
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1

0 1

Figure 12.1-8

Exercises 12.1

In Exercises 1–6, determine whether the given values
of x, y, and z are a solution of the system of equations.

1. 2.

3. 4.

5. 6.

In Exercises 7 – 14, use substitution to solve the 
system.

7. 8.

9. 10.

11. 12.
t �  u � 5r � s � 5
t � 3u � 5r � s � 0

�x � 2y �  32x �  y � �1
5x � 3y � �23x � 2y �  4

�x � 2y � 42x �  y � 3
 3x �  y � 1 x � 2y � 5

1
2 x  � 8z � �3 2z � 2
 x � 3y � 5z � �5 3y � 3z � 6
3x � 4y � 2z � 13 2x � y � 4z � �6

x � 2, y �
3
2, z � �

1
2x �

1
2, y � 3, z � �1

1
2 x �

1
3 y �

2
3

 5x � 3.5y � �0.48
3.1x �  2y � �0.161

3 x �
1
2 y �

1
6

x � 0.4, y � 0.7x � 2, y � �1

 x � 2y � 11�3x � 2y � 9
2x � 6y � 30 2x �  y � 1

x � 3, y � 4x � �1, y � 3

13. (where c, d are constants)

14. (where c, d are constants)

In Exercises 15–34, use the elimination method to solve
the system.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

x
6 �  

y
2 � �32x

5 �
y
5 � �2

x
3 �

3y
5 �  4 x

3 �
y
2 � �3

10x � 5y � 16x � 2y � �5
 8x � 4y � 39x � 3y �  1

20x � 24y � 10
42x � 56y � 28

 13 x �  2
5 y �

1
6

12x � 16y �  8

3x � 12y � 36x � 4y � 8
2x �  8y � 23x � 2y � 4

6x � 15y � 188x � 12y � 40
2x �  5y �  82x �  3y � 15

 x � 2y � 192x �  y �  5
4x � 3y � �1 x � 3y � �1

4x � 2y � �10�2x � 3y � 10
3x � 2y �  �4 2x � 2y � 12

2x �  y � c � d
 x � 3y � c � d

x � y � 2c � d
x � y �  c � d



29.

30.

31.

32.

33.

34.

In Exercises 35 and 36, find the values of c and d for
which both given points lie on the given straight line.
Hint: Substitute the x- and y-values of each of the
given points into the equation to create a 
system.

35.

36.

37. Bill and Ann plan to install a heating system for
their swimming pool. They have gathered the
following cost information.

cx � dy � �6; 11, 32 and 1�2, 122
cx � dy � 2; 10, 42 and 12, 162

2 � 2

 5x �  y � 6z � 20
�4x � 3y �  z �  3
  x � 3y � 2z �  8

  x � 3y � 2z �  14
�2x �  y � 6z � �31
 2x � 4y �  z �  14

0.0375x � 0.912y � 50.79624
  463x �    80y � �13781.6

1.92x � 6.77y � �3.86928
 3.5x � 2.18y �  2.00782

 
x � 2y

3 �
3x � y

2 � �2

x � y
4  �  

x � y
3 �  1

x � y
4 �

x � y
2 � 9

x � y
4 �

x � y
3 � 1
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38. One parcel of land is worth $100,000 now and is
increasing in value at the rate of $3000 per year. A
second parcel is now worth $60,000 and is
increasing in value at the rate of $7500 per year.
a. For each parcel of land, write an equation 

that expresses the value y of the land in year x.
b. Graph the equations in part a.
c. Where do the lines intersect? What is the

significance of this point?
d. Which parcel will be worth more in five years?

in 15 years?

39. A toy company makes dolls, as well as collector
cases for each doll. To make x cases costs the
company $5000 in fixed overhead, plus $7.50 per
case. An outside supplier has offered to produce
any desired volume of cases for $8.20 per case.
a. Write an equation that expresses the company’s

cost to make x cases itself.
b. Write an equation that expresses the cost of

buying x cases from the outside supplier.
c. Graph both equations on the same axes and

determine when the two costs are the same.
d. When should the company make the cases

themselves, and when should they buy them
from the outside supplier?

40. The sum of two numbers is 40. The difference of
twice the first number and the second is 11. What
are the numbers?

41. A 200-seat theater charges $3 for adults and $1.50
for children. If all seats were filled and the total
ticket income was $510, how many adults and
how many children were in the audience?

42. A theater charges $4 for main floor seats and
$2.50 for balcony seats. If all seats are sold, the
ticket income is $2100. At one show, 25% of the
main floor seats and 40% of the balcony seats
were sold, and ticket income was $600. How
many seats are on the main floor and how many
in the balcony?

43. An investor has part of her money in an account
that pays 2% annual interest, and the rest in an
account that pays 4% annual interest. If she has
$4000 less in the higher paying account than in
the lower paying one and her total annual interest
income is $1010, how much does she have
invested in each account?

Installation Monthly
System cost operational cost

Electric $2000 $80.00

Solar $14,000 $ 9.50

a. Write a linear equation for each heating system
that expresses its total cost y in terms of x, the
number of years of operation.

b. What is the five-year total cost of electric heat?
of solar heat?

c. In what year will the total cost of the two
heating systems be the same? Which is the
cheapest system before that time?



44. The death rate per 100,000 population y in year x
for heart disease and cancer is approximated by
these equations:

Heart Disease:
Cancer:

where corresponds to 1970. If the equations
remain accurate, when will the death rates for
heart disease and cancer be the same? (Source:
U.S. Department of Health and Human Services)

45. At a certain store, cashews cost $4.40 per pound
and peanuts cost $1.20 per pound. If you want to
buy exactly 3 pounds of nuts for $6.00, how many
pounds of each kind of nuts should you buy?
Hint: If you buy x pounds of cashews and y
pounds of peanuts, then Find a second
equation by considering cost and solve the
resulting system.

46. A store sells deluxe tape recorders for $150. The
regular model costs $120. The total tape recorder
inventory would sell for $43,800. But during a

x � y � 3.

x � 0

�1.3x �  y � 167.5,
6.9x � 2y � 728.4
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recent month the store actually sold half of its
deluxe models and two-thirds of the regular
models and took in a total of $26,700. How many
of each kind of tape recorder did they have at the
beginning of the month?

47. How many cubic centimeters of a solution
that is 20% acid and of another solution that is
45% acid should be mixed to produce 100 of a
solution that is 30% acid?

48. How many grams of a 50%-silver alloy should be
mixed with a 75%-silver alloy to obtain 40 grams
of a 60%-silver alloy?

49. A machine in a pottery factory takes 3 minutes to
form a bowl and 2 minutes to form a plate. The
material for a bowl costs $0.25 and the material
for a plate costs $0.20. If the machine runs for 8
hours straight and exactly $44 is spent for
material, how many bowls and plates can be
produced?

cm3

1cm32

12.1.A Excursion: Graphs in Three Dimensions

In section 12.1, two-dimensional graphs were used to interpret and solve
systems of equations in two variables. Systems of equations in three vari-
ables can be represented by three-dimensional graphs, as shown in this
excursion. However, finding the solutions of such systems requires alge-
braic techniques that are presented in the following sections.

Three-Dimensional Coordinates

Just as ordered pairs of real numbers (x, y) are identified with points in
a plane, ordered triples (x, y, z) of real numbers can be identified with
points in three-dimensional space. To do this, draw three coordinate axes
as shown in Figure 12.1.A-1. The axes in three-dimensional space are
usually called the x-axis, the y-axis, and the z-axis. In three-dimensional
coordinates, the arrowhead on each axis indicates the positive direction.

Each pair of axes determines a coordinate plane, which is named by the
axes that determine it. There are three coordinate planes, the xy-plane, the
yz-plane, and the xz-plane, which divide the three-dimensional space into
eight regions, called octants, shown in Figure 12.1.A-2. The octant in
which all coordinates are positive is called the first octant.

Objectives

• Plot points in three
dimensions

• Graph planes in three
dimensions

• Use graphs of planes to
visualize the number of
solutions to a system
of equations• Solve application s using systems.

3 � 3

x

y

z

Figure 12.1.A-1
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x

z

y

xz-plane yz-plane

xy-plane

Figure 12.1.A-2

Plotting Points in Three Dimensions

To plot the point (a, b, c) in a three-dimensional coordinate system, move
a units from the origin along the x-axis, move b units parallel to the y-
axis, then move c units parallel to the z-axis. Dashed lines are used to
indicate the distances parallel to the y- and z-axes.

Example 1 Points in Space

Plot the given points in a three-dimensional coordinate system.

Solution

12, �2, �3210, �2, 02,11, 3, 42,

x

(0, −2, 0)

(2, −2, –3)

z

y

(1, 3, 4)

Figure 12.1.A-3

The octants can be considered as the regions above and
below each quadrant of the xy-plane.

NOTE

■

Graphs in Three Dimensions

A function in three dimensions can be written in terms of x, y, and z, or
as a function of two variables, x and y. The graph of a linear equation in
three dimensions is a plane. A comparison of two-dimensional and three-
dimensional forms follows.
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Two dimensions Three dimensions

slope-intercept slope-intercept
form of a line form of a plane

slope slope in x-direction

b y-intercept slope in y-direction

b z-intercept

general form general form of
of a line a plane

point-slope point-slope form of
form of a line a plane

y-axis yz-plane
x-axis xz-plane

xy-plane

vertical line plane:
horizontal line parallel to yz-plane

parallel to xz-plane
parallel to xy-planez � c

y � b
x � ay � b

x � a

z � 0
y � 0y � 0
x � 0x � 0

z � z0 � m1x � x02 � n1y � y02y � y0 � m1x � x02

Ax � By � Cz � DAx � By � C

n �
z2 � z1
y2 � y1

m �
z2 � z1
x2 � x1

m �
y2 � y1
x2 � x1

F1x, y2 � mx � ny � bf 1x2 � mx � b
z � mx � ny � by � mx � b

Graphing Planes
One method of graphing a plane in three dimensions is to find the x-, y-,
and z-intercepts, plot the intercepts on the axes, and then sketch the plane.
To find the x-intercept, set y and z equal to 0, and solve for x. The y-inter-
cept and z-intercept are found in a similar manner.

Example 2 Graphing a Plane in General Form

Graph the plane 

Solution

First, find the intercepts.

x-intercept:
x

y-intercept:
y

z-intercept:

Plot the intercepts, and sketch the plane that contains them, as shown in
Figure 12.1.A-4.

■

 z �  3
 2102 � 3102 � 4z � 12

�  4
 2102 � 3y � 4102 � 12

�  6
 2x � 3102 � 4102 � 12

2x � 3y � 4z � 12.

z

y

x

(0, 0, 3)

(6, 0, 0)

(0, 4, 0)

Figure 12.1.A-4



Example 3 Graphing a Plane in Slope-Intercept Form

Graph the plane 

Solution

First, find the intercepts. Use the fact that 
to find the z-intercept.

x-intercept:

y-intercept:

z-intercept:

Plot the intercepts and sketch the plane that 
contains them, as shown in Figure 12.1.A-5.

■

Example 4 Graphing a Plane Parallel to an Axis

Graph the plane 

Solution

First, find the intercepts. There is no 
y term; thus, the plane has no y-intercept. 
It is parallel to the y-axis.

x-intercept:

z-intercept:

Plot the intercepts and sketch the 
plane that contains them, as shown 
in Figure 12.1.A-6.

■

Graphical Representations of Systems

A linear system of equations in three variables is represented graphically
by three planes. A solution of a linear system is a point of inter-
section of all three planes. As in two variables, a linear system in three
variables can have no solutions, one solution, or infinitely many solutions.

3 � 3

3 � 3

 z � 2
 z � 4 � 210 � 12

 x � �1
 0 � 4 � 21x � 12

z � 4 � 21x � 12.

z � �2
z � 0 � 2102 � 2

 y � 1
 0 � 0 � 2y � 2

 x � 2
 0 � x � 2102 � 2

z � F1x, y2

F1x, y2 � x � 2y � 2.
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z

y

x
(0, 0, −2)

(2, 0, 0) (0, 1, 0)

Figure 12.1.A-5

z

y

x

(0, 0, 2 )

(−1, 0, 0)

Figure 12.1.A-6
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All remaining possibilities not shown are listed below:

• three planes coincide (infinitely many solutions)
• two planes coincide and the third plane intersects them (infinitely

many solutions)
• two planes coincide and the third plane is parallel (no solutions)

Exercises 12.1.A

In Exercises 1–8, plot the given point in a three-
dimensional coordinate system.

1. (1, 4, 5) 2.

3. 4. (4, 0, 6)

5. (3, 0, 0) 6.

7. 8.

In Exercises 9–20, graph the plane described by the
given equation.

9. 10. 5x � 2y � 4z � 10x � 3y � z � 6

1�3, �1, 5212, �3, �12
10, 0, �42

10, 2, �32
1�3, 2, 42

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. Critical Thinking Describe the possibilities for the
number of solutions of a linear system of
equations with 2 equations in 3 variables. Explain
your answers in terms of intersections of two
planes. You may include a sketch in your answer.

4x � z � 23x � 2z � �6

z � 8 � 41y � 32z � 6 � 31x � 22
F1x, y2 � 3x � 5y � 9F1x, y2 � 2x � 4y � 8

z � 2x � y � 6z � x � y � 3

�2x � 4y � 5z � 83x � 4y � 6z � 9

Figure 12.1.A-7

No solutions

One solution
Infinitely many solutions
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12.2 Matrices

Augmented Matrices

It is often convenient to use an array of numbers, called a matrix, as a
method to represent a system of equations. For example, the system

is written in matrix form as

In this shorthand, only the coefficients of the variables are written. This
representation is called an augmented matrix where each row of the
matrix represents an equation of the system. The numbers in the first 
column are coefficients of x, the numbers in the second column are coef-
ficients of y, and the third column’s numbers are the constant terms. A
vertical dashed line is often used to represent the equal signs.

Example 1 Writing a System as an Augmented Matrix

Write an augmented matrix for the system of equations.

Solution

The augmented matrix is .

Notice that 0 is the x-coefficient in the second equation.
■

Solving Systems Using Augmented Matrices

Recall that in the elimination method, an equation may be multiplied by
a nonzero constant, or two equations may be added together. Also, the
order of the equations is irrelevant, so equations may be interchanged.
Performing any of these operations produces an equivalent system, that
is, a system with the same solutions.

Augmented matrices can be used to solve linear systems. When dealing
with matrices, operations similar to those used in the elimination method
are called elementary row operations.

°
1
0
3

2
2
3

3
�5
10

�2
6

�2
¢

 3x � 3y � 10z � �2
 2y �  5z �  6

 x � 2y �  3z � �2

a1
2

2
6

�2
2
b

 2x � 6y � 2
 x � 2y � �2

Objectives

• Represent systems of
equations by augmented
matrices

• Solve systems of equations
by row reduction

• Solve systems by using a
calculator to obtain reduced
row echelon form matrices

• Solve applications by using
matrices

• Solve application s using systems.
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Performing any of the following operations on an augmented
matrix produces an augmented matrix of an equivalent system:

• Interchange any two rows.

• Replace any row by a nonzero constant multiple of itself.

• Replace any row by the sum of itself and a nonzero
constant multiple of another row.

Elementary 
Row 

Operations

Example 2 shows the use of the elementary row operations in solving a
system. To solve a system of two equations in two variables using ele-
mentary row operations, produce an equivalent matrix that has one row
with an x-coefficient of 1 and a y-coefficient of 0, and the other row with
an x-coefficient of 0 and a y-coefficient of 1. The desired equivalent matrix
and its corresponding system are shown below.

Example 2 Using an Augmented Matrix

Solve the system of equations 

Solution

The system is solved below by using elementary row operations in the
elimination method on the left and the augmented matrix method on the
right. Compare the steps performed in each method.

Replace the second row by the 
sum of itself and times the 
first row.

Multiply the second row by 

Replace the first row by the sum 
of itself and times the second 
row.

a1
0

0
1

�8
3
bx � �8

y �  3

�2r2 � r1 S r1�2

a1
0

2
1

�2
3
bx � 2y � �2

y �  3

1
2 r2 S r2

1
2.

a1
0

2
2

�2
6
bx � 2y � �2

2y �  6

�2r1 � r2 S r2�2

a1
2

2
6

�2
2
b x � 2y ��2

2x
 

�

 

6y � 2

 2x � 6y �  2
 x � 2y � �2

x�a
y�b

a1
0

0
1

a
b
b >>

In previous
methods, the step to
replace a row with the sum
of itself and a multiple of
another row was done in
two or more steps.

NOTE



This last augmented matrix represents the same solution of 

the system as the solution obtained by using the elimination method. The
solution of the system is , 

■

Reduced Row-Echelon Form

The last matrix of Example 2 is in reduced row-echelon form, which is
summarized as follows.

 y � 3. x � �8

a1
0

0
1

�8
3
b
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A matrix is in reduced row-echelon form if it satisfies the
following conditions.

• All rows consisting entirely of zeros (if any) are at the
bottom.

• The first nonzero entry in each nonzero row is a 1 (called
a leading 1).

• Any column containing a leading 1 has zeros as all other
entries.

• Each leading 1 appears to the right of leading 1’s in any
preceding row.

Reduced Row-
Echelon Form

Gauss-Jordan Elimination

The method of using elementary row operations to produce an equiva-
lent matrix in reduced row-echelon form is called Gauss-Jordan
elimination. When an augmented matrix is in reduced row-echelon form,
the solutions of the system it represents can be read immediately, as in
the last step of Example 2.

Example 3 Using Gauss-Jordan Elimination

The matrices below are in reduced row-echelon form. Write the system
represented by each matrix, find the solutions, if any, and classify each
system as consistent, consistent with infinitely many solutions, or incon-
sistent.

a. b. c.

Solution

a. The system represented by the augmented matrix is

 0x � 0y � 0
 x � 3y � 4

a1
0

2
0

�1
3
b°

1
0
0

0
1
0

0
0
1

3
�7

4
¢a1

0
�3

0
4
0
b

A matrix can
represent a system of
equations that has variables
other than x, y, and z.
When given a matrix
without the corresponding
system, the choice of letters
used to represent the
variables is arbitrary.
Another common choice is

and x3.x2,x1,

NOTE



The second equation, , is always true. The system is consistent with
infinitely many solutions. All solutions lie on the line represented by

Represent the solutions of the system using the parameter t. Letting 
yields so Individual solutions may then be found
by substituting real values for t.

b. The system represented by the matrix is

The solution of the system is so the system is con-
sistent.

c. The system represented by the matrix is

The second equation, is always false. This indicates that the sys-
tem is inconsistent because it has no solutions.

■

Calculators and Reduced Row-Echelon Form

Most graphing calculators have a command that uses elementary row
operations to put a given matrix into reduced row-echelon form.

Example 4 Using Reduced Row-Echelon Form

Solve the following systems of equations using a calculator’s reduced row-
echelon form feature:

a. b.

Solution

Write the augmented matrix for each system, enter each system into a cal-
culator as a matrix, then reduce to reduced row-echelon form (see
Technology Tip).

a. b. °
�1

3
0

2
�1

1

�3
5

�2

5
�3

6
¢a 2

�4
1
1

0
18
b

�x � 2y � 3z � 5
3x � y � 5z � �3

y � 2z � 6

2x � y � 0
�4x � y � 18

0 � 3,

 0x � 0y �  3
 x � 2y � �1

z � 4,y � �7,x � 3,

 z � 4
 y  � �7

 x    � 3

y � 0x � 4t � 0
y � �2x � �2,t � �2
y � 1x � 7t � 1
y � tx � 4 � 3tt 1a real number2

x � 4 � 3t.x � 3t � 4,
y � t

x � 3y � 4.

0 � 0
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Technology 
Tip

Check your calculator
manual to learn how to 

enter and store matrices in
the matrix memory.

To put a matrix in reduced
row echelon form, use 
rref in the MATH submenu
of the TI MATRIX menu.
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Figure 12.2-1a Figure 12.2-1b

The solution is . The solution is 
■

Example 5 Calculator Solution to an Inconsistent System

Solve the system of equations.

Solution

Write the augmented matrix for the system, enter the matrix into a cal-
culator, then reduce to reduced row-echelon form, as shown in Figure
12.2-2.

The last row of the reduced matrix represents the equation

Because the equation has no solution, the original system has no solution
and is therefore inconsistent.

■

Example 6 Calculator Solution of a System

Solve the system of equations below.

Solution

Notice that all of the constant terms in the system are zero. A system like
this has at least one solution, namely, which
is called the trivial solution. However, there may be nonzero solutions as
well.

Write the augmented matrix for the system, then enter and reduce it to
reduced row-echelon form using a calculator, as shown in Figure 12.2-3.

w � 0,z � 0,y � 0,x � 0,

 2x � 17y � 23z � 40w � 0
 2y �  4z �  6w � 0

 2x � 5y �   z �  3w � 0

0x � 0y � 0z � 1.

 3x � 5y � 7z � 4
 2x � 4y � 5z � 2
 x �  y � 2z � 1

x � 4, y � 0, z � �3.x � �3, y � 6

°
1
2
3

1
4
5

2
5
7

1
2
4
¢

°
2
0
2

5
2

17

1
�4

�23

3
6

40

0
0
0
¢

Figure 12.2-2

Figure 12.2-3
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The system corresponding to the reduced matrix is

The system is consistent with infinitely many solutions. The value of w is
always 0, and the first two equations can be solved for x and y in terms
of z.

Letting the solutions of the system all have the form

Individual solutions may be found by substituting real values for t.

■

Example 7 Application Using Calculator Reduced Row-
Echelon Form

Charlie is starting a small business and borrows $10,000 on three differ-
ent credit cards, with annual interest rates of 18%, 15%, and 9%,
respectively. He borrows three times as much on the 15% card as he does
on the 18% card, and his total annual interest on all three cards is $1244.25.
How much did he borrow on each credit card?

Solution

Let x be the amount borrowed on the 18% card, y the amount borrowed
on the 15% card, and z the amount borrowed on the 9% card. The total
amount borrowed is $10,000.

Total interest is the sum of the amounts of interest on the three cards.

Interest on Interest on Interest on Total
18% card 15% card 9% card interest

0.18x 0.15y 0.09z 1244.25

The amounts on the cards are related by a third equation.

Amount on 3 times amount
15% card on 18% card

y 3x�

���

x � y � z � 10,000

w � 0z � �3,y � �6,x � 16.5,t � �3
w � 0z � 1,y � 2,x � �5.5,t � 1
w � 0z � 0,y � 0,x � 0, t � 0

w � 0.z � t,y � 2t,x � �5.5t,

z � t,

 w � 0
 y � 2z
 x � �5.5z

 w � 0
 y �  2z � 0

 x �   5.5z � 0



The equation is equivalent to Therefore, the system of
equations is

The corresponding matrix and its reduced row-echelon form are shown
in Figure 12.2-4.

 3x �   y     � 0
 0.18x � 0.15y � 0.09z � 1244.25

 x �   y �   z � 10,000

3x � y � 0.y � 3x
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°
1

0.18
3

1
0.15
�1

1
0.09

0

10,000
1244.25

0
¢

The solution is and Charlie borrowed $1275
on the 18% card, $3825 on the 15% card, and $4900 on the 9% card.

■

z � 4900.y � 3825,x � 1275,

Figure 12.2-4

Exercises 12.2

In Exercises 1–4, write the augmented matrix of the
system.

1.

2.

3.

4.

 2x � 3y � 2w �
1
2 z � 4

 4y �
1
2 w � 6z � 3

 14 x � 6y � 2w �  z � 2

 2x �
1
2 y �

7
2 w � 6z � 1

  �2y �
1
3 z � 0

2x �
3
2 y � 5z � 0

 x �
1
2 y �

7
4 z � 0

3x � 2y � 7w � 6z �  0
2x �  y � 3w � 2z �  4
 x � 2y � 3w � 7z � �5

3x � 7y � 4z � �3
 x � 2y � 6z �  0
2x � 3y � 4z �  1

In Exercises 5–8, the augmented matrix of a system of
equations is given. Express the system in equation
notation.

5. 6.

7. 8.

In Exercises 9–12, the reduced row-echelon form of the
augmented matrix of a system of equations is given.
Find the solutions of the system.

9. 10.

11. 12. ¶
1
0
0
0
0
0

0
1
0
0
0
0

0
0
1
0
0
0

0
0
0
1
0
0

7
1

�5
4
0
0

∂±
1
0
0
0

0
1
0
0

0
0
1
0

1
2
0
0

2
�3

4
0

≤

•
1
0
0
0
0

0
1
0
0
0

0
0
1
0
0

0
0
0
0
0

0
0
0
1
0

5
4
3
2
1

µ§1
0
0
0

0
1
0
0

0
0
1
0

0
0
0
1

3
2
5

�2
0

¥

°
1
2

�1

7
3
0

0
1
2

4
6
3
¢°

1
1
4

0
�1

2

1
4
5

0
�2

0

1
3
2
¢

a2
1

3
6

5
9

2
0
ba2

4
�3

7
1
2
b



In Exercises 13–20, use Gauss-Jordan elimination to
solve the system.

13. 14.

15. 16.

17. 18.

19. 20.

In Exercises 21–35, solve the system by any method.

21.

22.

23. 24.

25. 26.

27. 28.

29. 30.

31.

32.

�x � 2y � z � 2w � �3
 x � 2y � z � 2w � 11
�x � 4y � z �  w �  0
 x �  y � z �  w � �1

�2x � 2y � 2z � 2w � �10
  x �  y �  z �  w �  �5
 4x � 3y �  z �  w �  �2
 2x �  y � 3z � 2w �  �6

x � y � z � 0�5x � y � z � 0
x � y � z � 0 3x � y � z � 0
x � y � z � 0  x � y � z � 0

2x � 2y �  z � 33x � 2y �  z � 4
�x � 2y � 2z � 0 x �  y � 2z � 3
 x � 4y �  z � 34x �  y � 3z � 7

�2x � 4y �  z � 10�3x � 5y �  4z � 2
  x � 3y � 7z �  1  x � 2y �  3z � 2
 2x � 4y �  z �  3  x � 4y � 13z � 4

 x �  y �  z � 19x � 4y � 1
�x � 2y �  z � 05x �  y � 3
 2x �  y � 2z � 3 x �  y � 3

 5x � 4y �  z � 2w � �3
 2x � 4y �  z � 2w � �3
�x � 2y � 3z � 4w �  8

 3x �  2y �  z � 1
  x �  2y � 3z � 1
11x � 10y � 9z � 5

2x �  y �  z � 200
2x � 3y � 5z � 600

 x � 2y � z � 0 x � 2y � 2z �   0
3x �  y � z � 6 x �  y �  z � 200

 x � 3y � 2z � 5�2x � 6y � z � �10
3x � 3y � z � 10x � y � 13z � 6
 x � y � 5z � �6x � 2y � 4z � 6

7x � y � 3z � 22x � 2y � 3z � 5
3x � y � 2z � 0 x � 2y � 2z � 4
2x � y � 2z � 1 x � 2y � 2z � 1

 x � 4y � z � 2  x � 2y � 3z � 0
 x � 2y � 3z � 2�2x � 3y � 2z � 3
3x � 7y � 9z � 0 �x � 3y � 2z � 0
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33.

34.

35.

36. A matrix can be used to represent a set of points in
space, with the x-coordinates in the first column,
the y-coordinates in the second column, and the 
z-coordinates in the third column. Each row
represents a point. A crystal lattice is used to
represent the atomic structure of a crystal. The two
matrices below represent simple cubic and A10
crystal lattices, in which the atoms of the crystal are
at the points represented by the rows of the matrix.

Simple Cubic A10

In two different three-dimensional coordinate
systems, plot the points in each matrix and
connect them to form two prisms. How are the
two lattices alike? How are they different?

37. A collection of nickels, dimes, and quarters totals
$6.00. If there are 52 coins altogether and twice as
many dimes as nickels, how many of each kind of
coin are there?

 ®
x
0

2.93
0.48
0.48
3.40
3.40
0.95
3.88

y
0

0.48
2.93
0.48
3.40
0.95
3.40
3.88

z
0

0.48
0.48
2.93
0.95
3.40
3.40
3.88

∏®
x
0

3.35
0

3.35
0

3.35
0

3.35

y
0
0

3.35
3.35

0
0

3.35
3.35

z
0
0
0
0

3.35
3.35
3.35
3.35

∏

Hint: Let u �
1

x � 1 , v �
1

y � 3 , w �
1

z � 2.

�3
x � 1 �

4
y � 3 �

1
z � 2 � �2

5
y � 3 �

10
z � 2 � �5

1
x � 1 �

2
y � 3 �

3
z � 2 � 4

 2x �  y � 5z � 3w � 0
  x � 2y � 5z � 4w � 0
�x � 3y � 2z � 5w � 0
 3x �  y � 2z � 5w � 0

2x � 2y � 3z � w � �7
   4y � 3z � 2w � 8
�x � y � 3z � 3w � 7

x � 2y � z � 3w � 18
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38. A collection of nickels, dimes, and quarters totals
$8.20. The number of nickels and dimes together
is twice the number of quarters. The value of the
nickels is one-third of the value of the dimes.
How many of each kind of coin are there?

39. Lillian borrows $10,000. She borrows some from
her friend at 8% annual interest, twice as much as
that from her bank at 9%, and the remainder from
her insurance company at 5%. She pays a total of
$830 in interest for the first year. How much did
she borrow from each source?

40. An investor puts a total of $25,000 into three
stocks. She invests some of it in stock A and $2000
more than one-half that amount in stock B. The
remainder is invested in stock C. Stock A rises
16% in value, stock B 20%, and stock C 18%. Her
investment in the three stocks is now worth
$29,440. How much was originally invested in
each stock?

41. An investor has $70,000 invested in a mutual fund,
bonds, and a fast food franchise. She has twice as
much invested in bonds as in the mutual fund.
Last year the mutual fund paid a 2% dividend, the
bonds 10%, and the fast food franchise 6%; her
dividend income was $4800. How much is
invested in each of the three investments?

42. Tickets to a concert cost $2 for children, $3 for
teenagers, and $5 for adults. When 570 people
attended the concert, the total ticket receipts were
$1950. Three-fourths as many teenagers as
children attended. How many children, adults,
and teenagers attended?

43. A company sells three models of humidifiers: the
bedroom model weighs 10 pounds and comes in
an 8-cubic-foot box; the living room model weighs
20 pounds and comes in an 8-cubic-foot box; the
whole-house model weighs 60 pounds and comes
in a 28-cubic-foot box. Each of their delivery vans
has 248 cubic feet of space and can hold a
maximum of 440 pounds. In order for a van to be
as fully loaded as possible, how many of each
model should it carry?

44. Peanuts cost $3 per pound, almonds $4 per pound,
and cashews $8 per pound. How many pounds of
each should be used to produce 140 pounds of a
mixture costing $6 per pound, in which there are
twice as many peanuts as almonds?

45. If Tom, George, and Mario work together, they
can paint a large room in 4 hours. When only
George and Mario work together, it takes 8 hours
to paint the room. Tom and George, working
together, take 6 hours to paint the room. How
long would it take each of them to paint the room
alone? Hint: If x is the amount of the room
painted in 1 hour by Tom, y is the amount painted
by George, and z the amount painted by Mario, 

then 

46. Pipes R, S, and T are connected to the same tank.
When all three pipes are running, they can fill the
tank in 2 hours. When only pipes S and T are
running, they can fill the tank in 4 hours. When
only R and T are running, they can fill the tank in
2.4 hours. How long would it take each pipe
running alone to fill the tank?

47. A furniture manufacturer has 1950 hours
available each week in the cutting department,
1490 hours in the assembly department, and 2160
in the finishing department. Manufacturing a
chair requires 0.2 hours of cutting, 0.3 hours of
assembly, and 0.1 hours of finishing. A chest
requires 0.5 hours of cutting, 0.4 hours of
assembly, and 0.6 hours of finishing. A table
requires 0.3 hours of cutting, 0.1 hours of
assembly, and 0.4 hours of finishing. How many
chairs, chests, and tables should be produced in
order to use all the available production
capacity?

48. A stereo equipment manufacturer produces three
models of speakers, R, S, and T, and has three
kinds of delivery vehicles: trucks, vans, and
station wagons. A truck holds 2 boxes of model R,
1 of model S, and 3 of model T. A van holds 1 box
of model R, 3 of model S, and 2 of model T. A
station wagon holds 1 box of model R, 3 of model
S, and 1 of model T. If 15 boxes of model R, 20 of
model S, and 22 of model T are to be delivered,
how many vehicles of each type should be used
so that all operate at full capacity?

49. A company produces three camera models: A, B,
and C. Each model A requires 3 hours of lens
polishing, 2 hours of assembly time, and 2 hours
of finishing time. Each model B requires 2, 2, and
1 hours of lens polishing, assembly, and finishing
time, and each model C requires 1, 3, and 1 hours,
respectively. There are 100 hours available for lens
polishing, 100 hours for assembly, and 65 hours
for finishing each week. How many of each model
should be produced if all available time is used?

x � y � z �
1
4.
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Matrices were used in Section 12.2 to solve systems of linear equations.
However, matrices are also useful for organizing data. The arithmetic of
matrices has practical applications in the natural sciences, engineering,
the social sciences, and management. Matrices are now considered in a
more general setting.

A matrix has been defined as an array of numbers. The dimensions of a
matrix indicate the number of rows and columns in the matrix. An 
matrix has m rows and n columns. For example:

matrix matrix
3 rows, 3 columns 4 rows, 1 column

Each entry of a matrix can be located by stating the row and column in
which it appears. An entry is the entry in row i and column j of its
corresponding matrix. In the matrices above, and Two
matrices are said to be equal if they have the same dimensions and the
corresponding entries are equal.

The general form of a matrix can be written as shown below.

Matrix Addition and Subtraction

Matrices may be added or subtracted, but unlike real numbers, not all
sums and differences are defined. It is only possible to add or subtract
matrices that have the same dimensions.

A � •
a11

a21

a31

o
am1

a12

a22

a32

o
am2

a13

a23

a33

o
am3

p
p
p

 

p

a1n

a2n

a3n

o
amn

µ

b41 � 12.a13 � �5
aij

4 � 13 � 3

B � § 3
2

�5
0

12

¥A � °
3
6

�2

2
1
0

�5
7
5
¢

m � n

Objectives

• Add and subtract matrices

• Multiply a matrix by a scalar
factor

• Multiply two matrices

• Use matrix multiplication to
solve problems

• Use matrices to represent
directed networks

12.3 Matrix Operations

Matrices that have the same dimensions may be added or
subtracted by adding or subtracting the corresponding entries.

For matrices that have different dimensions, addition and
subtraction are not defined.

Matrix Addition
and Subtraction
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Example 1 Adding and Subtracting Matrices

For the given matrices, find and 

Solution

Both are matrices, so add or subtract the corresponding entries.

The results are confirmed in Figures 12.3-1a and 12.3-1b.
■

Multiplication and Matrices

Scalar Multiplication
There are two different types of multiplication associated with matrices:
scalar multiplication and matrix multiplication. Scalar multiplication is
the product of a real number and a matrix, while matrix multiplication
is the product of two matrices.

A � B � °
3
6

�2

2
1
0

�5
7
5
¢ � °

5
4
1

�6
5

�1

2
�4

0
¢ � °

�2
2

�3

8
�4

1

�7
11
5
¢

A � B � °
3
6

�2

2
1
0

�5
7
5
¢ � °

5
4
1

�6
5

�1

2
�4

0
¢ � °

8
10

�1

�4
6

�1

�3
3
5
¢

3 � 3

B � °
5
4
1

�6
5

�1

2
�4

0
¢A � °

3
6

�2

2
1
0

�5
7
5
¢

A � B.A � B

Figure 12.3-1a

Figure 12.3-1b

Scalar multiplication is the product of a scalar, or real
number, and a matrix. If A is an matrix and k is a real
number, then kA is the matrix formed by multiplying
each entry of A by k.

m � n
m � n

Scalar
Multiplication

k °
a11

o
am1

p

∞
p

a1n

o
amn

¢ � °
ka11

o
kam1

p

∞
p

ka1n

o
kamn

¢

Example 2 Scalar Multiplication

For the matrix find 3A.A � °
3
6

�2

2
1
0

�5
7
5
¢ ,
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The product AB is defined only when the number of columns
of A is the same as the number of rows of B.

If A is an matrix and B is an matrix, then AB is an
matrix C where the entry in the ith row, jth column is

cij � ai1b1j � ai2b2j � ��� � ainbnj

m � p
n � pm � n

Matrix
Multiplication

The following diagram shows how the dimensions of the product matrix
are related to the dimensions of the factor matrices:

1m � n matrix2 � 1n � p matrix2 � 1m � p matrix2> >

>> >>

Solution

Multiply each entry of A by 3.

The results are confirmed in Figure 12.3-2.
■

Matrix Multiplication
To multiply two matrices, multiply the rows of the first matrix by columns
of the second matrix.

The number of entries in each row of the first matrix must be the same
as the number of entries in each column of the second matrix.

To multiply a row by a column, multiply the corresponding entries,
then add the results. In the following illustration, row 2 of the first matrix
is multiplied by column 1 of the second matrix to produce the entry in
row 2 column 1 of the product matrix. Note that the product of a row and
a column is a single number.

a23b31a22b21a21b11

ccc

°
*
3
*

*
1
*

*
2
*
¢ °

2
0
1

*
*
*

*
*
*
¢ � °

 
3 �2

 

 
�

 

*
1 �0
 *

 
�

 

 
2 �1

 

*
*
*

*
*
*
¢ � °

*
8
*

*
*
*

*
*
*
¢

3A � 3°
3
6

�2

2
1
0

�5
7
5
¢ � °

3132
3162

31�22
3122
3112
3102

31�52
3172
3152
¢ �  °

9
18

�6

6
3
0

�15
21
15
¢

CAUTION

Before finding the entries of a product matrix, check the dimensions
of the factor matrices to make sure that the product is defined.

Figure 12.3-2
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Example 3 Matrix Multiplication

For the given matrices, find AB, BA, AC, and CA when defined.

Solution

First, verify that each product is defined.

A is and B is so AB is defined.

B is and A is so BA is defined.

A is and C is so AC is not defined.

C is and A is so CA is defined.

AB is a matrix.

row 1 of A row 1 of A
column 1 of B column 2 of B

row 2 of A row 2 of A
column 1 of B column 2 of B

BA is a matrix.

Note that AB � BA.

 � °
9

�5
�5

2
0
1

�8
20
34
¢

� °
2132 � 1�32 1�12
0132 � 51�12
1132 � 81�12

2112 � 1�32 102
0112 � 5102
1112 � 8102

2122 � 1�32 142
0122 � 1 25142
1122 � 1 28142

¢

 BA � °
2
0
1

�3
5
8
¢a 3

�1
1
0

2
4
b

3 � 3

 � a8
2

12
35
b

��

� a 3122 � 1102 � 2112
1�122 � 0102 � 4112

31�32 � 1152 � 2182
1�12 1�32 � 0152 � 4182b

��

 AB � a 3
�1

1
0

2
4
b°2

0
1

�3
5
8
¢

2 � 2

2 � 3,2 � 2

2 � 2,2 � 3

2 � 3,3 � 2

3 � 2,2 � 3

C � a1
0

3
�1
bB � °

2
0
1

�3
5
8
¢A � a 3

�1
1
0

2
4
b

CAUTION

Matrix multiplication is
not commutative, that
is, in general.
AB and BA may have
different dimensions, as
in Example 3, or BA
may not be defined
when AB is. Even
when AB and BA are
both defined and have
the same dimensions,
they may not be equal.

AB � BA
⎫ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎭

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

⎫ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎭

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
>>

>>

>>

>>



AC is not defined.

CA is a matrix.

■

Matrices can also be multiplied on a calculator, as shown below.

 � a0
1

1
0

14
�4
b

� a1132 � 31�12
0132 � 1�12 1�12

1112 � 3102
0112 � 1�12 102

1122 � 1 23142
0122 � 1�12 142b

 CA � a1
0

3
�1
b a 3

�1
1
0

2
4
b

2 � 3
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Applications

Matrices are a convenient way to handle data that is grouped into cate-
gories. If the categories of the rows of one matrix are the same as those
of the columns of another, the matrices can often be multiplied to form a
meaningful product.

Example 4 Using Matrix Multiplication

A furniture restorer refinishes chairs, tables, and dressers. The amount of
time required to complete each step of refinishing and the cost per hour
of each step are given by the following matrices. Find the product of the
two matrices and interpret the result.

Hours
cost per

hour
removing finish

sanding
finishing

°
$7

$18
$10
¢

 
 
chair
table

dresser

•removing
finish
0.5 hr

  1 hr
  3 hr

 
sanding
2.5 hr
  4 hr
  7 hr

 
finishing
  1 hr
1.5 hr
4.5 hr

Figure 12.3-3

Technology 
Tip

To multiply matrices on
a calculator, enter 

the matrices in the mem-
ory and recall them as
needed. If the product of
two matrices is not
defined, the calculator will
give an error message.

Figure 12.3-4

°
 

¢
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Figure 12.3-5

Solution

The first matrix is and the second is so multiplication of the
first matrix by the second matrix is defined, and the product is a 
matrix. In the product of a row and a column, the amount of time for each
step is multiplied by the cost per hour for that step, giving the cost for
that step. The costs are then added, giving the total cost for the item. The
product matrix will give the total cost for refinishing each item.

total cost

■

Directed Networks

The following figure is a directed network. The points that are labeled
by capital letters are called vertices, and the arrows indicate the direction
in which the paths between the vertices can be traveled. For example,
from vertex L there is 1 path to M and 2 paths to K, but from K, there are
0 paths to L or to M.

°
0.5 hr

1 hr
3 hr

2.5 hr
4 hr
7 hr

1 hr
1.5 hr
4.5 hr

¢ °
$7

$18
$10
¢ �

chair
table

dresser
£  

$58.50   

 $94    

$192    

≥

3 � 1
3 � 1,3 � 3

Number
From To of paths

K K 0

K L 0

K M 0

L K 2

L L 0

L M 1

M K 1

M L 2

M M 1

K

M

L

Figure 12.3-6

To:
 
K
L
M

£K
0
2
1

L
0
0
2

M
0
1
1
≥

An adjacency matrix can be used to 
represent the connections between the 
vertices, as shown at right. The entries in 
the matrix are the number of direct paths, 

From:
called one-stage paths, from one vertex 
to another.
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Multiplying Adjacency Matrices
If A is the adjacency matrix of a network, then the product 
is a matrix for the number of two-stage paths, that is, paths from one ver-
tex to another through one intermediate vertex.

Example 5 Using an Adjacency Matrix

Find the matrix for the number of two-stage paths for the directed net-
work on page 809, and interpret the result.

Solution

The matrix for the number of two-stage paths is

The matrix gives the number of two-stage paths, which are given in the
table below.

°
0
2
1

0
0
2

0
1
1
¢

2

� °
0
2
1

0
0
2

0
1
1
¢ °

0
2
1

0
0
2

0
1
1
¢ � °

0
1
5

0
2
2

0
1
3
¢

A � A � A2

Number of
From To two-stage paths Paths

K K 0 none

K L 0 none

K M 0 none

L K 1

L L 2 (see Note)

L M 1

M K 5

M L 2

M M 3 M S L S M; M S L S M; M S M S M

M S M S L; M S M S L

M S L S K; M S M S K
M S L S K; M S L S K; M S L S K

L S M S M

L S M S L; L S M S L

L S M S K

■

Example 6 Food Webs

A food web shows the relationships between certain predators and prey in
an ecosystem. A directed network can be used to represent a food web,
with the arrows pointing in the direction of prey to predator. Write an
adjacency matrix for the following food web.

Two different
two-stage paths may pass
through the same vertices
in the same order, as shown
below.

NOTE

K

M

L

K

M

L
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fish

sea lionsshellfish

killer whalessea otters

Figure 12.3-7

Solution

The matrix is given below.

To:

■

From: 

 
s
f

so
sl

kw

•
s

1
0
0
0
0

f
1
1
0
0
0

so
1
0
0
0
0

sl
0
1
0
0
0

kw
0
1
1
1
0

µ

Exercises 12.3

In Exercises 1–6, refer to matrices A, B, and C below.

Find each of the following:

1. 2.

3. 4.

5. 6. 2B � 3C2C

3AA � C

ABA � B

C � °
4

�2
4

3
�1

6

�5
7
1
¢

B � °
�4

5
�1

4
3

�6

7
2
6
¢A � °

2
4
3

�6
�2

5

3
1

�5
¢

In Exercises 7–12, determine if the product AB or BA
is defined. If a product is defined, state its dimensions.
Do not calculate the products.

7.

8.

9.

10.

11. B � a1
3

2
4
bA � °

�4
3
2

15
�7
10
¢

B � °
�2
13
5

4
�2
25

9
1
0
¢A � °

1
2
1

�5
4

�1

7
8
2
¢

B � a5
7

6
8

11
15
bA � °

1
1
0

0
1
1
¢

B � °
17

�6
3

�9
12
5
¢A � °

�1
9

10

�2
2

34

�5
�1

5
¢

B � °
2
7

�1

5
0
3

9
0
8

1
6
7
¢A � a3

8
6
0

7
1
b



12.

In Exercises 13–18, find AB.

13.

14.

15.

16.

17.

18.

In Exercises 19–22, show that AB is not equal to BA by
computing both products.

19.

20.

21.

22. B � ±
0
2
5

�1

1
3
0
0

7
�2

1
1

7
1
0
0

≤A � ±
1
2

�3
1

1
0
0

�1

�1
3
0
1

1
2
1
2

≤

B � °
1
2
0

7
�2

0

�5
6
0
¢A � °

4
0

�3

2
1
0

�1
2
1
¢

B � £15
2

�
3
2

1
≥A � £3

2

4

2
7
2

≥
B � a 7

�2
�5

6
bA � a3

5
2
1
b

B � °
2

�2
3

�1
3
5

0
1
2

1
�4
�5
¢A � a 10

�1
0
1

1
0

0
1
b

B � °
1
1
1

0
1
1

1
0
1

1
1
0
¢A � ±

2
1
0
2

0
1
2
3

�1
2

�3
0

≤

B � a�1
6

3
1

�2
0

0
�2
bA � ±

1
3
0
2

�2
0

�1
1

≤

B � °
1
1
0

1
0
1
¢A � °

1
0
2

0
2
3

�4
�1

4
¢

B � °
3
1
1

�2
0

�1

�1
5

�1
¢A � °

�1
0
1

2
�1

2

3
2
0
¢

B � a1
0

�2
3

3
1
bA � a3

2
2
4
b

B � a1
3

2
2

3
1
bA � ±

10
�6

1
�4

12
0

23
3

≤
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23. Write an adjacency matrix for the directed
network below.

K
J

L

24. Write an adjacency matrix for the directed
network below.

N

M
P

25. Find a matrix for the directed network in Exercise
23 that represents the number of two-stage paths.

26. Find a matrix for the directed network in Exercise
24 that represents the number of two-stage paths.

27. A bakery sells giant cookies, sheet cakes, and 3-
tiered cakes. The time required for each step is
given in the matrix below.

baking decorating

The cost per hour for baking and decorating is
given by the matrix below. Find the product of the
two matrices and interpret the result.

cost per
hour

28. A boutique sells shirts, pants, and dresses. The
time required for each step is given in the matrix
below.

cutting sewing

shirt
pants
dress

1 hr
°1.5 hr

2 hr

1 hr
1.25 hr
1.75 hr

¢

baking
decorating a $4

$7
b

giant cookie
sheet cake

3 -tiered cake

0.5 hr
°0.75 hr

1.5 hr

0.25 hr
0.5 hr

1.25 hr
¢
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The cost per hour for cutting and sewing is given
by the matrix below. Find the product of the two
matrices and interpret the result.

cost per
hour

29. A small college offers lecture and lab courses. The
class sizes are given in the matrix below.

freshman sophomore junior senior
level level level level

lecture 150 100 75 50
lab 30 25 25 20

The tuition for each course is given by the matrix
below. Find the product of the two matrices.
Interpret all meaningful entries in the product.

lecture lab

30. A store sells trail mixes made of nuts and dried
fruit. The nutritional information per serving is
given in the matrix below.

nuts fruit

The percent of fruit and nuts per serving in each
mix is given below. Find the product of the two
matrices, and interpret the result.

mix A mix B

31. Write an adjacency matrix for the food web
represented by the directed network below.

nuts
fruit

30%a
70%

45%
55%

b

fat
protein

carbohydrates

1 g
°  3 g

65 g

52 g
20 g
21 g
¢

freshman level
sophomore level

junior level
senior level

$200

± $240
$280
$320

$40
$48
$56
$64

≤

cutting
sewing

a$5
$9
b

lions

gazelles

zebras

cheetahs

hyenas

33. An airline offers nonstop flights between certain
cities, as shown on the directed network below.

a. Write an adjacency matrix A for the directed
network above.

b. Find the matrix which represents the
number of flights between cities with exactly 1
layover. Find the matrix which represents
the number of flights between cities with
exactly 2 layovers.

c. Find the matrix , and interpret the
result.

34. A delivery company ships packages between
certain locations, as shown by the directed network
below.

A � A2 � A3

A3,

A2,

birds

spidersinsects

frogs

Minneapolis

MadisonSt. Louis

Milwaukee

Chicago

Dallas/Fort Worth

Houston

El Paso

San Antonio

Austin

Amarillo

a. Write an adjacency matrix A for the directed
network above.

b. Find the matrix , and interpret the
result.

A � A2 � A3

32. Write an adjacency matrix for the food web
represented by the directed network below.

a  b
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A system of equations that has the same number of equations as variables
is called a square system. There is a method of solving this type of sys-
tem that does not require row reduction. This method only works if the
system has a unique solution.

Examine the system of equations below.

[1]

Instead of using a single matrix to represent the system, we can consider
the system as having three parts: the coefficients, the variables, and the
constants. A matrix can be used to represent each part.

coefficients variables constants

The relationship between the three matrices and the system is shown in
the following example.

Example 1 A Matrix Equation

For the system of equations and the three matrices above, verify that

Solution

By the definition of matrix multiplication:

According to the system of equations [1], the entries of the matrix AX are
equal to the corresponding entries of B, so the two matrices are equal,
that is, 

■

Example 1 shows that a square system can be represented by the matrix
equation where A is the matrix of the system’s coefficients and
B is the matrix of the system’s constants. Thus, the system can be solved
by solving the corresponding matrix equation. Solving the equation 
means finding the entries of the matrix X, which are the variables of the
system.

AX � B

AX � B,

AX � B.

AX � °
1
2
1

1
3
2

1
0
1
¢  °

x
y
z
¢ � °

x �  y � z
2x � 3y
 x � 2y � z

¢

AX � B.

B � °
2
5

�1
¢X � °

x
y
z
¢A � °

1
2
1

1
3
2

1
0
1
¢

 x � 2y � z � �1
 2x � 3y  �  5

 x �  y � z �  2

Objectives

• Define the identity
matrix

• Find the inverse of an
invertible matrix

• Solve square systems of
equations using inverse
matrices

n � n

12.4 Matrix Methods for Square Systems

⎫
⎪
⎬
⎪
⎭
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Identity Matrices and Inverse Matrices

To solve a matrix equation it is necessary to “undo” the matrix
multiplication. One method of solving similar equations with real numbers
is by multiplying both sides of the equation by the inverse of a.

[2]

The solution of equation [2] depends on the fact that which is the
identity for multiplication of real numbers. Thus, in order to define the in-
verse of a matrix, we must first define the identity for matrix multiplication.

The identity matrix is the matrix with n rows and n columns that
has 1’s on the diagonal from the top left to the bottom right and 0’s as all
its other entries.

The identity matrix, is the identity for multiplication of 
matrices.

n � nIn,

I4 � ±
1
0
0
0

0
1
0
0

0
0
1
0

0
0
0
1

≤I3 � °
1
0
0

0
1
0

0
0
1
¢I2 � a1

0
0
1
b

Inn � n

aa�1 � 1,

 x � a�1b
 a�1ax � a�1b

 ax � b

AX � B,

For any matrix A,

AIn � InA � A.

n � n
Identity Matrix

Example 2 Verifying the Identity Matrix Property

For matrix C, verify that 

Solution

By the definition of matrix multiplication,

■

Inverse Matrices
An matrix A is called invertible, or nonsingular, if there exists an

matrix B such that (In this case it is also true that BA � In.2AB � In.n � n
n � n

I2C � a1
0

0
1
b a3

5
2
7
b � a1132 � 0152

0132 � 1152
1122 � 0172
0122 � 1172b � a3

5
2
7
b � C

CI2 � a3
5

2
7
b a1

0
0
1
b � a3112 � 2102

5112 � 7102
3102 � 2112
5102 � 7112b � a3

5
2
7
b � C

C � a3
5

2
7
b

CI2 � I2C � C.



The matrix B is called the inverse of A, and is written as where
Not all matrices have a multiplicative inverse.

Example 3 Verifying an Inverse Matrix

For the given matrices, verify that B is the inverse of A.

Solution

By the definition of matrix multiplication,

Notice also that

■

There are several methods of finding the inverse of an invertible matrix.

Example 4 Finding an Inverse Matrix

Find the inverse of matrix 

Solution

Suppose Then 

Setting the corresponding entries of and equal to each other results
in two systems of equations, one for each column.

The solutions of the two systems are and 

Thus, Check this by verifying that 

■

AA�1 � I2.A�1 � a 2
�

1
2

�3
1b.

v � 1.u � �3,y � �
1
2x � 2,

  u � 4v � 1  x � 4y � 0
 2u � 6v � 0 2x � 6y � 1

I2AA�1

AA�1 � a2
1

6
4
b ax

y
u
v
b � a2x � 6y

x � 4y
2u � 6v
u � 4v

b � a1
0

0
1
b � I2

AA�1 � I2.A�1 � ax
y

u
v
b.

A � a2
1

6
4
b.

 � a1
0

0
1
b � I2

 BA � a�1
3

1
�2
b a2

3
1
1
b� a1�12 122 � 1132

3122 � 1�22 132
1�12 112 � 1112
3112 � 1�22 112 b

AB � a2
3

1
1
b a�1

3
1

�2
b � a21�12 � 1132

31�12 � 1132
2112 � 11�22
3112 � 11�22 b� a1

0
0
1
b � I2

B � a�1
3

1
�2
bA � a2

3
1
1
b

AA�1 � A�1A � In .
A�1,
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Figure 12.4-1

Most graphing calculators can also be used to find inverse matrices
directly by using the key, as shown in Figure 12.4-1.

Solving Square Systems Using Inverse Matrices

Recall that the need for inverse matrices arose out of the matrix equation
, which represents a square system of equations. The equation can

now be easily solved by multiplying both sides by the inverse of the coef-
ficient matrix A.

Multiply both sides by .

by definition of inverse.

by definition of identity.

Thus, the solution of a square system of equations with an invertible coef-
ficient matrix A and constant matrix B is X � A�1B.

InX � X X � A�1B
A�1A � In InX � A�1B

A�1 A�1AX � A�1B
 AX � B

AX � B

x�1

CAUTION

Because matrix multiplication is not commutative, it is important
to always multiply in the same order on both sides of the equation.

Figure 12.4-2

Suppose that a square system of equations can be represented
by the matrix equation where A is the matrix of the
coefficients, X is the matrix of the variables, and B is the
matrix of the constants. If A is invertible, then the unique
solution of the system is

If A is not invertible, then the system is either consistent with
infinitely many solutions or inconsistent. Its solutions (if any)
may be found by using Gauss-Jordan elimination.

X � A�1B

AX � B,

Matrix Solution
of a Square

System

Example 5 Solving a System Using a Matrix Equation

Use an inverse matrix to solve 

Solution

The coefficient matrix and the constant matrix 

Then so the solution is 

■

y � �1.x � 3,X � A�1B � a 3
�1
b,

B � a 2
15
b.A � a1

2
1

�9
b

x � y � 2
2x � 9y � 15

2 � 2
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Example 6 Solving a System Using a Matrix Equation

Use an inverse matrix to solve 

Solution

The coefficient matrix is and the constant matrix is 

Then so the solution is 

as shown in Figure 12.4-3.
■

Curve Fitting

Just as two points determine a unique line, three noncollinear points 
determine a unique parabola. In general, a polynomial of degree n
can be determined by noncollinear points, a circle by three non-
collinear points, and a general conic by five noncollinear points. Matrix
methods can be used to find curves that pass through a given set of points.

Example 7 Finding the Parabola Through Three Points

Find the equation of the parabola that passes through the points ( ),
( ), and ( ).

Solution

The equation of a parabola can be written as .

Substitute the values of x and y from each point into the equation to form
a system of equations with the variables a, b, and c.

Find the values of a, b, and c by solving the matrix equation 

and 

The solution is , as shown in Figure 12.4-4. Thus,
the equation of the parabola is 

■
y � �2x2 � 3x � 5.
c � �5b � 3,a � �2,

B � °
�4

�10
�25
¢X � °

a
b
c
¢ ,A � °

1
1

16

1
�1

4

1
1
1
¢ ,

AX � B.

 �25 � 16a � 4b � c14, �252
 �10 �  a �  b � c1�1, �102
  �4 �  a �  b � c11, �42
  y � ax2 � bx � c1x, y2

y � ax2 � bx � c

4, �25�1, �10
1, �4

n � 1

z � �2,

y � �3,x � 7,X � A�1B � °
7

�3
�2
¢ ,B � °

2
5

�1
¢ .

A � °
1
2
1

1
3
2

1
0
1
¢

x � y � z � 2
2x � 3y � � 5
x � 2y � z � �1

3 � 3

Figure 12.4-3

Figure 12.4-4
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Exercises 12.4

In Exercises 1–4, write the identity matrix for each
matrix, and verify that 

1. 2.

3. 4.

In Exercises 5–8, verify that B is the inverse of A.

5.

6.

7.

8.

In Exercises 9–12, write a set of systems of equations
that represent the solution of the matrix equation

. (See Example 4.) Do not solve the systems.

9. 10.

11. 12.

In Exercises 13–20, find the inverse of the matrix, if it
exists.

13. 14.

15. 16.

17. 18. °
1
2
0

�3
�5
�1

4
7
1
¢°

1
3

�2

2
�1

3

0
2

�2
¢

°
1
1
6

�1
0

�2

0
�1
�3
¢a 3

�6
�1

2
b

a3
1

5
4
ba1

3
2
4
b

A � °
4
2

�1

�3
0
0

2
1
5
¢A � °

1
0
3

2
1
2

�1
2
1
¢

A � a�1
2

3
�5
bA � a2

4
0
1
b

AA�1 � In

A � °
2
1
1

1
2
0

0
2
0
¢  B � °

0
1

�1

0
0
1
2

1
�2

3
2

¢

A � °
1

�1
1

0
0
1

1
1

�1
¢  B � °

1
2
0
1
2

�
1
2
1
1
2

0
1
0
¢

A � a4
2

8
6
b  B � £ 3

4

�
1
4

�1

1
2

≥
A � a3

5
1
2
b  B � a 2

�5
�1

3
b

C � °
0

�2
1

0
4
3

1
1
5
¢C � °

2
0
4

1
3

�1

0
2
0
¢

C � a 6
�3

4
2
bC � a3

1
�2

4
b

CIn � InC � C.
In

19. 20.

In Exercises 21–26, solve the system of equations by
using inverse matrices. (See Examples 5 and 6.)

21. 22.

23. 24.

x

25. 26.
y

In Exercises 27–34, solve the system by any method.

27.

28.

29.

30.

31.

32.

33.

 5x � 13y � 7z � 12w � �7
�2x �  5y � 6z �  4w � 0
 4x �  4y �  z �  5w � 7
  x �  2y � 2z �  2w � �23

�x � 12y � 3z � 3w � 17
4y � z � 5

x � 4y � z � 3w � �7
x � 3w � �2

2x � 2z � 2w � 2
2x � 6y � 8z � w � 17
3x � 2y � 4z � 9
x � 2y � 3z � 6

 �4x � 2y �   z � 5w � 0
 �x � 7y � 10z � 5w � 0
 2x �  y �  4z � 2w � 0
 x � 4y �  5z � 2w � 0

x � 3y � 5z � 10
y � z � 1

x � 2y � 4z � 6

2y � 3z � w � 8
�2x � 2y � 2z � 4w � 5

y � z � w � �2
x � 2y � 3z � 1

� 2�  z x � 2y
 3x � 3y � 2z � 2w � 0
  2x �  y �  z �  w � 5

2w � 3� x �  y

 4x � 3y � 4z � 3   3x � y � 2z � 2
�  z � 1�4x � y � 3z � 1

 �3x � 3y � 4z � 22x � y � 0

 � 8z � �16x � 2y � 3z � 3
 2x � 5y � 3z � 0�x   �  z � �2
  x � 2y � 3z � 1�x � y � 1

�8x � 6y � 102x � 6y � 12
3x � 5y � �233x � 5y � 4

°
�1

2
3

3
5
1

1
0

�2
¢°

5
2

�3

0
2
1

2
1

�1
¢
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34.

35. Critical Thinking Consider the two systems of
equations below.

a. Write a matrix equation that represents each
system. Which matrices in the two equations
are the same? Does either matrix equation have
a solution?

b. Solve each system by any method. Make a
conjecture about the relationship between the
existence of an inverse coefficient matrix and
the nature of the solutions to any system with
those coefficients.

36. Critical Thinking Consider the system of equations
below.

a. Write an augmented matrix that represents the
system, and reduce it to reduced row echelon
form.

b. Write a matrix equation that represents the
system, and solve it using an inverse matrix.

c. Describe your results in part a in terms of the
matrix equation from part b.

In Exercises 37–40, find constants a, b, c such that the
three given points lie on the parabola 
(See Example 7.)

37. (1, 0), (2, 3), (3, 8) 38. (1, 1), (2, 1), (3, 2)

39. (3, 2), (1, 1), (2, 1) 40. (1, 6), (2, 3), (4, 25)

In Exercises 41–43, write a system of equations that
determines the polynomial of the given type that
passes through the given points. Do not solve the 
system.

41. cubic; (0, 5), (2, 1), (4, ), (8, 3)

42. cubic; ( , 1), ( , ), (0, 6), (3, 0)

43. quartic; ( , ), ( , 0), (1, 3), (2, 5), (10, )�4�2�1�5

�2�1�3

�7

y � ax2 � bx � c.

  x � 5y � 2z � 15
 2x � 4y �  z � �1
  x � 2y � 3z � �4

 �3x � 6y � �7 �3x � 6y � �9
 x � 2y �  4 x � 2y �  3

  x � 2y �  z � 2v � 4w � 0
 6x � 5y � 2z � 5v � 3w � 0
 5x � 2y � 3z � 2v � 3w � 0
 2x � 4y � 6z �  v � 4w � 0
  x � 2y � 5z � 2v � 4w � 0 44. Concentrations of the greenhouse gas carbon

dioxide, , have increased quadratically over
the past half century. The concentration y of ,
in parts per million, in year x is given by an
equation of the form

a. Let correspond to 1958 and use the
following data to find a, b, and c.

x � 0

y � ax 2 � bx � c.

CO2

CO2

b. Use this equation to estimate the 
concentration in the years 1983, 1993, and 2003.
For comparison purposes, the actual
concentrations in 1983 and 1993 were 343 ppm
and 357 ppm respectively.

45. Find constants a, b, and c such that the points 
(0, 2) (ln 2, 1), and (ln 4, 4) lie on the graph of

. (See Example 7.)

46. Find constants a, b, and c such that the points 
(0, 1) (ln 2, 4), and (ln 3, 7) lie on the graph of

47. A conic section has the equation
Find the

values of A, B, C, D, E, and F for the conic section
that passes through the six given points: (3, 4), (6, 2),
(2, 6), (12, 1), (4, 3), (1, 12). Write the equation and
identify the type of conic section.

48. A candy company produces three types of gift
boxes: A, B, and C. A box of variety A contains 
0.6 lb of chocolates and 0.4 lb of mints. A box of
variety B contains 0.3 lb of chocolates, 0.4 lb of
mints, and 0.3 lb of caramels. A box of variety C
contains 0.5 lb of chocolates, 0.3 lb of mints, and
0.2 lb of caramels. The company has 41,400 lb of
chocolates, 29,400 lb of mints, and 16,200 lb of
caramels in stock. How many boxes of each kind
should be made in order to use up all their stock?

49. Certain circus animals are fed the same three food
mixes: R, S, and T. Lions receive 1.1 units of mix
R, 2.4 units of mix S, and 3.7 units of mix T each
day. Horses receive 8.1 units of mix R, 2.9 units of
mix S, and 5.1 units of mix T each day. Bears
receive 1.3 units of mix R, 1.3 units of mix S, and
2.3 units of mix T each day. If 16,000 units of mix
R, 28,000 units of mix S, and 44,000 units of mix T
are available each day, how many of each type of
animal can be supported?

Ax2 � Bxy � Cy2 � Dx � Ey � F � 0.

f1x2 � aex � be�x � c.
�

f1x2 � aex � be�x � c
�

CO2

Year 1958 1979 2001

Concentration 315 337 371CO2
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The matrix methods discussed in Section 12.2 and Section 12.4 can only
be used for linear systems. Sometimes, however, it is necessary to solve
nonlinear systems. Some nonlinear systems may be solved algebraically,
by substitution or elimination.

Example 1 Solving a Nonlinear System by Elimination

Solve the system of equations.

Solution

This system can easily be solved by elimination. Add the two equations
to eliminate , and solve the resulting equation.

Substitute each value of x into one of the original equations and solve for
y. The x term is squared in both equations, so it is not necessary to sub-
stitute both 3 and because 

The system has four solutions: 
and Written as ordered pairs, the solutions are (3, 2),

and 
■

Example 2 Solving a Nonlinear System by Substitution

Solve the system of equations.

 x � y � 12
 2x2 � y2 �  1

1�3, �22.1�3, 22,13, �22, y � �2.x � �3,
y � 2;x � �3,y � �2;x � 3,y � 2;x � 3,

 y � ±2
 y2 �  4

 32 � y2 �  5

32 � 1�322.�3,

 x   � ±3
 x2  �  9

 2x2  � 18
 � x2 � y2 � 13

 x2 � y2 �  5

y2

 x2 � y2 � 13
 x2 � y2 �  5

Objectives

• Solve nonlinear systems
algebraically

• Solve nonlinear systems
graphically

Nonlinear
systems can have any
number of solutions,
including solutions with
the same x-value but
different y-values—and
vice versa. Thus, it is
convenient to write the
solutions as ordered pairs,
(x, y).

NOTE

12.5 Nonlinear Systems
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Solution

This system can be solved by substitution. Solve the second equation for
y, and substitute into the first equation.

If these values of x are substituted back into the second equation, the
resulting solutions are or respectively. This gives two solu-
tions, (5, 7) and 

Notice that if the values for x were substituted into the first equation
instead, the resulting solutions would be or This would
give 4 solutions, (5, 7), and However, the
solutions and do not satisfy the second equation; they
are extraneous.

Thus, the solutions of the system are (5, 7) and 
■

Solving Nonlinear Systems Graphically

Consider the system below.

Substitution may seem like an appropriate method for solving the sys-
tem. However, if the expression for y in the first equation is substituted
for y in the second equation, the result is

This fourth-degree equation cannot be readily solved algebraically, so a
graphical approach is appropriate.

Example 3 Solving a Nonlinear System Graphically

Solve the following system of equations graphically.

Solution

Graph both equations on the same screen. Trace or use an intersection
finder to determine the coordinates of the intersections.

 y � 3x2 � 3x � 7
 y � x4 � 4x3 � 9x � 1

 x4 � 4x3 � 3x2 � 12x � 6 � 0
 x4 � 4x3 � 9x � 1 � 3x2 � 3x � 7

 y � 3x2 � 3x � 7
 y � x4 � 4x3 � 9x � 1

1�29, 412.
1�29, �41215, �72 1�29, �412.1�29, 412,15, �72, y � ;41.y � ;7

1�29, 412. y � 41,y � 7

 x � 5 or x � �29
 x2 � 24x � 145 � 0

 2x2 � 144 � 24x � x2 � 1
 2x2 � 112 � x22 � 1

 y � 12 � x

CAUTION

When solving non-
linear systems
algebraically,
extraneous solutions
can result. Check all
solutions in all of the
original equations.
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36

�4.7 4.7

�12

Figure 12.5-1

The graphs intersect at four points. The approximate solutions are
( ), ( ), (2.1, 0.1), and (3.9, 26.3).

■

Example 4 Solving a Nonlinear System Graphically

Solve the following system of equations graphically.

Solution

In order to graph the equations, they must both be solved for y.

To solve the second equation for y, use the quadratic formula with y as
the variable.

Graph the four equations and then trace or use an intersection finder.

There are four solutions: (3, 2), ( ), ( ), and ( ). The
first two are exact solutions, a fact that can be confirmed by substituting
the values into the original equations.

■

2.2, �2.6�2.2, 2.6�3, �2

 � x ± 29x2 � 32
�2

 y �
x ± 2x2 � 412x2 � 82

�2

a � �1, b � �x, and c � 2x2 � 8

 �y2 � xy � 12x2 � 82 � 0
 2x2 � xy � y2 � 8

 y � ±B
10 �

2
3x2

 y2 � 10 �
2
3 x2

 2x2 � 3y2 � 30

 2x2 � xy �  y2 �  8
 2x2   � 3y2 � 30

�0.5, �4.8�1.5, 4.4

5

�4.7 4.7

�5

Figure 12.5-2
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650,000

0
0

8000

Figure 12.5-3

Example 5 Application of a Nonlinear System

The revenue and cost (in dollars) for manufacturing x bicycles are given
by the following equations:

cost:
revenue:

A solution of this system is called a break-even point, which occurs when
the cost and revenue are equal. Find all break-even points of this system. 

Solution

Graph both equations on the same screen. To choose a window, notice
that the graph of the revenue equation is a parabola with vertex 
(4000, 640,000).

y � �0.04x2 � 320x
y � 85x � 120,000

There are two break-even points: approximately (565, 168,022) and 
(5310, 571,353). This means that if the manufacturer makes and sells 565
or 5310 bicycles, the cost and revenue will be the same. That is, the man-
ufacturer will break even. From the graph, you can see that between 565
and 5310, the revenue is greater than the cost, so the manufacturer will
make a profit when producing between 565 and 5310 bicycles.

■

Exercises 12.5
In Exercises 1–12, solve the system algebraically.

1. 2.

3. 4.

5. 6.

7. 8.

9.
 x �  y � 2

 x2 � y2 � 4x � 4y � �4

 3x � y � 2 x � 2y � 4
 xy � 4x2 � 3 xy � 2y2 � 8

 xy � 2xy � 21
 2x � y � 4x � y � 10

 x2 � 4y � 4 x2 � 3y � 6
 x2 �  y � 0 x2 �  y � 0

 �3x � y � �2 �2x � y � 3
 x2 � y � 0 x2 � y � 0

10.

11. 12.

In Exercises 13–28, solve the system by any means.

13.

14. 15.

 y �
3

x2 � 3
 y � �2x2 � 5

 y � x3 � 3x � 2 y � �x3 � 3x2 � x � 3

 y � �0.5x2 � 3x � 2
 y � x3 � 3x2 � 4

 x2 � y � 5 x2 � y � 19
 x2 � y2 � 1 x2 � y2 � 25

 x � 2y � 2
 x2 � y2 � 4x � 2y � �1
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16.

17. 18.

19. 20.

21.

22.

23.

24.

25.

26.

27.

28.

In Exercises 29–32, find the center and radius 
r of the circle that passes
through the three given points.

29. (0, 5), (3, 4), (4, 3) 30. (3, 4), (2, 5), (3,6)

31. (5, 25), (17, 21), (2, 24)

32. (8, 12), (14, 4), (6.4, 12.8)

33. Find the break-even points for the following
revenue and cost functions. (See Example 5.)

cost:
revenue:

34. A 52-foot-long piece of wire is to be cut into three
pieces, two of which are the same length. The two
equal pieces are to be bent into circles and the
third piece into a square. What should the length
of each piece be if the total area enclosed by the
two circles and the square is 100 square feet?

y � �0.03x2 � 100x
y � 30x � 25,000

(x � h)2 � (y � k)2 � r 2
(h, k)

 16x2 � 24xy � 9y2 � 100x � 200y � 100 � 0
 2x2 � 8xy � 8y2 � 2x � 5 � 0

 3x2 � 5xy � 3y2 � 7
 x2 � 3xy � y2 � 2

 x2 � 2xy �  y2 �  8x �  8y �  48 � 0
5x2 �  xy � 6y2 � 79x � 73y � 196 � 0

 4x2 � y2 � 64
 4x2 � 6xy � 2y2 � 3x � 10y � 6

 x2 � 10x � y � 21 � 0
 3x2 � 4xy � 3y2 � 12x � 2y � 7 � 0

 x2 � x � y � 1 � 0
 x2 � 4xy � 4y2 � 30x � 90y � 450 � 0

 2x � y � �1
 4x2 � 9y2 � 36

 x �  y � 2
 5x2 � 3y2 � 20x � 6y � �8

 �x2 �  4y2 � �4 �9x2 �  4y2 � �36
 9x2 � 16y2 � 140 25x2 � 16y2 � 400

 y � cos x y � sin x
 y � x2 � 4 y � x3 � x � 1

 y � x3 � x2 � 2x � 1
 y � 0.25x4 � 2x2 � 4 35. A rectangular box (including top) with square

ends and a volume of 16 cubic meters is to be
constructed from 40 square meters of cardboard.
What should its dimensions be?

36. A rectangular sheet of metal is to be rolled into a
circular tube. If the tube is to have a surface area
(excluding ends) of 210 square inches and a
volume of 252 cubic inches, what size of metal
sheet should be used? (Recall that the
circumference of a circle with radius r is and
that the volume of a cylinder with radius r and
height h is 

37. Find two real numbers whose sum is and
whose product is 48.

38. Find two real numbers whose sum is 34.5 and
whose product is 297.

39. Find two positive real numbers whose difference
is 1 and whose product is 4.16.

40. Find two real numbers whose difference is 25.75
and whose product is 127.5.

41. Find two real numbers whose sum is 3 such that
the sum of their squares is 369.

42. Find two real numbers whose sum is 2 such that
the difference of their squares is 60.

43. Find the dimensions of a rectangular room whose
perimeter is 58 feet and whose area is 204 square
feet.

44. Find the dimensions of a rectangular room whose
perimeter is 53 feet and whose area is 165 square
feet.

45. A rectangle has an area of 120 square inches and a
diagonal 17 inches in length. What are its
dimensions?

46. A right triangle has an area of 225 square
centimeters and a hypotenuse 35 centimeters in
length. To the nearest hundredth of a centimeter,
how long are the legs of the triangle?

47. Find the equation of the straight line that
intersects the parabola only at the point 
(3, 9). Hint: What condition on the discriminant
guarantees that a quadratic equation has exactly
one real solution?

y � x2

�16

pr2h.2
2pr



826 Chapter 12 Systems and Matrices

Inequalities in two variables are solved by graphing. The solution to an
inequality in two variables is the region in the coordinate plane consist-
ing of all points whose coordinates satisfy the inequality.

Example 1 Solving an Inequality in Two Variables

Solve the inequality .

Solution

First, graph the line The solution to the inequality is the set
of all points on the line, plus all points in either the region above or the
region below the line. To determine which region is the solution, choose
a point that is not on the line, such as (0, 0), and test it in the inequality.

False

The inequality is false for the test point, so shade the region that does not
contain that point—in this case, the region above the line.

■

The method used in Example 1 can be summarized as follows.

0
?

� 2102 � 2

y � 2x � 2.

y � 2x � 2

Objectives

• Solve inequalities in two
variables

• Solve systems of
inequalities by graphing

• Solve linear programming
problems

12.5.A Excursion: Systems of Inequalities

−4

−8

8

4

4−4−8 80

y

x

Figure 12.5.A-1

Replace the inequality symbol by an equal sign, and graph
the resulting line.

• For and inequalities, use a solid line to indicate that
the line is part of the solution.

• For and inequalities, use a dashed line to indicate
that the line is not part of the solution.

Choose a test point that is not on the line, and substitute its
coordinates in the inequality.

• If the coordinates of the test point make the inequality
true, then the solution includes the region on the side of
the line containing the test point.

• If the coordinates of the test point make the inequality
false, then the solution includes the region on the side of
the line that does not contain the test point.

6677

����

Test-Point
Method for

Solving
Inequalities in
Two Variables

The test-point method can be used to solve any inequality, but the fol-
lowing technique for linear inequalities with two variables is often easier,
especially when using a calculator.



Section 12.5.A Excursion: Systems of Inequalities 827

Solve the inequality for y so that it has one of the following
forms:

• The solution of is the half-plane above the
line.

• The solution of is the half-plane below the
line.

For and , the line is also
part of the solution.

y � mx � by �� mx � by �� mx � b

y 66 mx � b

y 77 mx � b

y �� mx � by 66 mx � by �� mx � by 77 mx � b

Solving Linear
Inequalities in
Two Variables

Example 2 Solving a Linear Inequality

Solve the inequality .

Solution

First, solve the inequality for y.

If the point satisfies this inequality, then it lies below the line
. Thus, the solution of the inequality is the set of all points

that lie below the line , as shown in Figure 12.5.A-2. The line
is not part of the solution.y � �2x � 2

y � �2x � 2
y � �2x � 2

1x, y2
y 6 �2x � 2

3y 6 �6x � 6

6x � 3y 6 6

■

6.2

–6.2

9.4–9.4

Figure 12.5.A-2

The solution method used in Example 2 can be summarized as follows.

CAUTION

Graphing calculators do not display a dashed line with the shade
feature. The line in Figure 12.5.A-2 is not part of the solution.



828 Chapter 12 Systems and Matrices

Systems of Inequalities in Two Variables

The solution of a system of inequalities in two variables is found by graph-
ing all the inequalities on the same coordinate plane. The solution is the
region that is common to the solutions of all the graphs.

Example 3 Solving a System of Inequalities

Solve the system of inequalities.

Solution

Graph the two inequalities together, as shown in Figure 12.5.A-3. Figure
12.5.A-4 shows a calculator screen with regions shaded.

 y 7 �x � 1
 y �  x � 3

−10

−5

5

5−5 10−10

10

0

y

x

Figure 12.5.A-3

6.2

�9.4 9.4

�6.2

Figure 12.5.A-4

Technology Tip

To display shading on TI models, select the graph style for a function by
moving the cursor to the left of the equal sign in the function editor to 

the graph’s style icon, shown in the first column. Press ENTER repeatedly
to rotate through the graph styles until the desired style is shown. Then
graph the function as usual. There is also a SHADE option in the DRAW
menu.

In the function memory of CASIO models, select Type(F3) (F6) and then
the inequality sign desired. 

�
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The area where the shaded regions intersect is the solution of the system.
Any point in this shaded region of the plane is a solution of both inequali-
ties. For example, the point (5, 2) in the solution satisfies both inequalities,
as shown below.

■

Linear Programming

Linear programming is a process that involves finding the maximum or
minimum output of a linear function, called the objective function, sub-
ject to certain restrictions, called constraints.

For linear programming problems in two variables, the objective function
has the form and the constraints are linear inequalities.
The solution of the system of linear inequalities formed by the constraints
is called the feasible region.

The feasible region is a region in the plane that is bounded by straight
lines, such as those shown in Figure 12.5.A-5. The first figure is bounded
on all four sides and the two other figures have one side that is not
bounded.

F1x, y2 � ax � by,

 2 7 �5 � 1 � �4
 2 �  5 � 3 � 8

P

Q

R

S

Figure 12.5.A-5

A corner point of such a region is any point where two of the sides inter-
sect, such as points P, Q, R, and S in the first region in Figure 12.5.A-5.

The key to solving linear programming problems is the following theo-
rem, which will not be proved here.

The maximum value or minimum value of the objective
function (if it exists) always occurs at one or more of the
corner points of the feasible region. Thus, the solution may
be found by graphing the feasible region, and testing the
coordinates of the corner points in the objective function to
find the maximum or minimum value of the function.

Fundamental
Theorem of

Linear
Programming
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To see why the Fundamental Theorem above is true, notice that the
graph of the objective function is a plane in three dimensions. The
portion of the plane that lies above the feasible region must have its
high point and low point at a corner, as shown in Figure 12.5.A-6.

feasible region

y

z

x

objective function

Figure 12.5.A-6

Example 4 A Linear Programming Problem

Find the maximum value of the function subject to the
constraints below.

Solution

First, graph the feasible region. This is the solution of the system of
inequalities.

µ
x � 4y � 18
2x � y � 9
x � 0
y � 0

F1x, y2 � 3x � 2y

2 6

6

4

2

y

x

(0, 4.5)

(0, 0)

(6, 3)

2x − y = 9

x + 4y = 18

(4.5, 0)

Figure 12.5.A-7

In linear
programming problems
with a feasible region that
is unbounded on one or
more sides, there may be a
minimum or maximum
value of the objective
function, but (usually) not
both.

NOTE
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Second, find the corner points of the feasible region from the graph. They
are (0, 0), (0, 4.5), (4.5, 0), and (6, 3).

Third, evaluate the objective function at each of the corner points.

Corner point

(0, 0)

(0, 4.5)

(4.5, 0)

(6, 3) 3162 � 2132 � 24

314.52 � 2102 � 13.5

3102 � 214.52 � 9

3102 � 2102 � 0

F(x, y) � 3x � 2y

The solution is the corner point (6, 3), which yields the largest value of
the objective function, 24. This is the maximum value of the objective 
function.

■

Example 5 Application

Carla is making earrings and necklaces to sell at a craft fair. The profit
from each pair of earrings is $3, and the profit from each necklace is 
$5. She has 12 hours to make all of the jewelry she plans to sell. Each
pair of earrings takes 15 minutes to make, and each necklace takes 40
minutes to make. She also has $80 for supplies. The supplies for a pair
of earrings cost $2, and the supplies for a necklace cost $4. How many
pairs of earrings and how many necklaces should she make to maxi-
mize her profit?

Solution

Let x be the number of pairs of earrings and y be the number of necklaces.
The objective function, which represents the profit, is 
The constraints are inequalities involving time and cost. In addition, there
is an implied constraint that neither quantity can be negative. This gives
the following linear programming problem:

Maximize 

Subject to:

time
cost

The feasible region is shown in Figure 12.5.A-8.

µ
15x � 40y � 720
2x � 4y � 80
x � 0
y � 0

P1x, y2 � 3x � 5y

P1x, y2 � 3x � 5y.

−8

3
6
9

12
15
18

8 16 24 320

y

x

(16, 12)

21

40 48 56

Figure 12.5.A-8
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The corner points are shown below, with the objective function evaluated
at each point.

Corner point

(0, 0)

(0, 18)

(40, 0)

(16, 12) 31162 � 51122 � 108

 31402 � 5102 � 120

 3102 � 51182 � 90

  3102 � 5102 � 0

P(x, y) � 3x � 5y

The maximum value occurs at (40, 0). To make the maximum profit,
Carla should make 40 pairs of earrings and 0 necklaces. Her maximum
profit will be $120.

■

To solve a linear programming problem:

• Graph the feasible region. This is the solution of the
system of inequalities formed by the constraints.

• Find the corner points of the feasible region from the
graph.

• Evaluate the objective function at each corner point.

• Choose the corner point which yields the greatest (or
least) value of the objective function. This is the
maximum (or minimum) value of the function on the
feasible region.

Summary:
Solving Linear
Programming

Problems

Exercises 12.5.A

In Exercises 1–12, solve the system of inequalities.

1. 2.

3. 4.

 y 6 1
2x � 3  y 7 4x � 1

 y �
1
4x � 1 y 7 3x � 1

y � 4x � 2y 7  x � 2
y �  x � 3y � 2x � 4

5. 6.

7. 8.
 y 6 2x � 3 y � x
 y � x 7 � 2x � 1

 3x � 2y � 8 x � 2y � 5
 2x � 4y � 5 2x � 3y 7 6
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⎧
⎪
⎨
⎪
⎩

⎧
⎪
⎨
⎪
⎩

⎧
⎪
⎨
⎪
⎩

⎧
⎪
⎨
⎪
⎩

9. 10.

11. 12.

In Exercises 13–16, graph the feasible region described
by the system of inequalities, and find all of its cor-
ner points.

13. 14.

15. 16.

Solve the following linear programming problems.

17. Maximize:

Subject to:

18. Maxmimize:

Subject to:

19. Minimize:

Subject to:

y � 0
x � 0
 4x � 2y � 36
 3x � 4y � 32

F1x, y2 �
1
2x �

3
4y

y � 0
x � 0
7x � 11y � 105

�x � 2y � 10
F1x, y2 � 3x � 7y

y � 0
x � 0
 x � y � 4
 x � y � 6

F1x, y2 � 2x � 5y

 y � 0 y � 0
 x � 0 x � 0

 5x � 2y � 10 3x � y � 6
 2x � 3y � 12 x � 2y � 8

 y � 0 y � 0
 x � 0 x � 0

 7x � 2y � 24 9x � 2y � 30
 x �  y � 7 3x � 4y � 24

 4y �  x 6 16 x � �1
 4x � 9y � 36 y � 1

x � y 6 1x � y 6 16
y � x � 3y 7 2x � 1 20. Minimize:

Subject to:

21. A lunch counter sells two types of sandwiches,
roast beef and chicken salad. The profit on the
sandwiches is $2 for chicken salad and $3 for
roast beef. The amount of bread available is
enough for 30 sandwiches. There are 4 hours
available to prepare sandwiches. If chicken salad
sandwiches take 7 minutes to prepare and roast
beef sandwiches take 10 minutes, how many of
each type of sandwich should be prepared to
maximize the profit?

22. A dealer has a lot that can hold 30 vehicles. In this
lot, there are two available models, A and B. The
dealer normally sells at least twice as many model
A cars as model B cars. If the dealer makes a
profit of $1300 on model A cars and $1700 on
model B cars, how many of each car should the
dealer have in the lot?

23. A 30-acre orchard is to contain two types of trees,
peach and almond. The profit per year is $16.80
per peach tree and $21.60 per almond tree. An
acre can sustain 1080 peach trees or 900 almond
trees. If the grower has available labor to plant a
maximum of 30,000 trees, how many of each type
of tree should be planted?

24. An investor has $12,000 to invest into two
different funds. Fund A, which is a high-risk fund,
yields an average return of 14%. Fund B, which is
a low-risk fund, yields an average return of 6%.
To reduce the risk, the investor wants the amount
in fund B to be at least twice the amount in fund
A. How much should be invested in each fund to
maximize the return? What is the maximum
return?

y � 0
x � 0
8x �  5y � 56
 �3x � 12y � 60

F1x, y2 � 4x � 2y
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Review Exercises

Section 12.1

In Exercises 1–10, solve the system of linear equations by any method.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. The sum of one number and three times a second number is The sum
of the second number and two times the first number is 55. Find the two
numbers.

12. You are given $144 in $1, $5, and $10 bills. There are 35 bills. There are two
more $10 bills than $5 bills. How many bills of each type do you have?

13. Let L be the line with equation and M the line with equation
Which of the following statements is true?

a. L and M do not intersect. b. L and M intersect at a 
single point.

c. L and M are the same line. d. All of the above are true.
e. None of the above are true.

14. Which of the following statements about the given system of equations are
false?

a. is a solution.
b. is a solution.
c. is a solution.
d. The system has an infinite number of solutions.
e. is not a solution.

15. Tickets to a lecture cost $1 for students, $1.50 for faculty, and $2 for others.
Total attendance at the lecture was 460, and the total income from tickets
was $570. Three times as many students as faculty attended. How many
faculty members attended the lecture?

16. An alloy containing 40% gold and an alloy containing 70% gold are to be
mixed to produce 50 pounds of an alloy containing 60% gold. How much
of each alloy is needed?

z � �1y � 5,x � 2,

z � 3y � �3,x � 1,
z � 1y � 1,x � 1,
z � 0y � 3,x � 2,

 2x � y � 4z � 7
 6x � 4y � 14z � 24
 x � 4y � z � 2

�10x � 5y � �15.
4x � 2y � 6

�20.

2x � y � z � 88x � 6y � 4z � 8

x � y �
1
2 z � 15y � 10z � 0

4x � y � 2z � 4x � 2y � 3z � 1

�3x � y � 2z � �42x � 2y � 3z � 14
2x � y � 3z � 25x � 3y � 2z � 10
x � y � 4z � 04x � 3y � 3z � 2

10x � 8y � 5z � 4�3x � y � 2z � 9
4x � 4y � 4z � 2x � y � 2z � 9
x � 2y � 3z � 13x � y � z � 13

1
10 x �

2
5 y �

2
54x � 3y � 6

1
4 x �

1
3 y � �

1
43x � 5y � 10

2x � 3y � 72x � y � �3
3x � y � 6�5x � 3y � 4
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Section 12.2

Section 12.3

For Exercises 17–20, write the system of linear equations represented by the
augmented matrix.

17. 18.

19. 20.

For Exercises 21–26, write the system represented by each matrix, find the solu-
tions, if any, and classify each system as consistent or inconsistent.

21. 22.

23. 24.

25. 26.

In Exercises 27–30, perform the indicated matrix multiplication or state that the
product is not defined.

27. AB 28. CD 29. AE 30. DF

In Exercises 31–34, find the inverse of the matrix, if it exists.

31. 32.

33. 34.

In Exercises 35–38, use matrix inverses to solve the system.

35. 36.

�x � 4y � 2z � 3u � 0
�x � 4y � 2z � 3u � 0�3x � 4y �  z � �2
  x � 3y � 2z �  u � 0   2x �  y � 4z � 3
 2x �  y � 2z � 2u � 0     x � 2y � 3z � 4

°
1
2

�4

�1
�3

6

 1
2
1
¢°

3
1
2

2
1
2

6
2
5
¢

a2
1

6
3
ba3

4
�7
�9
b

F � °
2
6
6

3
3
1
¢E � °

1
�3

0

2
4
5
¢D � a�3

1
1
0

2
4
b

C � a3
2

2
4
bB � a2

4
�3

1
bA � a�1

0
0

�1
b

°
1 1 2
2 �3 3
1 �1 4

¢a2 3 �1 4
1 �4 1 7

b

°
�1

1
3

2
3

�5

1
0

�1

4
2
0
¢°

1
1
4

1
�2

1

�1
3
0

1
�3

2
¢

a 9
�12

�6
8

3
�4
ba4

1
�2
�5

14
9
b

°
1
1
2

1
0

�1

�5
�2
�1

2
0
1
¢°

2
4
8

0
�3
�9

3
7

10

�2
1

�3
¢

a2
3

�1
2

4
�1
ba2

2
6
3

16
7
b

Section 12.4
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Section 12.5

Section 12.5.A

37. 38.

39. Find the equation of the 40. The table shows the number of 
parabola passing through the hours spent per person per year 
points (2, 17), (8, 305). on home video games. Find a 

quadratic equation that contains 
this data, with corresponding 
to 1996.

In Exercises 41–46, solve the system.

41. 42.

43. 44.

45. 46.

47. Minimize and maximize 

subject to

48. Minimize and maximize 

subject to

49. Animal feed is to be made from corn and soybeans. One pound of corn has
30 units of fat and 20 units of protein, and one pound of soybeans has 20
units of fat and 40 units of protein. What is the minimum total weight of
feed to supply a daily requirement of 2800 units of fat and 2200 units of
protein?

50. A home supply store sells two models of dehumidifiers, standard and
deluxe. The standard model comes in a 10-ft box and weighs 10 lb, and
the deluxe model comes in a 9-ft box and weighs 12 lb. The store’s
delivery van has 248 ft of space and can hold a maximum of 440 lb. If the
store makes a profit of $20 on the standard model and $30 on the deluxe
model, how many boxes of each model can the van carry to maximize the
profit for each load?

3

3

3

y � 0
x � 0
3x � 4y � 8
4x � 3y � 24

F 1x, y2 � 8x � 7y

y � 0
x � 0
2x � y � 10
x � y � 36
2x � 2y � 4

F 1x, y2 � 30x � 10y

5x2 � 10xy � 5y2 � 8x2 � y � 6
x2 � 3xy � 2y2 � y � x � 0x3 � y3 � 26

x2 � xy � y2 � 9x � y � 2
6x2 � 4xy � 3y2 � 36x2 � y2 � 16

x2 � y � 19y � 2x � 3
x2 � y2 � 25x2 � y � 0

x � 6

1�3, 522,

2x � 3y � 6z � 4u � 5v � 0
 x � 3y � 2z � 4u � 4v � 44x � 4y � 2z � 3w � 1
2x � 3y � 5z � 4u �  v � 15x � 4y � 2z � 5w � �4
 x � 3y � 4z � 2u � 2v � �23x � 4y � 2z �  w � 0
2x �  y � 2z �  u     � 2 x � 4y � 2z � 6w � 2

⎧
⎪
⎪
⎨
⎪
⎪
⎩

⎧
⎪
⎨
⎪
⎩

Year 1996 2000 2004

Hours 25 76 161

[Source: Statistical Abstract of the U.S.: 2001]
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Partial Fractions

In calculus it is sometimes necessary to write a complicated rational
expression as the sum of simpler ones. Two forms of rational expressions
whose sum is a rational expression will be introduced in this section:
denominators with nonrepeated factors and those with repeated factors.

Example 1 Denominators with Nonrepeated Factors

Find the constants A and B such that 

Solution

The denominators on the right side of the equation are linear factors of
the denominator on the left side. Multiply both sides of the equation by
the common denominator, and collect like terms.

Because the polynomials on the left and right sides of the last equation
are equal, their coefficients must be equal term by term.

Coefficient of x

Constant term

The two equations above form a system of equations with unknowns A
and B. Solving the system yields and Therefore,

■

In Example 1, is called the partial fraction decomposi-

tion, or simply the partial fractions, of .7x � 6
x 

2 � x � 6

4
x � 2 �

3
x � 3

7x � 6
x 

2 � x � 6
�

4
x � 2 �

3
x � 3

B � 3.A � 4

 �3A � 2B � �6
 A � B �  7

 � 1A � B2x � 1�3A � 2B2
 � Ax � Bx � 3A � 2B
 � Ax � 3A � Bx � 2B

 7x � 6 � A1x � 32 � B1x � 22
1x � 22 1x � 32,

7x � 6
x˛

2 � x � 6
�

A
x � 2 �

B
x � 3.

Figure 12.C-1

If the denominator of a rational expression can be expressed as
a product of nonrepeated linear factors, each term of the decom-

position has the form A
x � a.

Nonrepeated
Linear Factor
Denominators

838
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5

5

�5

�5

Figure 12.C-2

Figure 12.C-3

When a factor of the denominator is repeated, every power less than or
equal to the multiplicity of the factor must be considered.

Example 2 Repeated Linear Factors

Find the partial fraction decomposition of 

Solution

The denominator can be factored into as shown in Fig-
ure 12.C-2. Because is a repeated factor, both and 
must be considered as possible denominators of the decomposition. The
process of finding the numerators is the same as that shown in Example 1.

Multiply both sides of the equation by the common denominator,
, and collect like terms on the right side.

The polynomials on the left and right sides are equal, so coefficients must
be equal term by term.

Coefficient of 

Coefficient of x

Constant term

This is a system of equations with unknowns A, B, and C. The augmented
matrix of the system and an equivalent reduced row echelon form matrix
are shown in Figure 12.C-3.

Therefore, and

■

In theory, any polynomial with real coefficients can be written as a prod-
uct of real linear factors and real quadratic factors. (See Section 4.2.)

2x 

2 � 15x � 10
1x � 12 1x � 222 �

3
x � 1 �

�1
x � 2 �

4
1x � 222

C � 4,B � �1,A � 3,

 4A � 2B � C � 10
 4A � B � C � 15

x 

2 A �  B   � 2

 � 1A � B2x 

2 � 14A � B � C2x � 14A � 2B � C2
 � Ax 

2 � 4Ax � 4A � Bx  

2 � Bx � 2B � Cx � C
 � A1x  

2 � 4x � 42 � B1x  

2 � x � 22 � C1x � 12
 2x 

2 � 15x � 10 � A1x � 222 � B1x � 12 1x � 22 � C1x � 12
1x � 12 1x � 222

1x � 222x � 21x � 222 1x � 12 1x � 222,

2x 

2 � 15x � 10
x 

3 � 3x 

2 � 4
.

If the denominator contains a nonrepeated quadratic factor,
then the decomposition will contain a term of the form 

where is irreducible over the set of 

real numbers.

ax 

2 � bx � cAx � B
ax2 � bx � c

,

Nonrepeated
Quadratic Factor

Denominators

Like repeated linear factors, if an irreducible quadratic factor is repeated,
every power less than or equal to the multiplicity of the factor must be
considered. The numerator of all quadratic factors has the form Ax � B.
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Example 3 Nonrepeated Quadratic Factor

Find the partial fraction decomposition of 

Solution

The denominator has the nonrepeated linear factor as shown in
Figure 12.C-4, and the nonrepeated quadratic factor found by
using synthetic division. Thus, the partial fraction decomposition has the 

form 

Multiplying both sides of the equation by the common denominator,
, and collecting like terms yields

Because there is no term in the original rational expression, the corre-
sponding coefficient must be 0. Therefore,

Coefficient of 

Coefficient of x

Constant term

The solution of the system is and as shown in 

Figure 12.C-5.

■

All the rational expressions in the previous examples have been proper
fractions, which means the degree of the numerator was less than the
degree of the denominator. If the rational expression is improper, then
divide the numerator by the denominator and decompose the remainder
that is a proper fraction.

Example 4 Decomposing an Improper Rational Expression

Find the partial fraction decomposition of 

Solution

The rational expression is an improper fraction because the degree of the
numerator is greater than the degree of the denominator. Therefore, divide
the numerator by the denominator (shown in the margin) and write the
remainder as a fraction of the divisor.

x 

3 � x � 3
x 

2 � x � 2
.

x � 2
x3 � 6x2 � 10x � 8

�
�

3
5

x � 4 �

3
5 x �

1
5

x2 � 2x � 2
�

1
5 a �3

x � 4 �
3x � 1

x2 � 2x � 2
b

C � �
1
5,A � � 

3
5, B �

3
5,

2 A  � 4C � �2
2 A � 4B � C �  1

x  

2 A �  B   �  0

x 

2

 � 1A � B2x 

2 � 12A � 4B � C2x � 12A � 4C2
 � Ax 

2 � 2Ax � 2A � Bx  

2 � Cx � 4Bx � 4C
 x � 2 � A1x 

2 � 2x � 22 � 1Bx � C2 1x � 42
1x � 42 1x 

2 � 2x � 22

x � 2
x 

3 � 6x 

2 � 10x � 8
�

A
x � 4 �

Bx � C
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2 � 2x � 2
.

x 

2 � 2x � 2
x � 4,

x � 2
x 

3 � 6x  

2 � 10x � 8
.
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Figure 12.C-4

Figure 12.C-5
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3 � 0x 

2 � x � 3
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2 � x � 3
        �x 

2 � x � 2
          2x � 1
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Now decompose into by using the procedure 

discussed in Example 1.

As shown in Figure 12.C-6, and 

■

When the denominator contains a power of a linear or a quadratic factor,
every integral power of that factor must be taken into consideration when
finding partial fractions, as outlined below.

x 

3 � x � 3
x 

2 � x � 2
� x � 1 �

1
x � 2 �

1
x � 1

B � 1.A � 1

 �A � 2B � 1
 A �  B � 2

 � 1A � B2x � 1�A � 2B2
 � Ax � A � Bx � 2B

 2x � 1 � A1x � 12 � B1x � 22

A
x � 2 �

B
x � 1

2x � 1
x 

2 � x � 2

x 

3 � x � 3
x 

2 � x � 2
� x � 1 �

2x � 1
x 

2 � x � 2

Figure 12.C-6

Exercises

In Exercises 1–7, find the partial fraction decomposi-
tion of each expression.

1. 2.

3. 4. x 

2 � x � 21
2x 

3 � x 

2 � 8x � 4
2x � 1

x 

3 � 4x 

2 � 3x � 18

1
x 

2 � 1
x

x 

2 � 3x � 2

5. 6.

7. 2x 

3 � 4x 

2 � x � 3
x 

2 � 2x � 3

x � 2
x 

3 � 6x 

2 � 10x � 8
5x 

2 � 1
x 

3 � 1

1. Divide numerator by denominator if the fraction is
improper, and find partial fractions of the remainder.

2. Factor the denominator into factors of the form 
and where is irreducible
over the set of real numbers.

3. For each linear factor of the form , the partial
fraction must include the following sum:

4. For each quadratic factor of the form the
partial fraction must include the following sum:

B1x � C1

ax2 � bx � c
�

B2x � C2

(ax2 � bx � c)2 � p  
Bnx � Cn

(ax2 � bx � c)n

(ax2 � bx � c)n,

A1

px � q �
A2

(px � q)2 � p �
Am

(px � q)m

(px � q)m

ax2 � bx � c(ax2 � bx � c)n,
(px � q)m

Decomposition
into Partial

Fractions
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What are the odds?

Suppose a dart player can hit the bulls-eye about 25% of the time. How likely is the
event shown above? The number of bulls-eyes in a given number of tries can be
described as a binomial experiment, and the probabilities can be easily calculated. See
Exercises 5–8 in Section 13.4.A.

Statistics and
Probability

C H A P T E R

13
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13.1 Basic Statistics
13.2 Measures of Center and Spread
13.3 Basic Probability
13.4 Determining Probabilities

13.4.A Excursion: Binomial Experiments
13.5 Normal Distributions

Chapter Review
can do calculus Area Under a Curve

Chapter Outline
Interdependence of Sections

Statistics and probability are essential tools for understanding the

modern world. Both involve studying a group of individuals or

objects, known as a population, and a subset of the population, known

as a sample. In statistics, information from a sample is used to draw

conclusions about the population. In probability, information from the

population is used to draw conclusions about a sample.

13.1 Basic Statistics

Statistics is used to make sense of information, or data, by using tech-
niques to organize, summarize, and draw conclusions from the data. Most
statistical data is gathered by taking a random sample of the population.
In a random sample, all members of the population and all groups of
members of a given size have an equal chance of being in the sample.

Data can be divided into two types: qualitative and quantitative. Quan-
titative data is numerical, such as “the number of hours spent studying
each night” or “the distance from home to school.” Qualitative data can
be divided into categories, such as “liberal,” “moderate,” “conservative,”
or “blue eyes,” “brown eyes.”

Quantitative data can be further classified as either discrete or continu-
ous. If the difference between two values can be arbitrarily small, the data
is continuous. If there is a minimum increment between two different val-
ues, the data is discrete.

Objectives

• Identify data types

• Create displays of
qualitative and quantitative
data

• Describe the shape of a
distribution

13.1 13.2

13.5

13.3 13.4>

>
>

>

Population Sample
statistics

probability

data

qualitative quantitative

continuousdiscrete



Example 1 Types of Data

In each example, identify the data as either qualitative or quantitative. If
quantitative, then identify it as discrete or continuous.

a. the height of each player on a basketball team
b. the style of shoes worn by each student in a classroom
c. the number of people in each household in the United States

Solution

a. The data is quantitative, because each value can be written as a
number, such as 68.32 inches. It is continuous, because there is no
minimum difference between two values; two players could have
heights 68.32 inches and 68.33 inches, or 68.323 inches and 68.324
inches.

b. The data is qualitative, since it can be grouped into categories, such
as tennis shoes, sandals, and high heels.

c. The data is quantitative, because each value is a number. It is
discrete, because there is a minimum difference of 1 between two
different values; two households could have 4 and 5 members, but
not 4 and 4.1 members.

■

Continuous data is sometimes treated as discrete, and vice
versa. For example, heights are usually rounded to the nearest inch, so
there is a minimum difference of 1 inch between measurements. In the
discrete case, for amounts of money, the minimum increment of $0.01 is
so small that the data can often be treated as continuous.

Data Displays

One of the most important uses of statistics is to organize data and dis-
play it visually. Most displays show the data values or categories and
some measure of how often each value or category occurs.

The number of times a value occurs is known as the frequency of that
value. If the frequency is divided by the total number of responses, the
result is the relative frequency of that value, which can be expressed as
a fraction, a decimal, or a percent. A frequency table displays the cate-
gories with frequencies, relative frequencies, or both.

Example 2 Frequency Table

A group of 30 people were asked their favorite flavor of ice cream. Of
these, 6 chose vanilla, 12 chose chocolate, 4 chose butter pecan, and 8
chose mint chocolate chip. Create a table with frequencies and relative
frequencies for each flavor.

NOTE

844 Chapter 13 Statistics and Probability



■

Displaying Qualitative Data
Two common ways of displaying qualitative data are bar graphs and pie
charts. A bar graph displays the categories on a horizontal axis and the
frequencies or relative frequencies on a vertical axis, or vice versa. The
height or length of each bar shows the frequency of the value. All bars
should have the same width.

Example 3 Bar Graph

Use the data in the frequency table from Example 2 to make a bar graph. 

Solution

Section 13.1 Basic Statistics 845

Flavor Frequency Relative frequency

Vanilla 6

Chocolate 12

Butter pecan 4

Mint chocolate chip 8 8
30 �

4
15 � 0.27 � 27%

4
30 �

2
15 � 0.13 � 13%

12
30 �

2
5 � 0.4 � 40%

6
30 �

1
5 � 0.2 � 20%

Solution

14

12

10

8

6

Vanilla

Flavor

Chocolate Butter
pecan

Mint
chocolate

chip

4

2

0

Fr
eq

ue
nc

y

■

A pie chart displays the categories and their relative frequencies. The
“pie” is divided into sectors whose central angle measure equals the frac-
tion of represented by the relative frequency of each category.

The central angle measure of the sector that represents a category with
relative frequency r is r � 360°.

360°



Chocolate
0.40

Butter pecan
0.13

Mint chocolate
chip
0.27

Vanilla
0.20

144°

72°
97°

47°

■

Displaying Quantitative Data
Numerical data can also be displayed in a variety of ways to indicate each
value and its frequency. The shape of a smooth curve over the display
indicates characteristics of the data values. The most common distribu-
tion shapes are shown below.

Before statistical
analysis, numerical data is
usually arranged in order
from the lowest value to
the highest value. An
arrangement of numerical
data is called a
distribution.

NOTE

Uniform: All the data
values have approximately
the same frequency.

Common
Distribution

Shapes

Symmetric: The right and
left sides of the distribution
have frequencies that are
mirror images of each other.

Skewed right: The right
side of the distribution has
much lower frequencies
than the left.

Skewed left: The left side
of the distribution has
much lower frequencies
than the right.

Example 4 Pie Chart

Create a pie chart using the data in the frequency table from Example 2.
Label each sector with the category and its relative frequency.

Solution

The central angle measures of the categories of the sectors are:

Vanilla: 

Chocolate: 

Butter pecan: 

Mint chocolate chip: 
0.27 � 360° � 97°

0.13 � 360° � 47°

0.4 � 360° � 144°

0.2 � 360° � 72°
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2 3 0 1 0

4 2 3 2

7 2 5 3

4 5 4

5 6 5

6 7 7

7 7 7

9 8
8

9

8

0

Figure 13.1-1

If an outlier is
caused by an error in
measurement or other type
of error, it is usually
removed from the data set
before further analysis. In
general, an outlier should
not be removed without
justification.

NOTE
An outlier is a data value that is far removed from the rest of the data,
which usually indicates that the value needs investigation. Outliers may
be caused by errors or by unusual members of the population.

Example 5 The Shape of Data

From the four given shapes, choose the best distribution for the data.

a. the last digit of each number in the phone book
b. the salaries of the employees of a corporation
c. the age of retirement for all people in the U.S.
d. the heights of all adult women in the U.S.

Solution

a. The last four digits of a phone number are assigned randomly, so all
digits have about the same frequency. The distribution is uniform.

b. In a typical corporation, most employees earn relatively low salaries
while a few executives make high salaries. The distribution is
skewed right.

c. Few people make enough money to retire young, and most people
retire in their 60’s or later. The distribution is skewed left.

d. The average height of an adult woman is at the middle of the
distribution, which is symmetric with respect to this value.

■

Two common displays of quantitative data are the stem plot and the his-
togram. A stem plot is commonly used to display small data sets.

The data below shows 31 test scores for a class exam:

32, 67, 89, 90, 87, 72, 75, 88, 95, 83, 97, 72, 85, 93, 79, 63
70, 87, 74, 86, 98, 100, 97, 85, 77, 88, 92, 94, 81, 76, 64

The stem plot for the class test data is shown below:

3 2
4
5
6 3 4 7
7 0 2 2 4 5 6 7 9
8 1 3 5 5 6 7 7 8 8 9
9 0 2 3 4 5 7 7 8

10 0

The entry represents the score 32. Similarly, the row 4 7 repre-
sents the scores 63, 64, and 67. There are 31 scores represented.

6 0  33 0  2

Section 13.1 Basic Statistics 847



Creating a 
Stem Plot

Example 6 Stem Plot

A company uses a 3-minute recorded phone message to advertise its
product. A random sample of 40 calls is used to determine how much of
the message was heard before the listener hung up. Create a stem plot of
the data below and discuss its shape.

2.4, 0.2, 3.0, 2.8, 1.5, 1.9, 0.7, 1.0, 2.5, 1.3,
0.8, 2.1, 3.0, 0.4, 1.2, 3.0, 1.1, 0.3, 0.7, 1.8,
0.3, 1.0, 2.1, 3.0, 2.9, 0.5, 1.4, 3.0, 2.8, 1.2,
0.5, 0.5, 1.5, 0.9, 1.8, 0.6, 0.6, 0.7, 0.8, 0.8

Solution

0 1 2 3

2 0 1 0

3 0 1 0

3 1 4 0

4 2 5 0

5 2 8 0

5 3 8

5 4 9

6 5

6 5

7 8

7 8

7 9

8
8

8
9

Figure 13.1-2

0 2 3 3 4 5 5 5 6 6 7 7 7 8 8 8 9
1 0 0 1 2 2 3 4 5 5 8 8 9
2 1 1 4 5 8 8 9
3 0 0 0 0 0

Key: represents a time of 
2.8 minutes.
40 times are represented.

2 08

The distribution is skewed right, as shown in Figure 13.1-2. The values
on the right side have lower frequencies than the values on the left. Notice
that the distribution is cut off at 3, because no phone calls last longer than
3 minutes, the length of the entire message.

■

A histogram, which can be thought of as a bar graph with no gap between
adjacent bars, is often used with large sets of quantitative data. First, the

Note that the score of 32 is far below the remaining data and so it could
be an outlier in this distribution. It may be the score of a student who
didn’t study for the test. However, it is most likely not an error in meas-
urement, so the value cannot be removed from the data set. The
distribution is skewed left (Figure 13.1-1).

848 Chapter 13 Statistics and Probability

To create a stem plot:

1. Choose the leading digit or digits to be the stems.
Arrange the stems vertically from lowest to highest value
from top to bottom.

2. The last digit is the leaf. Record a leaf for each data value
on the same horizontal line as its corresponding stem.
Arrange the leaves from lowest to highest value from left
to right.

3. Provide a key that indicates the total number of data
elements and an interpretation of one stem and leaf
indicating appropriate units.
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Figure 13.1-3

data is divided into a convenient number of intervals of equal width. The
frequencies (or relative frequencies) of the data in the intervals are the
heights of the rectangles. For example, the test scores given on page 847
can be represented by the histogram in Figure 13.1-3.

Here, the test scores have been divided into 10-point intervals, 0 through
9, 10 through 19, and so on. The histogram indicates, for example, that
there are no scores between 50 and 59, eight scores between 70 and 79,
and one score of 100. Each bar on the graph has width 10, so the class
interval is said to be 10.

To create a histogram:

1. Divide the range of the data into classes of equal width,
so that each data value is in exactly one class. The width
of these intervals is called the class interval.

2. Draw a horizontal axis and indicate the first value in
each class interval.

3. Draw a vertical scale and label it with either frequencies
or relative frequencies.

4. Draw rectangles with a width equal to the class interval
and height equal to the frequency of the data within each
interval.

Creating a
Histogram

Technology 
Tip

Most graphing calcula-
tors will produce 

histograms. Check the
Xmin, Xmax, and Xscl to
make sure the class inter-
vals are relevant to the
data. If you do not know
how to create a histogram
with a graphing calculator,
refer to the Technology
Appendix.

Example 7 Histogram

Create a histogram of the following scores.

580, 490, 590, 390, 410, 370, 470, 540, 490, 660, 500, 670, 430, 670, 490, 720,
580, 680, 590, 480, 560, 480, 400, 440, 560, 540, 330, 490, 540, 540, 520, 650,
540, 600, 630, 580, 540, 500, 270, 600, 390, 540, 300, 350, 600, 540, 510, 410,
370, 390, 160, 500, 740, 510, 540, 560, 510, 430, 440, 590, 560, 510, 600, 460,
450, 510, 420, 430, 560, 680, 610, 600, 600, 520, 480, 490, 320, 450, 500, 490



Solution

The smallest value is 160 and the largest value is 740, so the range of the
data is 580 points. A convenient choice for the classes is 150 through 199,
200 through 249, 250 through 299, and so on—a class interval of 50 points.
The frequency table below shows how many data values are in each class.

850 Chapter 13 Statistics and Probability

The histogram is shown in Figure 13.1-4. The shape is approximately 
symmetric.

150– 200– 250– 300– 350– 400– 450– 500– 550– 600– 650– 700–Class
199 249 299 349 399 449 499 549 599 649 699 749

Frequency 1 0 1 3 6 9 13 20 11 8 6 2

■

Figure 13.1-5 shows three histograms of the data in Example 7, created
on a calculator. Notice that the choice of the scale on the x-axis determines
the width of the class intervals. Which do you think is the best represen-
tation of the data?

0
150 200 250 300 350 400 450 500 550 600 650 700

5

10

15

20

25
Fr

eq
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nc
y

Score

Figure 13.1-4

Figure 13.1-5

12

150 800

0

Remember that it is more important to be able to interpret a distribution
than it is to simply produce the display. Technology can easily produce a
histogram, but the purpose of the display is to help interpret the data.

25

150 800

0

50

150 800

0

Xscl � 25 Xscl � 50 Xscl � 100
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Exercises 13.1

In Exercises 1–4, identify the population and the 
sample.

1. There are three schedule options for classes at a
high school: 90-minute classes every other day for
a year, 90-minute classes every day for a semester,
or 45-minute classes every day for a year. Out of
1200 students, 50 students from each grade level
are chosen at random and asked their preference.

2. The manager of a convenience store wishes to
determine how many cartons of eggs are
damaged in shipment and delivery. For ten
shipments of 1000 cartons of eggs, she examines
every carton to see how many cartons contain
cracked eggs.

3. A survey is taken to determine the number of pets
in the typical American family. A computer is
used to randomly select 5 states, then 10 counties
in each state, then 50 families in each county. Each
of these families is asked how many pets they
own.

4. A biologist tranquilizes 400 wild elephants and
measures the lengths of their tusks to determine
their ages.

Use the descriptions in Exercises 1–4 to answer Exer-
cises 5–10.

5. Determine whether the data in each description is
qualitative or quantitative. If the data is
quantitative, determine whether it is continuous
or discrete.

6. Describe two ways in which the data from
Exercise 1 could be displayed.

7. How large is the sample in Exercise 2?

8. Describe two ways in which the data from
Exercise 2 could be displayed.

9. How large is the sample in Exercise 3?

10. Which would be more appropriate to display the
data from Exercise 4: a stem plot or a histogram?
Explain your reasoning.

The following frequency table gives the preferred type
of exercise for 50 women at a local gym.

50th

11. Complete the table to show the relative frequency
for each category.

12. Create a bar graph for the data with the vertical
axis showing the frequencies.

13. Create a bar graph with the vertical axis showing
the relative frequencies.

14. Create a pie chart for the data.

For Exercises 15–18, suppose 25 people are asked their
favorite color. The results are: 6 red, 8 blue, 5 purple,
4 green, 1 yellow, and 1 orange.

15. Create a frequency table for the given data.
Include relative frequencies.

16. Create a bar graph for the data with the vertical
axis showing the frequencies.

17. Create a bar graph with the vertical axis showing
the relative frequencies.

18. Create a pie chart for the data.

In Exercises 19–24, state whether the shape of the dis-
tribution is best described as uniform, symmetric,
skewed right, or skewed left.

19. The scores of a national standardized test

20. The age at which students get a driver’s license

21.

0

20

40

60

80

100

Exercise Frequency Relative frequency

Aerobics 20 ?

Kickboxing 8 ?

Tai chi 8 ?

Stationary bike 14 ?



22. 1 0 2 5 6 8
2 3 5 6 9
3 1 4 7 8 8
4 2 3 5 5
5 4 6 7 9

23. The position of the second hand of a clock at 100
randomly chosen times in a 12-hour period

24. 8 2
9 3 5

10 2 5 6 8
11 0 1 4
12 7

In Exercises 25–28, create a stem plot for the given data.

25. 23, 45, 38, 41, 24, 67, 42, 46, 51, 33, 43, 47, 54, 49,
47, 36, 27, 33, 41, 29

26. 1.8, 2.0, 1.4, 5.6, 1.1, 2.6, 0.8, 1.5, 1.4, 2.6, 0.7, 1.6,
0.4, 1.1, 0.5, 1.3

27. 98, 87, 100, 86, 92, 78, 56, 100, 90, 88, 93, 99, 76, 83,
86, 91, 72, 85, 79, 81, 82, 91, 86, 70, 84

During summer semester, a community college sur-
veyed its students to determine travel time to campus.
A random sample of 30 students gave the following
times in minutes:

12 25 48 45 6 90
15 55 75 60 27 30
32 40 18 35 22 8
42 65 17 25 35 40
12 28 42 37 45 55

During fall semester, the survey was repeated. The
new times in minutes are:

63 52 43 48 32 14
46 40 29 20 75 48
9 25 40 20 46 37

35 31 69 86 63 17
104 7 52 55 29 14

852 Chapter 13 Statistics and Probability

28. Create a stem plot of the summer semester data.

29. Does the data set of the summer semester times
contain any outliers? Explain.

30. Create a stem plot of the fall semester data.

31. Compare the shape of the two data sets. Which
type of distribution do you think best describes
these data sets? What might explain the
differences in these data sets?

32. Create a histogram with a class interval of 10 for
the data below.
68, 84, 59, 72, 62, 76, 61, 63, 68, 56, 70, 79, 54, 65,
66, 71, 70, 58, 63, 68, 84, 63, 53, 68, 63, 76, 66, 66,
70, 72, 88, 68, 75, 63, 76, 58, 86, 65, 66, 73, 53, 76,
59, 81, 59, 65, 67, 73, 62, 75, 89, 58

33. Create a histogram for the following ACT scores.
Be sure to choose an appropriate class interval.
14, 25, 15, 18, 17, 11, 15, 10, 25, 6, 11, 4, 12, 24, 19,
14, 20, 13, 23, 19, 13, 20, 14, 24, 10, 18, 30, 22, 16,
26, 10, 23, 22, 19, 23, 21, 16, 18, 18, 20, 25, 14, 19, 7,
16, 18, 31, 14, 7, 10, 16, 13, 18, 10

34. Create a histogram with a class interval of 5 for
the data in the stem plot below.

5 7 8 8 9 9 9
6 0 0 0 1 1 2 2 2 3 3 4 5 7 9
7 0 1 2 2 4 5 5 6 7 7 8
8 0 0 0 1 1

35. Critical Thinking How does the shape of the
histogram you created in Exercise 34 compare to
the shape of the data in the stem plot? Which do
you think is a better representation of the data,
and why?



Section 13.2 Measures of Center and Spread 853

13.2 Measures of Center and Spread

While the shape of a stem plot or a histogram gives a picture of a data
set, numerical measures are more precise and can be calculated easily
(using technology for large data sets). These measures help to further
summarize and interpret data. Two quantities are commonly used to
describe a data set: a measure of the “center” of the data and a measure
of how spread out the data is.

Measures of Center

A sample may contain hundreds, or even thousands of data values. This
information is often summarized by one value that represents the center,
or central tendency, of the data. The three most common measures of cen-
ter are mean, median, and mode.

Mean
The mean is more commonly known as the average. The mean is calcu-
lated by adding all values and dividing by the total number of values.
Recall from Chapter 1, the symbol is used to indicate the sum of a set
of values.

The mean is represented by read as “x bar.” The x is used to represent
the data variable, while each data value is represented as and
so on. The sum is divided by n, the number of data elements.

Example 1 Mean Number of Accidents

A six-month study of a busy intersection reports the number of accidents
per month as 3, 8, 5, 6, 6, 10. Find the mean number of accidents per month
at the site.

Solution

The data shows an average of 6.3 accidents per month at the given inter-
section.

■

One problem with the mean as a measure of center is that it may be dis-
torted by extreme values, as shown in the following example.

x �
©xi
n �

3 � 8 � 5 � 6 � 6 � 10
6 �

38
6 � 6.3

x1 � 3, x2 � 8, x3 � 5, x4 � 6, x5 � 6, x6 � 10

x3,x2,x1,
x,

mean:   x �
x1 � x2 � p � xn

n �
©xi
n

©

Objectives

• Calculate measures of
center

• Calculate measures of
spread

• Choose the most
appropriate measure of
center or spread

• Create and interpret a box
plot



Example 2 Mean Home Prices

In the real-estate section of the Sunday paper, the following houses were
listed:

2-bedroom fixer-upper: $98,000
2-bedroom ranch: $136,700
3-bedroom colonial: $210,000
3-bedroom contemporary: $289,900
4-bedroom contemporary: $315,500
8-bedroom mansion: $2,456,500

Find the mean price, and discuss how well it represents the center of the
data.

Solution

In the data set, 5 out of the 6 values are below $350,000, but the mean is
over $550,000, so the mean does not seem to be a very good representa-
tion of the center of the data set. Notice that the value $2,456,500 is more
than twice the rest of the data combined. Thus, it has a very large effect
on the mean, “pulling” it away from the other values.

■

Median
As shown in Example 2, the mean is not always the best way to repre-
sent the center of a distribution. If the distribution is skewed or contains
extreme values, the median, or middle value of the data set is often used.
To determine the median, the data must be in order from smallest to
largest (or largest to smallest).

If the number of values is odd, then one number will be the middle num-
ber, as shown below.

3, 4, 7, 8, 9, 11, 15

There are 7 values, and the median, which is in the position, is 8. Notice
that three values are less than the median and three values are greater
than the median.

If the number of values is even, there are two middle numbers, as shown
below.

17, 22, 24, 30, 35, 40

There are 6 values, and the median is the average of the middle numbers, 

which are in the and positions. So the median is 

Notice that three values are less than the median and three values are
greater than the median.

24 � 30
2 � 27.4th3rd

4th

 �
3,506,600

6 � 584,433.33

 x �
©xi
n �

98,000 � 136,700 � 210,000 � 289,900 � 315,500 � 2,456,500
6
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If are ordered from smallest to largest, then the
median is the middle entry when n is odd and the average of
the two middle entries when n is even.

median � d for n odd, the value in the n � 1
2

 position

for n even, the average of the values in

the 
n
2  and n2 � 1 positions

x3 p xnx2,x1,
Median

The median is said to be a more resistant measure of center than the mean,
since it is less affected by a skewed distribution or extreme values in a
data set.

Example 3 Median Home Prices

Find the median of the data in Example 2, and discuss how well it rep-
resents the center of the data.

Solution

The data is already in order from smallest to largest, with 

98,000 136,700 210,000 289,900 315,500 2,456,500
1st position 2nd position 3rd position 4th position 5th position 6th position

The median is the average of the values in positions and 

which are 210,000 and 289,900, so

A price of $249,950 is much more representative of the houses in this list-
ing. The most expensive house does not have the same strong effect that
it had in the calculation of the mean.

■

Mode
The mode is the data value with the highest frequency. It is most often
used for qualitative data, for which the mean and median are undefined.
The mode can be thought of as the “most typical” value in the data set.

median �
210,000 � 289,900

2 �
499,900

2 � 249,950

n
2 � 1 � 4,n

2 � 3

n � 6.
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If every value in a data set occurs the same number of times,
there is no mode. If two or more scores have equal frequencies that are
higher than those of all other values, the data set is called bimodal (two
modes), trimodal (three modes), or multimodal.

NOTE



Example 4 Mode of a Data Set

Find the mode of the data represented by the bar graph below.
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Figure 13.2-1

Solution

The height of each bar represents the frequency, so the mode is the cate-
gory with the tallest bar, which is red.

■

Mean, Median, and Mode of a Distribution
Recall the shapes of symmetric, skewed left, and skewed right distribu-
tions.

The mean is the balance point of a distribution. Notice that on a skewed
distribution, the mean moves toward the tail to balance out the “weight”
of the outlying data. The median divides the area under the distribution
into 2 equal areas. The mode is the highest point on the distribution.

• If a distribution is symmetric, then the mean and median are
equal.

• If a distribution is skewed left, then the mean is to the left of the
median.

• If a distribution is skewed right, then the mean is to the right of
the median.
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Measures of Spread

Finding the shape and center of a data set still gives an incomplete pic-
ture of the data. The following stem plots show three data sets with a
symmetric distribution and center 105.

6 6 5 6
7 7 7
8 5 8 1 9 8
9 1 9 9 9 1 5

10 1 5 9 10 1 5 9 10 1 3 5 7 9
11 1 9 11 11 5 9
12 5 12 1 9 12
13 13 13
14 14 5 14

The data has a different spread in each stem plot. The spread of the data,
or variability, is an important characteristic of a data set. The second plot
has the most variability because the data is very spread out, while the
third has the least because the date is clustered very near the center. The
three most common measures of spread are the standard deviation, the
range, and the interquartile range.

Standard Deviation
The standard deviation of a data set is the most common measure of vari-
ability. It is best used if the data is symmetric about a mean. Standard
deviation measures the average distance of a data element from the mean.

The deviation of a data value from the mean is the difference, 
Consider the following data set:

2, 5, 7, 8, 10

The mean of the data is The points are shown 

with their deviations on a number line in Figure 13.2-2.

2 � 5 � 7 � 8 � 10
5 � 6.4.

xi � x.xxi

If the mean and
median of a distribution are
the same value, as in the
data sets represented by the
stem plots at right, their
value is often referred to as
the center.

NOTE

Calculator Exploration

Use the statistics functions of your calculator to find the mean and
median of the data represented by the following stem plot.

3 2
4 8 Key: 6|7 represents a score of 67 points.
5 2 3 43 scores are represented.
6 3 5 6 7 9
7 0 2 2 4 5 6 7 9
8 1 3 5 5 6 7 7 8 8 9
9 0 2 2 3 4 5 5 5 5 7 7 8

10 0 0 0 0

Technology 
Tip

If necessary, see the
Technology Appendix
to learn how to find the
mean and median of a
data set.



The average of the deviations is 

because the positive and negative values cancel each other out. To avoid
this, each deviation is squared, then the average is found. This quantity
is called the variance. The square root of the variance is the standard de-
viation, denoted by the Greek letter s (sigma).

For the data set {2, 5, 7, 8, 10}, first square each deviation.

Average the squared deviations to find the variance, :

Take the square root of the variance to find the standard deviation:

Population versus Sample If data is taken from a sample instead of the
entire population, it is common to divide by instead of n when aver-
aging the squared deviations. The result is called the sample standard
deviation and is denoted by s. For large data sets, the sample standard
deviation is very close to the population standard deviation.

n � 1

s � 27.44 � 2.73

s2 �
19.36 � 1.96 � 0.36 � 2.56 � 12.96

5 � 7.44

s2

5 1�4.422, 11.422, 0.62, 1.62, 3.626 � 519.36, 1.96, 0.36, 2.56, 12.966

�4.4 � 1�1.42 � 0.6 � 1.6 � 3.6
5 � 0,
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0 1 2 3 6.4

deviation = 0.6

deviation = 1.6deviation = −1.4

deviation = −4.4 deviation = 3.6

4 5 6 7 8 9 10

Figure 13.2-2

The distance from
data value to the mean 
is the absolute value of the
deviation.

xxi

NOTE

To find the standard deviation of a data set with n values,

1. Subtract each value from the mean to find the deviation.

2. Square each deviation, and find the mean of the squared
deviations. If the data is from a sample, divide by 
instead of n. The result is called the variance.

3. Take the square root of the variance.

These steps are summarized in the following formulas:

Population standard Sample standard
deviation deviation

s �
B

π(xi � x )2

n � 1s �
B

π(xi � x )2

n

n � 1

Standard
Deviation



Example 5 Standard Deviation

Find the population standard deviation of the data in the first stem plot
on page 857 using the formula. Then use a calculator to find the popula-
tion standard deviations of the data in the other two plots.

Solution

For the first stem plot, and The following table shows the
squared deviations.

n � 9.x � 105
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An informal interpretation is that the average distance from the data val-
ues to the mean is 12 units.

The population standard deviations of the data in the second and third
stem plots are shown in Figure 13.2-3.

s �
B

400 � 196 � 36 � 16 � 0 � 16 � 36 � 196 � 400
9 �

B
1296

9 � 12

Notice that the second stem plot, which is the most spread out, has the
largest standard deviation, and the third stem plot, which is the most clus-
tered together, has the smallest standard deviation.

■

Range
The range is the difference between the maximum and minimum data
values. The main advantage of the range is that it is easy to compute.

Example 6 The Range

Find the range of the data in each stem plot on page 857.

85 91 99 101 105 109 111 119 125

0 4 6 14 20

400 196 36 16 0 16 36 196 4001xi � x22
�4�6�14�20xi � x

xi

Figure 13.2-3



The interquartile range is the difference between the quartiles,

which represents the spread of the middle 50% of the data.

A value that is less than or greater than is
considered an outlier, as shown in Figure 13.2-5.

Q3 � 1.51IQR2Q1 � 1.51IQR2

IQR � Q3 � Q1

Solution

The range of the data in the first stem plot is 
The range of the data in the second stem plot is 
The range of the data in the third stem plot is 

■

Interquartile Range
Like the mean, the standard deviation and range are strongly affected by
extreme values in the data. The interquartile range is a measure of vari-
ability that is resistant to extreme values, yet gives a good indication of
the spread of the data.

Recall that the median is the middle value of the data set. Thus, the median
divides the data into two halves, the lower half and the upper half. The
quartiles further divide the data into fourths. The quartile, is the
median of the lower half. The quartile, is the median of the upper
half. (The median may be considered to be the quartile.)

Figure 13.2-4 shows the quartiles for n even or n odd.

2nd
Q3,3rd

Q1,1st

119 � 91 � 28.
145 � 65 � 80.

125 � 85 � 40.
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lower half

Q1 Q3

upper half

n even: 3, 5, 7, 11,9, 12, 13, 16, 17, 19, 23, 27, 29, 31

lower half

n odd:

Q1

2, 3, 6, 8, 9, 14, 15,

upper half

Q3

20,16, 21, 23, 26, 28, 30, 33

Figure 13.2-4

1.5 IQR IQR

median

outlier Q1 Q3 outlier

1.5 IQR

Figure 13.2-5
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Example 7 Interquartile Range

Find the interquartile range of the data in the first stem plot on page 857.

Solution

The quartiles of the data in the first stem plot are shown below.

The interquartile range is 
■

115 � 95 � 20.

Five-Number Summary and Box Plots
The five-number summary of a data set is the following list:

These values are used to construct a display called a box plot, as follows:

1. Construct a number line and locate each value of the five-number sum-
mary.

minimum, Q1, median, Q3, maximum

Q1 Q3minimum median maximum

Q1 Q3minimum median maximum

2. Construct a rectangle whose length equals the interquartile range, with
a vertical line to indicate the median.

Calculator Exploration

Use a graphing calculator to find the interquartile range of the data
in each of the other two stem plots on page 857.

Q1

85 91 99

91 + 99
2

= 95=

101 109105 111 119 125

Q3
111 + 119

2
= 115=
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If a data element is an outlier, it may be marked with a or other
mark. The whiskers then extend to the farthest value on each side that
is not an outlier.

Example 8 Constructing a Box Plot

Construct a box plot for the data in the first stem plot on page 857.

Solution

The five-number summary of the data is 85, 95, 105, 115, 125. The box plot
is shown below.

�

Technology 
Tip

See the technology
appendix, if necessary, 

for instruction on con-
structing a box plot using
a graphing calculator.

80 85 90 95 100 105 110 115 120 125

Exercises 13.2

In Exercises 1–4, find the mean of each data set.

1. 23, 25, 38, 42, 54, 57, 65

2. 3, 5, 6, 2, 10, 9, 7, 5, 11, 6, 4, 2, 5, 4

3. 3.6, 7.2, 5.9, 2.8, 21.6, 4.4

4. 78, 93, 87, 82, 90

5. Find the median of the data set in Exercise 1.

6. Find the median of the data set in Exercise 2.

7. Find the median of the data set in Exercise 3.

8. Find the median of the data set in Exercise 4.

9. Find the mean, median, and mode of the
following data set:
13, 13, 12, 6, 14, 9, 11, 19, 13, 9, 7, 16, 11,
12, 15, 12, 11, 12, 14, 9, 11, 13, 17, 13, 13

Calculator Exploration

Use a graphing calculator to construct a box plot for the data in each
of the other two stem plots on page 857.

Q1 Q3minimum median maximum

3. Construct horizontal whiskers to the minimum and maximum values.

■
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In Exercises 10–13, find the mode of the data set rep-
resented by each display.

10.

11. 3 2 5 5 12.
4 0 6 6 7 9
5 3 3 3 6
6 1 2 4 7 8 8

13.

For each distribution shape, indicate whether the mean
is larger, the median is larger, or the mean and median
are equal.

14. symmetric 15. skewed left

16. skewed right 17. uniform

Find the population standard deviation of the follow-
ing data sets without using a calculator.

18. 8, 9, 10, 11, 12 19. 6, 8, 10, 12, 14

20. 10, 10, 10, 10, 10 21. 0, 5, 10, 15, 20

Use a calculator to find the population and sample
standard deviations of the following data sets.

22. 3, 6, 3, 5, 7, 8, 2, 6, 3, 6, 8, 4, 8, 2, 6, 9

23. 24, 17, 18, 18, 19, 26, 19, 8, 25, 15, 17, 11, 27, 20

Fat

Grains

Vegetables

Fruit

Dairy
Meat

0
A B C D

5

10

15

20

25

30

24. 6, 8, 4, 11, 8, 8, 9, 6, 6, 8, 8, 12, 10, 10, 7

25. 50, 72, 86, 92, 86, 77, 57, 80, 93, 74, 53, 69, 65, 57,
73, 60, 66, 94, 81, 81

26. Find the range of the data set in Exercise 22.

27. Find the range of the data set in Exercise 23.

28. Find the range of the data set in Exercise 24.

29. Find the range of the data set in Exercise 25.

30. Find the interquartile range of the data set in
Exercise 22.

31. Find the interquartile range of the data set in
Exercise 23.

32. Find the interquartile range of the data set in
Exercise 24.

33. Find the interquartile range of the data set in
Exercise 25.

34. Find the five-number summary of the data set in
Exercise 22, and create a box plot for the data.

35. Find the five-number summary of the data set in
Exercise 23, and create a box plot for the data.

36. Find the five-number summary of the data set in
Exercise 24, and create a box plot for the data.

37. Find the five-number summary of the data set in
Exercise 25, and create a box plot for the data.

For Exercises 38–43, the wait times of 30 people in a
doctor’s office are given below, rounded to the nearest
five minutes:

40, 35, 65, 40, 40, 5, 50, 85, 30, 50, 60, 60, 10, 65, 15,
45, 20, 40, 45, 70, 70, 25, 40, 45, 70, 65, 45, 25, 15, 25

38. Construct a histogram of the data. Describe the
shape of the data set. Based on the shape, discuss
the relative positions of the mean and median.

39. Find the mean and median of the data set.

40. Which measure of central tendency is preferred
for this data set? Why?

41. Find the sample standard deviation, range, and
interquartile range of the data set.

42. Construct a box-plot of the data.

43. Explain why the sample standard deviation is or is
not a good measure of dispersion for this data set.

y

x
0

1 2

2

4

6

8

3 4 5 6
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Find the sample standard deviation and the
population standard deviation of the data, and
interpret your results.

51. Create two data sets of five numbers each that
have the same mean but different standard
deviations.

52. Create two data sets of five numbers each that
have the same standard deviations but different
means.

53. Critical Thinking How is the mean of a data set
affected if a constant k is added to each value?

54. Critical Thinking How is the standard deviation of
a data set affected if a constant k is added to each
value?

55. Critical Thinking How is the mean of a data set
affected if each value is multiplied by a constant k?

56. Critical Thinking How is the standard deviation of
a data set affected if each value is multiplied by a
constant k?

57. Critical Thinking What must be true about a data
set in order for the standard deviation to equal 0?

13.3 Basic Probability

Definitions

In the study of probability, an experiment is any process that generates
one or more observable outcomes. The set of all possible outcomes is
called the sample space of the experiment. Some examples of experiments
and their sample spaces are shown in the following table.

Objectives

• Define probability and use
properties of probability

• Find the expected value of
a random variable

• Use probability density
functions to estimate
probabilities

44. During a baseball game, 9 players had 1 hit each,
3 players had 2 hits each, and 6 players had no
hits. Find the mean number of hits per player.

45. A teacher has two sections of the same course.
The average on an exam was 94 for one class with
20 students, while the average was 88 for the
other class with 30 students. Find the combined
average exam score.

46. The mean score of a class exam was 78, and the
median score was 82. Sketch a possible
distribution of the scores.

47. Over the last year, 350 lawsuits for punitive
damages were settled with a mean settlement of
$750,000 and a median settlement of $60,000.
Sketch a possible distribution of the settlements.

48. A restaurant employs six chefs with the salaries in
dollars shown below:
25,000, 27,000, 35,000, 105,000, 40,000, 45,000
Determine the mean and median salaries.

49. Which measure of center more accurately
describes the “typical” salary at the restaurant in
Exercise 48?

50. The speed of a computer is primarily determined
by a chip in the CPU. A manufacturer tested 12
chips and reported the following speeds in
megahertz units:

11.6, 11.9, 12.0, 12.0, 14.0, 15.2,
13.0, 14.3, 13.6, 13.8, 12.8, 12.9
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An event is any outcome or set of outcomes in the sample space. For
example, in the experiment of rolling a number cube, the set {1, 3, 5} is
an event, which can be described as “rolling a 1, 3, or 5,” or simply “rolling
an odd number.”

The probability of an event is a number from 0 to 1 (or 0% to 100%) inclu-
sive that indicates how likely the event is to occur.

• A probability of 0 (or 0%) indicates that the event cannot occur.
• A probability of 1 (or 100%) indicates that the event must occur.

Experiment Sample space

tossing a coin heads and tails, written as {H, T}

rolling a number cube (Figure 13.3-1) {1, 2, 3, 4, 5, 6}

choosing a name from the phone book all the names in the phone book

counting the number of fish in a lake the set of non-negative integers

3
Figure 13.3-1

0

never
happens

as likely
as not

always
happens

1 1 3 1 5 3 7
8

0.125
4 8 2 8 4 8

0.25 0.375 0.5 0.625 0.75 0.875

1

• The sum of the probabilities of all outcomes in the sample space is 1.
• The probability of an event is the sum of the probabilities of the

outcomes in the event.

Probability Distributions

The probability of an event E can be described by a function P, where the
domain of the function is the sample space and the range of the function
is the closed interval [0, 1]. denotes the probability of the outcome
X, and denotes the probability of the event E.

The rule of the function P can be described by a table, called a probabil-
ity distribution.

Example 1 Probability Distribution

Suppose that 100 marbles are placed in a bag; 50 red, 30 blue, 10 yellow,
and 10 green. An experiment consists of drawing one marble out of the
bag and observing its color.

a. What is the sample space of the experiment?

P1E2 P1X2



Probabilities
expressed as percents are
often called chances.
According to this
probability distribution,
there is a 50% chance of
drawing a red marble, a
30% chance of drawing a
blue marble, a 10% chance
of drawing a yellow
marble, and a 10% chance
of drawing a green marble.

NOTE

Color of marble Red Blue Yellow Green

Probability 10
100 � 0.110

100 � 0.130
100 � 0.350

100 � 0.5

If an event E has probability p, then the complement of the
event has probability 1 � p.

Probability of 
a Complement

The sum of the probabilities of the outcomes is

c. The event “a blue or green marble will be drawn” can be written as
the set of outcomes {blue, green}. The probability of the event is the
sum of the probabilities for blue and green.

■

Mutually Exclusive Events
Two events are mutually exclusive if they have no outcomes in common.
Two mutually exclusive events cannot both occur in the same trial of an
experiment. If two events E and F are mutually exclusive, then the prob-
ability of the event (E or F) is the sum of the individual probabilities,

The complement of an event is the set of all outcomes that are not con-
tained in the event. The complement of event E can be thought of as “the
event that E does not occur.” An event and its complement are always
mutually exclusive, and together they contain all the outcomes in the 
sample space. Thus, the probability of an event and the probability of its
complement must add to 1, which leads to the following fact.

P1E2 � P1F2.

P15blue, green62 � P1blue2 � P1green2 � 0.3 � 0.1 � 0.4

0.5 � 0.3 � 0.1 � 0.1 � 1

b. Write out a reasonable probability distribution for this experiment,
and verify that the sum of the probabilities of the outcomes is 1.

c. What is the probability that a blue or green marble will be drawn?

Solution

a. The sample space is all possible outcomes:

b. A reasonable probability distribution is shown below, which is based
on the relative frequency of marbles of each color.

5red, blue, yellow, green6
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Outcome A S C E

Probability 0.4 0.3 0.2 0.1

S

AE

C

Figure 13.3-2

Example 2 Mutually Exclusive Events

An experiment consists of spinning the spinner in Figure 13.3-2. 
The following table shows the probability distribution for the 
experiment.
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a. Which of the following pairs of events E and 
F are mutually exclusive?

b. What is the complement of the event {A, S}?
c. What is the probability of the event “the 

spinner does not land on A?”

Solution

a. The events {A, C, E} and {C, S} are not mutually exclusive
because they have a common outcome, C.
The events (a vowel) and (in the first five letters of the
alphabet) are not mutually exclusive because they have two
common outcomes, A and E.
The events (a vowel) and {C} are mutually exclusive
because they have no common outcome.

b. The complement of the event {A, S} is the set of outcomes that are
not in the event, {C, E}.

c. The complement of the event “the spinner does not land on A” is
{A}, which has a probability of 0.4. Thus, the probability of the event
is 

■

Independent Events
Two events are independent if the occurrence or non-occurrence of one
event has no effect on the probability of the other event. For example, if
an experiment is repeated several times under exactly the same condi-
tions, the outcomes of the individual trials are independent. If two events
E and F are independent, then the probability of the event and is
the product of the individual probabilities, P1E2 � P1F2. F21E

1 � 0.4 � 0.6.

F �E �

F �E �

F �E �

F � 5C6E � 1a vowel2
of the alphabet2F � 1in the first five lettersE � 1a vowel2

F � 5C, S6E � 5A, C, E6



Mutually exclusive Independent

The term often refers to two pos- The term often refers to the results
sible results for a single trial of a from two or more trials of an
given experiment. experiment or from different

experiments.

The word “or” is often used to The word “and” is often used to
describe a pair of mutually describe a pair of independent
exclusive events. events.

For mutually exclusive events E For independent events E and F,
and F,

P1E and F2 � P1E2 � P1F2
P1E or F2 � P1E2 � P1F2

The terms mutually exclusive and independent are often
confused. Some important differences are detailed below.

If two events are mutually exclusive, they cannot be independent,
because the occurrence of one would cause the other to have a proba-
bility of 0.

NOTE

Example 3 Independent Events

The probability of winning a certain game is 0.1. Suppose the game is
played on two different occasions. What is the probability of

a. winning both times?
b. losing both times?
c. winning once and losing once?

Solution

a. The results of the two different trials are independent, so the
probability of winning both times can be found by multiplying the
probability of winning each time.

b. Since losing is the complement of winning, the probability of losing
is The probability of losing both times can be found
by multiplying the probability of losing each time.

c. The complement of the event (winning once and losing once) is the
set of the two events in parts a and b. The events in parts a and b
are mutually exclusive, because it is impossible to win both times
and lose both times, so their probabilities may be added.

■
P1winning once and losing once2 � 1 � 10.01 � 0.812 � 0.18

P1losing both games2 � 0.9 � 0.9 � 0.81

1 � 0.1 � 0.9.

P1winning both games2 � 0.1 � 0.1 � 0.01
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Average
sum

of two
Number number
of trials cubes

100 7.3

200 6.98

300 7.26

400 7.005

500 6.978

Figure 13.3-3

Random Variables

In many cases, the characteristics of an experiment that are being stud-
ied are numerical, such as the total on a roll of two number cubes. In other
cases, the outcomes of an experiment may be assigned numbers, such as

A random variable is a function that assigns a number to each outcome
in the sample space of an experiment.

Example 4 Random Variable

An experiment consists of rolling two number cubes. A random variable
assigns to each outcome the total of the faces shown.

a. Write out the sample space for the experiment.
b. Find the range of the random variable.
c. List the outcomes to which the value 7 is assigned.

Solution

a. The sample space may be written as a set of ordered pairs.

(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)
(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)
(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)
(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)
(5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6)
(6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6)

b. The smallest possible value is 2, which is assigned to the outcome
(1, 1). The largest possible value is 12, which is assigned to the
outcome (6, 6). The range is the set of integers from 2 to 12.

c. The value 7 is assigned to the outcomes (1, 6), (2, 5), (3, 4), (4, 3), 
(5, 2), and (6, 1).

■

Expected Value of a Random Variable

The expected value, or mean, of a random variable is the average value
of the outcomes. In the experiment of rolling two number cubes, suppose
the experiment was repeated 10 times, resulting in the following values
for the random variable:

8, 5, 8, 6, 11, 11, 3, 9, 9, 7

The average value is If the 

experiment is repeated a large number of times, the average approaches
the expected value. A simulation was used to run a large number of tri-
als, and the results are shown in Figure 13.3-3. The averages seem to be
approaching 7, which is a reasonable estimate of the expected value.

8 � 5 � 8 � 6 � 11 � 11 � 3 � 9 � 9 � 7
10 � 7.7.

tails � 0.heads � 1,
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To calculate the expected value of a random variable from a probability
distribution, multiply each value by its probability, and add the results.

Example 5 Expected Value

A probability distribution for the random variable in the experiment in
Example 4 is given below. Find the expected value of the random vari-
able.

Sum of faces 2 3 4 5 6 7 8 9 10 11 12

Probability 1
36

1
18

1
12

1
9

5
36

1
6

5
36

1
9

1
12

1
18

1
36

Win $0 $3 $5 $10 $20 $40 $100 $400 $2500

Probability 0.882746 0.06 0.04 0.01 0.005 0.002 0.0002 0.00005 0.000004

Solution

Multiply each value by its probability, and add.

■

The expected value is not always in the range of the random variable, as
shown in the following example.

Example 6 Expected Value of a Lottery Ticket

The probability distribution for a $1 instant-win lottery ticket is given
below. Find the expected value and interpret the result.

Solution

� 8a 5
36b � 9a1

9b � 10a 1
12b � 11a 1

18b � 12a 1
36b � 7

2a 1
36b � 3a 1

18b � 4a 1
12b � 5a1

9b � 6a 5
36b � 7a1

6b

The average amount won is $0.71, though it is not possible to win exactly
71 cents on one ticket. However, since the ticket costs $1, there is an aver-
age net loss of per play.

■
$1 � $0.71 � $0.29

� 10010.00022 � 40010.000052 � 250010.0000042 � 0.71
010.8827462 � 310.062 � 510.042 � 1010.012 � 2010.0052 � 4010.0022
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Figure 13.3-6

Probability Density Functions

In Example 1, colored marbles were drawn from a bag and the probabil-
ity of each color being drawn was determined by its relative frequency.

red: 0.5 blue: 0.3 yellow: 0.1 green: 0.1

This probability distribution is displayed in a bar graph in Figure 13.3-4,
in which each bar is 1 unit wide. Thus the area of each rectangular bar
represents the probability of the corresponding color. The sum of the areas
of the bars is 1.

If rectangles in the bar graph have width 1 unit, then the area of each rec-
tangle represents the probability of the corresponding category.

A function with the property that the area under the graph corresponds
to a probability distribution is called a probability density function.

Example 7 Discrete Probability Density Functions

Draw a probability density function for the distribution in Example 5.

Solution

The probability density func-
tion is a piecewise-defined
function, shown in Figure
13.3-5, where the height of
each piece is the probability
of the value on the left end-
point of the interval. The
area of the shaded rectangle
represents the probability
that the sum is 9.

■

When a random variable has infinitely many values within a certain inter-
val, the probability distribution can be represented by a continuous
density function, as in the following example.

Example 8 Continuous Probability Density Function

The probability density function in Figure 13.3-6 can be used to estimate
the probability that a customer calling a company’s customer service line
will have to wait for a given amount of time. The area of each square on
the grid is and the total area under the curve is 1. 
Estimate the probability that a customer will have to wait between 2 and
3 minutes.

0.5 � 0.05 � 0.025,

Section 13.3 Basic Probability 871

x

y

2 7 8 9 10 11 12 135 64310

2
36

4
36

6
36

Figure 13.3-5



Exercises 13.3

Use the following probability distribution for Exer-
cises 1–4.

Suppose the experiment is repeated three times.
Assume the trials are independent.

6. What is the probability it will land on black all
three times?

7. What is the probability it will land on white all
three times?

8. What is the probability of the outcome (black,
white, red)? of the outcome (black, red, white)?
What is the probability that it will land once on
each color?

A doctor has assigned the following chances to a med-
ical procedure:

full recovery 55%
condition improves 24%

no change 17%
condition worsens 4%

Suppose the procedure is performed on 5 patients.
Assume that the procedure is independent for each
patient.

9. What is the probability that all five patients will
recover completely?

10. What is the probability that none of the patients
will get worse?

Outcome A B C D

Probability 0.5 0.3 ? ?

1. List the sample space for the probability
distribution.

2. Suppose that outcomes C and D have the same
probability. Complete the probability distribution.

3. What is the probability of the outcome (A or B)?

4. What is the probability of the outcome (not A)?

Exercises 5–8 refer to the
spinner at the right. The
probability of landing on

black is and the proba-

bility of landing on red is 

5. Create a probability distribution for the
experiment of spinning the spinner.

1
3 .

1
2 ,

Solution

The probability is the area under the 
curve between 2 and 3, which is shaded 

in Figure 13.3-7. The area is approximately 

squares on the grid, or

Thus, the probability that a customer will have
to wait between 2 and 3 minutes is about
0.0875.

■

3 1
2 10.0252 � 0.0875

31
2
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Outcome 0 1 5 10 1000

Probability 0.43 0.32 0.24 0.10 0.01

Outcome 15 16 17 18 19 20

Probability 0.1 0.3 0.2 0.2 0.1 0.1

Outcome 0 1 2 3

Probability 0.25 0.25 0.25 0.25

Outcome 2 3 4

Probability 1
4

1
2

1
4

17.

18.

19.

20.

21. What is the probability that at least one person is
absent?

22. Find the expected value of the random variable,
and interpret the result.

An experiment consists of planting four seeds. A ran-
dom variable assigns the number of seeds that sprout
to each outcome.

23. Complete the following probability distribution
for the experiment.

Absent 0 1 2 3 4 5

Probability 0.59 0.33 0.07 0.01 0 0

27. What is the range of the random variable?

28. What is the height h of the probability density
function?

29. What is the probability that the random variable
is between 2 and 4?

30. What is the probability that the random variable
is greater than 4?

An office employs 5 people. A random variable is
assigned to the number of people absent on a given
day. The probability distribution is given below.

Sprouted 0 1 2 3 4

Probability ? 0.154 0.345 0.345 0.130

x

y

h

2 4 5 6310

24. Find the expected value of the random variable,
and interpret the result.

25. Draw a probability density function for the
random variable. Shade an area of the graph that
corresponds to the probability that 3 or more
seeds will sprout.

26. Use the probability distribution to determine the
probability that each seed will sprout, assuming
that they are independent. Hint: if the probability
that one seed will sprout is p, what is the
probability that all four seeds will sprout?

A random variable with a uniform distribution has a
probability density function that is constant over the
range of the variable, and 0 everywhere else. Use the
graph of the probability density function shown
below for Exercises 27–30.

A bag contains red and blue marbles, such that the

probability of drawing a blue marble is An exper-

iment consists of drawing a marble, replacing it, and
drawing another marble. The two draws are inde-
pendent. A random variable assigns the number of
blue marbles to each outcome.

11. What is the range of the random variable?

12. What is the probability that the random variable
has an output of 2?

13. What is the probability that the random variable
has an outcome of 0?

14. What is the probability that the random variable
has an outcome of 3?

15. Create a probability distribution for the random
variable.

16. Calculate the expected value of the random
variable.

In Exercises 17–20, find the expected value of the ran-
dom variable with the given probability distribution.

3
8 .
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In commuting to work, Joshua takes one bus, then
transfers to another bus. The probability density func-
tion at right above models the total length of time that
he has to wait for both buses.

34. What is the height of the probability density
function at minutes?

35. What is the probability that Joshua has to wait for
less than 5 minutes?

36. What is the probability that Joshua has to wait for
between 3 and 6 minutes?

t � 5

The probability density function at left above models
the number of inches of rainfall per year for a certain
location. The area of each square on the grid is 0.01.

31. Estimate the probability that the rainfall for a
certain year is between 14 and 16 inches.

32. Estimate the probability that the rainfall for a
certain year is greater than 17 inches.

33. The median of a probability density function is
the point that divides the area under the curve
into two equal areas. Estimate the median rainfall,
based on the given probability density function.

x

0.4

0.5
y

0.3

0.1

0.2

2 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 204310

(inches)

x

y

2 4 5 6 7 8 10
(minutes)

9310

13.4 Determining Probabilities

The exact probability of a real event can never be known. Probabilities
are estimated in two ways: experimentally and theoretically.

Experimental Estimates of Probability

Suppose an outcome of an experiment has a probability of 0.3. If the exper-
iment were repeated many times, that outcome would occur in
approximately 30% of the trials. In 100 trials, for example, it might occur
30 times, or maybe 28 times or 34 times. Statistical analysis shows, how-
ever, that it is unlikely that it would occur fewer than 20 times or more
than 40 times.

Objectives

• Estimate probability using
experimental methods

• Estimate probability using
theoretical methods



Section 13.4 Determining Probabilities 875

Outcome red yellow blue

Probability 71
200 � 0.486

200 � 0.443
200 � 0.2

■

Figure 13.4-1

The basis for experimental estimates of probability may be summarized
as follows:

As the number of trials of an experiment increases, the relative fre-
quency of an outcome approaches the probability of the outcome.

Thus, if an experiment is repeated n times, the experimental estimate of
the probability of an event is

Example 1 Experimental Estimate of Probability

An experiment consists of throwing a dart at the target in Figure 13.4-1.
Suppose the experiment is repeated 200 times, with the following results:

red 43
yellow 86
blue 71

Write a probability distribution for the experiment.

Solution

The probabilities may be estimated using the experimental formula.

P1E2 �
number of trials with an outcome in E

n

Probability Simulations
In order to estimate probability using the experimental approach, a large
number of trials is needed. Because this approach is often time-consum-
ing, computer simulations that duplicate the conditions of a single trial
are often used.

Most graphing calculators have random number generators that can be
used to simulate simple probability experiments. To simulate an experi-
ment with a large number of trials, it is easiest to use a program that can
keep track of the frequency of each outcome.

Suppose an experiment consists of tossing three coins and counting the
number of heads, and that the probability of heads for each coin is 0.5.
The possible outcomes of the experiment are 0 heads, 1 head, 2 heads, or
3 heads. One trial can be simulated by a command that randomly gener-
ates three values, which can be either 0 or 1, and adds them (see the
Technology Tip on page 876). The three random integers represent the
three coins, where 1 represents heads and 0 represents tails.
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The following is a sample program for running a simulation with n trials
of the experiment. The program displays a list of the probabilities for 0
heads, 1 head, 2 heads, and 3 heads.

Prompt N N is the number of trials.

For (K, 1, N, 1)
T is the outcome of a single trial.

A is the number of trials with 0 heads.

B is the number of trials with 1 head.

C is the number of trials with 2 heads.

D is the number of trials with 3 heads.

End

{A/N, B/N, C/N, D/N}

Example 2 Probability Simulation

Use the program to create a probability distribution for the experiment of
tossing 3 coins and counting the number of heads. Assume that P(heads) �
P(tails) � 0.5 for each coin.

Solution

The results will vary each time the program is run. Using the results from
Figure 13.4-2, one approximate distribution is shown below.

D � 1 S D
If T � 3
C � 1 S C
If T � 2
B � 1 S B
If T � 1
A � 1 S A
If T � 0
sum 1randInt 10, 1, 32 2S T

0 S A: 0 S B: 0 S C: 0 S D

Technology 
Tip

To randomly generate three values that can be 0 or 1 and add them:

TI sum (randInt (0, 1, 3))

Casio Sum {Int 2Ran#, Int 2Ran#, Int 2Ran#}

Figure 13.4-2 ■

Outcome 0 heads 1 head 2 heads 3 heads

Probability 0.14 0.38 0.36 0.12



Example 3 Rolling a Number Cube

An experiment consists of rolling a number cube. Suppose that all out-
comes are equally likely.

a. Write the probability distribution for the experiment.
b. Find the probability of the event that an even number is rolled.

Solution

a. The sample space consists of the 6 outcomes {1, 2, 3, 4, 5, 6}. If the 

outcomes are equally likely, then the probability of each is The 

probability distribution for the experiment is

1
6.

Calculator Exploration

Run the probability simulation in Example 2, using 100 trials. Are
your results similar to those in the example? Compare your results
to those of your classmates.

Suppose an experiment has a sample space of n outcomes, all
of which are equally likely. Then the probability of each 

outcome is and the probability of an event E is given by

P(E) �
number of outcomes in E

n

1
n ,

Probability for
Equally Likely

Outcomes

Outcome 1 2 3 4 5 6

Probability 1
6

1
6

1
6

1
6

1
6

1
6

Theoretical Estimates of Probability

In the theoretical approach, certain assumptions are made about the out-
comes of the experiment. Then, the properties of probability are used to
determine the probability of each outcome.

The most common assumption is that all outcomes are equally likely,
that is, they have the same probability of occurring. For example, in toss-
ing a coin it is usually assumed that heads and tails are equally likely.
Since the probabilities must add to 1, the probability of each outcome 

must equal This idea is used to develop the following formula.1
2.
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The assumption
that all outcomes are
equally likely was used in
the probability simulation in
Example 2. If P(heads)

P(tails) , then heads 

and tails are equally likely.
Also, for the given
calculator commands, the
outcomes 0 and 1 are
equally likely each time.

1
2�

�

NOTE



■

How do the theoretical probabilities obtained in Example 4 compare to
the experimental ones you found in Example 2?

b. The event that an even number is rolled consists of the 3 outcomes
{2, 4, 6}. Thus, the probability that an even number is rolled is 

■

Of course, the outcomes of an experiment are not always equally likely.
Based on the probability simulation of tossing 3 coins in Example 2, the
outcomes 0, 1, 2, and 3 heads do not seem to be equally likely. However,
it is possible to determine the probability theoretically by considering each
coin separately.

Example 4 Theoretical Probability

Use properties of probability to write a theoretical probability distribu-
tion for the experiment in Example 2.

Solution

Each coin has no effect on the other coins, so the outcomes of the coins
are independent. Thus, the probabilities can be multiplied.

The only outcome with 0 heads is TTT. The probability of tails for each
coin is 0.5, so the probability of the outcome TTT is

T T T

There are three outcomes with 1 head: HTT, THT, and TTH. Each out-
come has a probability of 0.125. For example,

H T T

The probabilities of the three outcomes can be added, so the probability
of 1 head is 0.125 � 0.125 � 0.125 � 0.375.

There are three outcomes with 2 heads: HHT, HTH, and THH. The prob-
ability of 2 heads is also 0.125 � 0.125 � 0.125 � 0.375.

There is one outcome with 3 heads, HHH, which also has a probability
of 0.125.

The probability distribution is shown below.

0.510.52 10.52 � 0.125

0.510.52 10.52 � 0.125

3
6 �

1
2.
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Outcome 0 heads 1 head 2 heads 3 heads

Probability 0.125 0.375 0.375 0.125
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Counting Techniques

The probability formula for equally likely outcomes uses the size of the
sample space. In simple experiments, this may be easily determined, but
some experiments require more sophisticated counting techniques.

The basis of most counting techniques is the Fundamental Counting Prin-
ciple, which is also known as the Multiplication Principle.

Consider a set of k experiments. Suppose the first experiment
has outcomes, the second has outcomes, and so on. Then
the total number of outcomes is for all k
experiments.

n1 � n2 � p � nk

n2n1

Fundamental
Counting
Principle

Example 5 Using the Fundamental Counting Principle

A catalog offers chairs in a choice of 2 heights, regular and tall. There are
10 colors available for the finish, and 12 choices of fabric for the seats.
The chair back has 4 different possible designs. How many different chairs
can be ordered?

Solution

Each option can be considered as an experiment. The number of choices
for each option is the number of outcomes. According to the Fundamen-
tal Counting Principle, the number of different chairs is

■

Consider the following experiment: Each letter of the alphabet is written
on a piece of paper, and three letters are chosen at random. There are two
important questions in determining the nature of the experiment:

1. Is each letter replaced before the next letter is chosen?
2. Does the order of the letters matter in the result?

If the answer to Question 1 is yes, the letters are said to be chosen with
replacement. In this case, letters may be repeated in the result. Also, the
number of letters to choose from is always the same. If the answer is no,
then the letters are said to be chosen without replacement. In this case,
there will be no repeated letters, and the number of letters to choose from
decreases by 1 for each letter chosen.

If the answer to Question 2 is yes, the result is said to be order important.
In this case, the outcome CAT is considered to be different from the out-
come ACT. If the answer is no, the result is said to be in any order. In this
case, the six outcomes CAT, CTA, TAC, TCA, ACT, ATC are considered
to be the same.

2 � 10 � 12 � 4 � 960

Many times, it is
necessary to use the context
of the experiment to
determine whether it is
with replacement, or if
order is important.

NOTE



With replacement Without replacement Without replacement
Order important Order important Any order

26 � 25 � 24
3 � 2 � 1 � 260026 � 25 � 24 � 15,60026 � 26 � 26 � 17,576

■

Permutations and Combinations
The two cases without replacement are called permutations (order impor-
tant) and combinations (any order). In order to write a formula for
permutations and combinations, n!—read “n factorial”—is used to
describe the product of all the integers from 1 to n.

In the example of drawing 3 letters without replacement where order is
important, the number of permutations can be written using factorials as

In the case where order is not important, the number of combinations can
be written as

26 � 25 � 24
3 � 2 � 1 �

26!
13 � 2 � 1223!

�
26!

3! � 23!

26 � 25 � 24 �
26 � 25 � 24 � 23 � 22 � p � 3 � 2 � 1

23 � 22 � p � 3 � 2 � 1 �
26!
23!

n! � n1n � 12 1n � 22 p 132 122 112

Outcome 0 heads 1 head 2 heads 3 heads

Probability 1
8 � 0.1253

8 � 0.3753
8 � 0.3751

8 � 0.125

H

H

H

H

T

T

H

T

H

T

H

T

T

T

Figure 13.4-3

Example 6 3 Coin Toss

Use the Fundamental Counting Principle to verify the probability distri-
bution in Example 4.

Solution

There are two possible outcomes for each coin: heads and tails. Thus, the
number of outcomes for tossing three coins is To find the 8
different outcomes, it is helpful to use a tree diagram, as shown in Fig-
ure 13.4-3. The outcomes are given below.

HHH HHT HTH HTT THH THT TTH TTT
3 heads 2 heads 2 heads 1 head 2 heads 1 head 1 head 0 heads

Each of these outcomes is equally likely, so the probability distribution is

2 � 2 � 2 � 8.

Three of the four possible cases are shown in the table below. The fourth
case, with replacement and in any order, will not be discussed. Use the
Fundamental Counting Principle to explain the number of outcomes in
each case.
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0! is defined to
equal 1.

NOTE



Example 7 Matching Problem

Suppose you have four personalized letters and four addressed envelopes.
If the letters are randomly placed in the envelopes, what is the probabil-
ity that all four letters will go to the correct addresses?

Solution

For all four letters to go to the correct addresses, they must be chosen in
the exact same order as the envelopes. The size of the sample space is the
number of permutations, 

Thus, the probability is 

■

Example 8 Pick-6 Lottery

In a “pick-6” lottery, 54 numbered balls are used. Out of these, 6 are ran-
domly chosen. To win, at least 3 balls must be matched in any order. What
is the probability of winning the jackpot (all 6 balls)? What is the proba-
bility of matching any 5 balls? any 4 balls? any 3 balls?

1
24 � 0.04.

4P4 �
4!14 � 42! �

4!
0! � 24

4P4.

Permutations

If r items are chosen in order without replacement from n
possible items, the number of permutations is

Combinations

If r items are chosen in any order without replacement from n
possible items, the number of combinations is

If each item is equally likely to be chosen, the permutations
and combinations are all equally likely for a given value of r.

Note: may also be written as or and may be 

written as or an
r
b .C(n, r),Cn,r ,

nCrP(n, r),Pn,rnPr

nCr �
n!

r !(n � r)!

nPr �
n!

(n � r)!

Permutations
and

Combinations

Technology 
Tip

Permutations and com-
binations are located

on the PRB submenu 
of the MATH menu on 
TI and on the PROB
submenu of the OPTN
menu on Casio.

Permutation and combination formulas are also written using factorials.
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Solution

The size of the sample space is the number of combinations.

The probability of winning the jackpot is

The event of matching 5, 4, or 3 numbers can be determined as follows:

There are ways to match k numbers out of 6. The remaining 
numbers do not match any of the 6 winning numbers, so there are 48 num-
bers to choose from, giving ways to choose the remaining numbers.
By the Fundamental Counting Principle, there are combina-
tions that match k numbers.

■

P1matching 3 numbers2 �
6C3 � 48C3

54C6
�

20 � 17296
25,827,165 � 0.01

P1matching 4 numbers2 �
6C4 � 48C2

54C6
�

15 � 1128
25,827,165 � 0.0007

P1matching 5 numbers2 �
6C5 � 48C1

54C6
�

6 � 48
25,827,165 � 0.00001

P1matching k numbers2 �
6Ck � 48C6�k

54C6

6Ck � 48C6�k

48C6�k

6 � k6Ck

P1matching k numbers2 � number of combinations that match k numbers
54C6

1
25,827,165 � 0.00000004

54C6 � 25,827,165
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Figure 13.4-4

Exercises 13.4

For Exercises 1–4, an experiment consists of drawing
a marble out of a bag, observing the color, and then
placing it back in the bag. Suppose the experiment is
repeated 75 times, with the following results:

red 38
blue 23

green 11
yellow 3

1. Write a probability distribution of the experiment
using the experimental formula.

2. Based on your distribution from Exercise 1, what
is the probability of drawing either a blue or
green marble?

3. Based on your distribution from Exercise 1, what
is the probability of drawing two yellow marbles
in a row?

4. Suppose it is known that there is a total of 300
marbles in the bag. Estimate the number of each
color of marble.

A dreidel is a top with four sides,
used in a Hanukah game. The
sides are labeled with the Hebrew
letters nun, gimel, hay, and shin. A
dreidel is spun 100 times, with the
following results:

nun 10
gimel 45

hay 24
shin 21

5. Write a probability distribution for the dreidel.

dreidel
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6. A player wins tokens if the dreidel lands on either
gimel or hay. What is the probability of winning
tokens?

7. A player loses tokens if the dreidel lands on nun.
What is the probability of losing four times in a
row?

Exercises 8–11 refer to the following experiment: two
number cubes are rolled, and a random variable
assigns the sum of the faces to each outcome.

8. The following commands generate two random
integers from 1 to 6 and add them.
TI-83/86: sum(randInt(1, 6, 2))
TI-89/92: sum({rand(6), rand(6)})
Sharp 9600: 
Casio 9850: 
HP-38: 

Run 5 trials of the experiment and list your results.

9. Run a simulation of the experiment with at least
50 trials, and create a probability distribution.

10. Use your probability distribution from Exercise 9
to find the probabilities for the following values of
the random variable.
a. greater than 9
b. less than 6
c. at least 4

11. Use your probability distribution from Exercise 9
to find the expected value of the random variable.

12. A bag contains 3 red marbles and 4 blue marbles.
Suppose each marble is equally likely to be
chosen. What is the probability of the event of
drawing a red marble?

13. Suppose that a person’s birthday is equally likely
to be any day of the year. What is the probability
that a randomly chosen person has the same
birthday as you?

A teacher writes the name of each of her 25 students
on a slip of paper and places the papers in a box. To
call on a student, she draws a slip of paper from the
box. Each paper is equally likely to be drawn, and the
papers are replaced in the box after each draw.

14. What is the probability of calling on a particular
student?

15. What is the probability of calling on the same
student twice in a row?

INT16 RANDOM2 � 162
©LIST15INT16 RANDOM2 � 1,

Sum5Int 6Ran# � 1, Int 6Ran# � 16
sum1int16random122 2 � 12

16. If there are 9 students in the last row, what is the
probability of calling on a student in the last row?

17. If the class contains 11 boys and 14 girls, what is the
probability of calling on a girl? What is the
probability of calling on 3 girls in a row?

18. A clothing store offers a shirt in 5 colors, in long
or short sleeves, with a choice of three different
collars. How many ways can the shirt be
designed?

19. A quiz has 5 true-false questions and 3 multiple
choice questions with 4 options each. How many
possible ways are there to answer the 8 questions?

20. A license plate has 3 digits from 0 to 9, followed
by 3 letters. How many different license plates are
possible?

21. A gallery has 25 paintings in its permanent
collection, with display space for 10 at one time.
How many different collections can be shown?

22. A committee of 8 people randomly chooses 3
people in order to be president, vice president,
and treasurer. In how many ways can the officers
be chosen?

23. A baseball team has 9 players. How many
different batting orders are there?

24. A small library contains 700 novels. In how many
ways can you check out 3 novels?

25. A manufacturer is testing 4 brands of soda in a
blind taste test. The participants know the brands
being tested but do not know which is which.
What is the probability that a participant will
identify all 4 brands correctly by guessing?

26. A researcher is studying the abilities of people
who claim to be able to read minds. He chooses 6
numbers between 1 and 50 (inclusive), and asks
each participant to guess the numbers in order.
What is the probability of guessing all 6 correctly?

A botanist is testing two kinds
of seeds. She divides a plot of
land into 16 equal areas num-
bered from 1 to 16. She then
randomly chooses 8 of these
areas to plant seed A, and she
plants seed B in the remaining
areas.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16



“everybody has a different birthday.” How many
ways are there to name a different date for each of
3 people? of 20 people? of n people?

32. The probability that everybody has a different
birthday can be written as

Use your results from Exercises 30 and 31 to write
a formula in terms of n for the probability that
everybody has a different birthday.

33. Use your results from Exercise 32 to write a
formula in terms of n for the probability that two
or more people have the same birthday. Find the
probability for for and for 

34. How many people must be in the room for the 

probability to be approximately that two or 

more have the same birthday?

35. How many people must be in the room for the
probability to be 1 that two or more have the
same birthday? Hint: do not use the formula.

1
2

n � 35.n � 20,n � 3,

Number of ways to name n different dates
Number of ways to name n dates

13.4.A Excursion: Binomial Experiments

Many experiments can be described in terms of just two outcomes, such
as winning or losing, heads or tails, boy or girl. These experiments deter-
mine a group of problems called binomial or Bernoulli experiments,
named after Jacob Bernoulli, a Swiss mathematician who studied these
distributions extensively in the late 1600’s.

Binomial Experiments

Here is a typical binomial experiment: in a basketball contest, each con-
testant is allowed 3 free-throws. If a certain individual has a 70% chance
of making each free-throw, what is the probability of making exactly 2
out of 3?

Objectives

• Calculate the probability of
a binomial experiment

27. How many ways are there
to choose 8 plots out of
16?

28. What is the probability of
the event shown at right?

29. What is the probability that all of the areas with
seed A will form a rectangle on one side of
the plot, and all of the areas with seed B will form
a rectangle on the other side?

Critical Thinking Exercises 30–35 refer to a famous
probability problem: suppose a certain number of peo-
ple are in a room. What is the probability that two or
more people in the room will have the same birthday?

30. Suppose each day of the year is equally likely to
be a person’s birthday. How many ways are there
to name one date per person (not necessarily all
different) for each of 3 people? of 20 people? of n
people?

31. The complement of the event “two or more
people will have the same birthday” is

4 � 2

4 � 2
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B B B B
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The essential elements in a binomial experiment are given below.

In the example of the basketball contest, the outcome SFS indicates that
the first free-throw is a success, the second a failure, and the third a suc-
cess. The trials are independent, so the probability of the outcome SFS is
the product of the probabilities for each trial.

Example 1 Basketball Contest

Refer to the basketball contest described on page 884. Suppose that the
probability of making each free-throw is 0.7. What is the probability of
making exactly 2 free-throws in 3 tries?

Solution

The outcomes in the event “2 free-throws in 3 tries” are SSF, SFS, FSS.
The probability of the event is the sum of the probabilities of the three
outcomes.

■

In Example 1, note that the probability of SSF is the same as the proba-
bility of SFS or FSS. In general, the probability of any outcome with r
successes and n–r failures in n trials is

To develop a general formula for the probability of r successes in n trials,
it is necessary to determine how many different outcomes have r suc-

1n � r times21r times2
1pp p p2 1qq p q2 � prqn�r

 � 0.147 � 0.147 � 0.147 � 0.441
 P12 free-throws2 � P1SSF2 � P1SFS2 � P1FSS2

 P1FSS2 � P1F2 � P1S2 � P1S2 � 10.32 10.72 10.72 � 0.147
 P1SFS2 � P1S2 � P1F2 � P1S2 � 10.72 10.32 10.72 � 0.147
 P1SSF2 � P1S2 � P1S2 � P1F2 � 10.72 10.72 10.32 � 0.147

P1SFS2 � P1S2 � P1F2 � P1S2 � 10.72 10.32 10.72 � 0.147

The terms
“success” and “failure” are
often used in experiments
to designate outcomes such
as heads or tails, even if
neither outcome is
preferred.

NOTE

⎧ ⎨ ⎩ ⎧ ⎨ ⎩

A set of n trials is called a binomial experiment if the
following are true.

1. The trials are independent.

2. Each trial has only 2 possible outcomes, which may be
designated as success (S) and failure (F).

3. The probability of success p is the same for each trial.
The probability of failure is q � 1 � p.

Binomial
Experiment



cesses. Consider the number of outcomes with 3 successes in 5 trials, as
shown below. For clarity, the F’s are left as blanks.

SSS SS S SS S S SS S S S

S SS SSS SS S S SS SSS

The number of outcomes is the same as the number of ways to choose 3
positions for the S out of 5 possible positions. The order of the S’s does
not matter, because they are all the same. This is the number of combi-
nations, 5C3 � 10.
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In a binomial experiment,

where p is the probability of success, and is the
probability of failure.

q � 1 � p

P(r successes in n trials) � nCr prqn�r

Probability of a
Binomial

Experiment

Example 2 Lottery Tickets

A lottery consists of choosing a number from 000 to 999. All digits of the
number must be matched in order, so the probability of winning is

A ticket costs $1, and the prize is $500. Suppose you play

the lottery 1000 times in a row.

a. Write a probability distribution for the number of wins.
b. What is the probability that you will break even or better?

Solution

a. The number of wins could be anything from 0 to 1000. However, the
probability of winning more than a few times is so small that it is
essentially 0. Thus, the sample space will be considered as 0, 1, 2, 3,
4, and 5 or more wins. The probabilities are calculated using the
binomial probability formula, with and 

� 0.0036
P15 or more wins2 � 1 � 0.3677 � 0.3681 � 0.1840 � 0.0613 � 0.0153
P14 wins2 � 1000C410.0012410.9992996 � 0.0153
P13 wins2 � 1000C310.0012310.9992997 � 0.0613
P12 wins2 � 1000C210.0012210.9992998 � 0.1840
P11 win2 � 1000C110.0012110.9992999 � 0.3681
P10 wins2 � 1000C010.0012010.99921000 � 0.3677

p � 0.001.n � 1000

1
1000 � 0.001.

Outcome 0 wins 1 win 2 wins 3 wins 4 wins 5 or more wins

Probability 0.3677 0.3681 0.1840 0.0613 0.0153 0.0036
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b. In order to break even or better, you must win 2 or more times. The
probability is the sum of the probabilities of winning 2, 3, 4, or 5 or
more times.

■

Example 3 Multiple Choice Exam

Morgan is taking a 10-question multiple choice test but has not studied.
Each question has 4 possible responses, only one of which is correct. Find
the probability of getting the results below if he answers all questions 
randomly.

a. exactly 6 questions correct
b. 4 or fewer questions correct
c. 8 or more questions correct

Solution

The probability of getting each question correct is 

a.

b.

c.

■

Binomial Distributions

Consider the following binomial experiment: a coin is tossed 4 times, and 

the probability of heads on each toss is A probability distribution for

the number of heads is shown below.

1
2.

10C1010.2521010.7520 � 0.0004
10C910.252910.7521 �10C810.252810.7522 �P18 or more correct2 �

10C410.252410.7526 � 0.92210C310.252310.7527 �10C210.252210.7528 �
10C110.252110.7529 �P14 or fewer correct2 � 10C010.252010.75210 �

P16 correct2 � 10C610.252610.7524 � 0.016

p �
1
4 � 0.25.

P1break even or better2 � 0.1840 � 0.0613 � 0.0153 � 0.0036 � 0.2642

Number of heads 0 1 2 3 4

Probability 1
16

1
4

3
8

1
4

1
16

Technology 
Tip

The command binom-
pdf( in the DISTR

menu of TI finds the 
probability for r successes
in n trials of a binomial
experiment, given n, p
and r. The command
binomcdf( finds the 
cumulative probability 
for r or fewer successes 
in n trials.

Figure 13.4.A-1

x

0.5
y

0.25

51 2 3 40

Figure 13.4.A-2

A probability density function that represents this distribution is shown
in Figure 13.4.A-2. Notice that the shape of the graph is symmetric.

The expected value of this distribution is

which is the (approximate) center of the probability distribution.

0a 1
16b � 1a1

4b � 2a3
8b � 3a1

4b � 4a 1
16b � 2



Example 4 Multiple Choice Exam

Find the expected value and standard deviation of the number of ques-
tions correct on the multiple choice exam in Example 3.

Solution

In this case, n � 10, p � 0.25, and q � 0.75. The expected value is 

and the standard deviation is 

This means that if a large number of students guessed on the exam, the
average number correct would be 2.5, with a standard deviation of 1.4. A
graph of the distribution is shown in Figure 13.4.A-4.

■

� 1.4.1npq � 11010.252 10.752

np � 1010.252 � 2.5

0.3

0

0 11

Figure 13.4.A-4

n = 3 n = 10 n = 30

Figure 13.4.A-3

The distribution of a binomial experiment with n trials and
probability of success p is approximately symmetric for large
values of n. The center of the distribution is the expected
value.

The expected value of the binomial distribution is np.

The standard deviation of the binomial distribution is 1npq.

Characteristics
of a Binomial

Distribution

For large values of n or when p is near the shape of a binomial dis-

tribution is approximately symmetric, with its center at the expected 

value. For small values of n if p is different from the distribution will 

be skewed. However, as n increases, the distribution becomes more sym-
metric. The graphs in Figure 13.4.A-3 show the distributions of a binomial 

experiment with for 10, and 30. The shape of the distribution 

approaches a special curve, called the normal curve, which is developed
in the next section.

n � 3,p �
1
3

1
2,

1
2,
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Exercises 13.4.A

For Exercises 1–4, a binomial experiment consists of
planting 4 seeds. The probability of success (that a
given seed will sprout) is The sample out-
come SFSS means that the first seed sprouted, the
second seed did not sprout, and the third and fourth
seeds sprouted.

1. What is the probability of failure?

2. Write out the outcomes that have exactly
two successes.

3. Complete the probability distribution below.

4C2 � 6

p � 0.65.

8. What is the expected value of the number of
bulls-eyes in 4 tries?

A true-false exam has 100 questions, and for each ques-
tion What is the probability
of answering

9. 50 questions correct?

10. 70 questions correct?

11. 30 questions correct?

12. 90 questions correct?

13. Find the expected value and standard deviation of
the number of correct answers.

An experiment consists of rolling a number cube 30
times. The outcome 6 is considered a success, and all
other outcomes are considered failures. Assume all 

faces are equally likely, so that 

14. Find the expected value of the probability
distribution. What is the probability of e
successes?

15. What is the probability of successes? What
is the probability of successes?

16. Find the standard deviation of the probability
distribution. What is the probability that the
outcome is between and ?m � sm � s

s

m � 1
m � 1

m

p � P(success) �
1
6 .

P(true) � P(false) � 0.5.

Sprouted 0 1 2 3 4

Probability ? ? ? ? ?

4. Find the expected value of the number of seeds
that will sprout, and interpret the result.

For Exercises 5–8, suppose the probability of a certain
dart player hitting a bulls-eye is 0.25.

5. Write a probability distribution for the number of
bulls-eyes in 4 tries.

6. What is the probability of hitting at least 3 bulls-
eyes in 4 tries?

7. What is the probability of hitting less than 2 bulls-
eyes in 4 tries?

13.5 Normal Distributions

To statisticians, the most important probability density function is the nor-
mal curve (sometimes called the bell curve). Normal distributions are
used to predict the outcomes of many events, such as the probability that
a student scores a 750 on the SAT, or the probability that you will grow
to be 67 inches tall. For statisticians, it is also a valuable tool for predict-
ing if an outcome is statistically significant or just caused by chance.

Objectives

• Draw a normal distribution
given its mean and
standard deviation

• Use normal distributions to
find probabilities



Properties of the Normal Curve

A normal distribution is bell-shaped and symmetric about its mean. The
x-axis is a horizontal asymptote, and the area under the curve and above
the x-axis is 1. The maximum value occurs at the mean, and the curve has
two points of inflection, at 1 standard deviation to the right and left of
the mean.

Because a normal distribution is symmetric, the mean, median, and mode
have the same value. This value is also called the center. The Greek letter

(mu) is used to represent the mean of a normally distributed popula-
tion. Also, the population standard deviation is used for the standard
deviation.

Figure 13.5-1 shows three normal curves, with and labeled.sm

s

m
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x

y

0.4

0.2

0.8

1

0.6

6 1082−2−4 40

= 7
= 0.5

µ
σ

= 2
= 2

µ
σ

= 0
= 1

µ
σ

Figure 13.5-1

x
0.2

3 41−1−2−3−4 20

y

0.4

Figure 13.5-2

The normal curve with a mean of 0 and standard deviation of 1 is called
the standard normal curve. The equation of the standard normal curve is

y �
1
12p

e
�x 2

2

The standard normal curve can be thought of as a parent function for all
normal curves.

• A change in results in a horizontal translation of the curve.
• A change in results in a horizontal stretch and vertical

compression of the curve, or vice versa, so that the resulting area is
still 1.

s

m
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Most of the time, the mean and standard deviation of an entire popula-
tion cannot be measured. The population mean and standard deviation
are often estimated by using a sample.

Example 1 Using Sample Information

A paper in Animal Behavior gives 11 sample distances, in cm, from which
a bat can first detect a nearby insect. The bat does this by sending out
high-pitched sounds and listening for the echoes. Assume the population
is normally distributed.

62, 23, 27, 56, 52, 34, 42, 40, 68, 45, 83

a. Compute the mean and standard deviation of this sample.
b. Draw a normal curve to represent the distribution.

Solution

a. The mean is 48.36 and the sample standard deviation is 18.08, as
shown in Figure 13.5-3.

b. The normal curve is shown in Figure 13.5-4.

Graphing Exploration

The normal curves below have the same value of and different
values of Graph the curves in the same viewing window and
describe the results.

The normal curves below have the same value of and different
values of Graph the curves below in the same viewing window
and describe the results.

y �
3
12p

e
�9x2

2y �
1

312p
e

�x2

18y �
1
12p

e
�x2

2

s.
m

y �
1
12p

e
�1x�422

2y �
1
12p

e
�1x�322

2y �
1
12p

e
�x2

2

m.
s

A random variable is said to have a normal distribution with
mean and standard deviation if its density function is
given by the equation

y �
1

S12P
e

� (x�M)2

2S2

SM

Equation of
Normal Curve

Figure 13.5-3



■

The Empirical Rule

Consider the intervals formed by one, two, and three standard deviations
on either side of the mean, as shown below. The empirical rule describes
the areas under the normal curve over these intervals.
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0.04

0

0 102

Figure 13.5-4

In a normal distribution:

• about 68% of the data values are within one standard
deviation of the mean.

• about 95% of the data values are within two standard
deviations of the mean.

• about 99.7% of the data values are within three standard
deviations of the mean.

Empirical Rule

Example 2 Running Shoes

A pair of running shoes lasts an average of 450 miles, with a standard
deviation of 50 miles. Use the empirical rule to find the probability that
a new pair of shoes will have the following lifespans, in miles.

a. between 400 and 500 miles
b. more than 550 miles

x

68%
95%

99.7%

µ µ µ σσ µ σ+ 3µ σ− 3 + 2µ σ− 2 +µ σ−

Each percentage
in the empirical rule can
also be interpreted as the
probability that a data
value chosen at random
will lie within one, two, or
three standard deviations
of the mean.

NOTE
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Solution

Figure 13.5-5 shows the normal distribution with the intervals of one, two,
and three standard deviations on either side of the mean.

x

500 600550300 350 400 450
miles

Figure 13.5-5

x

600 800700200

SAT

300 400 500

= 500
= 100

ACT

= 18
= 6

µ
σ

µ
σ

x

24 36300 6 12 18

Figure 13.5-6

a. The area under the curve between 400 and 500 miles is
approximately 68% of the total area. Since the area under a density
function corresponds to the probability, the probability that a pair of
shoes will last between 400 and 500 miles is about 0.68.

b. The area under the curve between 350 and 550 miles is 95% of the
total area, which leaves 5% for the area less than 350 and greater
than 550. Since the normal curve is symmetric, the area greater than
550 is exactly half of this, or 2.5%. Thus, the probability that a pair
of shoes will last more than 550 miles is about 0.025.

■

The Standard Normal Curve

In general, determining the area under a normal curve is very difficult.
Because of this, it is common to standardize data to match the normal
curve with a mean of 0 and standard deviation of 1, for which these areas
are known.

Comparing Data Sets
Sarah and Megan are high school juniors. Sarah scored 660 on the SAT,
and Megan scored 29 on the ACT. Who did better? Although the scores
on both tests are normally distributed, the mean and standard deviation
are very different. One way to compare the distributions is to adjust the
scales of the axes, as shown in Figure 13.5-6.



A more precise way to compare two scores from different data sets is to
use the standard deviation as a unit of measurement. Each score is rep-
resented by the number of standard deviations above or below the mean.

Example 3 Comparing Scores

Use the standard deviation as a unit of measurement to compare the SAT
and ACT scores for Sarah and Megan.

Solution

Sarah’s score of 660 is 160 points above the mean, which is 500. The stan-

dard deviation is 100, so Sarah’s score is standard deviations 

above the mean.

Megan’s score of 29 is 11 points above the mean, which is 18. The stan-

dard deviation is 6, so Megan’s score is standard deviations

above the mean. Thus, Megan’s score is better than Sarah’s score.
■

The number of standard deviations that a data value is above the mean
is called the z-value. In Example 3, Sarah’s z-value is 1.6 and Megan’s 
z-value is 1.83. For a normal distribution, the z-values correspond to val-
ues on the standard normal curve, as shown in Figure 13.5-7.

11
6 � 1.83

160
100 � 1.6
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x

600 800700200 300 400 500
1 32−3z-values: −2 −1 0

Figure 13.5-7

The z-value of the value x in a data set with mean and
standard deviation is

The area under a normal curve between x � a and x � b is
equal to the area under the standard normal curve between
the z-value of a and the z-value of b.

z �
x � M
S

S

M
z-Values

Once z-values are determined, corresponding areas under the normal
curve are often found using a table. Because of the symmetry of the nor-
mal curve, it is only necessary to include positive z-values in the table.



Section 13.5 Normal Distributions 895

x

y

z 1 32−3 −2 −1 0

Figure 13.5-8

Example 4 Using z-Values to Determine Area

A normally distributed data set has a mean of 25 and a standard devia-
tion of 5. Find the probability that a data value chosen at random is
between 23 and 28.

Solution

First, find the z-values for 23 and 28, given and 

Divide the area into two parts: the area from to 0, and the area from
0 to 0.6, as shown in Figure 13.5-9. The areas are found in the table above.
Because the normal curve is symmetric with respect to the area from

to 0 is the same as the area from 0 to 0.4, or 0.16. The area from 0 to
0.6 is 0.23. The total area is the sum of the two areas, 0.39. Thus, the prob-
ability that a randomly chosen data value is between 23 and 28 is 0.39.

�0.4
x � 0,

�0.4

z �
28 � 25

5 � 0.6z �
23 � 25

5 � �0.4

s � 5.m � 25

z 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Area 0.04 0.08 0.12 0.16 0.19 0.23 0.26 0.29 0.32 0.34

Technology 
Tip

Normalcdf under the
DISTR menu of TI 

will calculate the area
under the normal curve 
in a given interval. The
parameters are Normalcdf
(lower bound, upper
bound, ).sm,

x

y

0.6−0.4

0.16 0.23

Figure 13.5-9
■

Example 5 Response Times

The EMT response time for an emergency is the difference between the
time the call is received and the time the ambulance arrives on the scene.
Suppose the response times for a given city have a normal distribution

The following table gives the area under the normal curve between 0 and
the given z-values, as shown in Figure 13.5-8.



with minutes and minutes. For a randomly received call,
estimate the probability of the following response times.

a. between 6 and 7 minutes b. less than 5 minutes
c. less than 7 minutes

Solution

a. The z-values are and The probability 

of a response time between 6 and 7 minutes is the area under the
standard normal curve from 0 to 0.8, which is approximately 0.29.

b. The z-value is The area from 0 to is approxi-

mately 0.29, so the probability of a response time under 5 minutes is
about (see Figure 13.5-10).0.5 � 0.29 � 0.21

�0.8z �
5 � 6

1.2 � �0.8.

z �
7 � 6

1.2 � 0.8.z �
6 � 6

1.2 � 0

s � 1.2m � 6
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Exercises 13.5

In Exercises 1–4, refer to the normal curve below. The
area of each square of the grid is 0.01.

3. Estimate the area under the curve from 16 to 24.

4. Estimate the area under the curve from 12 to 28.

Graph the normal curves for the following values of
and 

5. 6.

7. 8.

Suppose the heights of adult men are normally dis-
tributed. The heights of a sample of 30 men are shown
below, in inches.

65, 83, 69, 67, 69, 67, 67, 72, 85, 68, 73, 65, 67, 65, 72,
71, 67, 73, 68, 72, 61, 75, 66, 78, 65, 71, 68, 76, 67, 68

m � 3, s � 5m � 500, s � 100

m � 40, s � 12m � 10, s � 12

S.M

x

y
half of total
area = 0.5

−0.8

0.21 0.29

Figure 13.5-10

x

16 20 24 28 32128

1. Find 2. Estimate s.m.

c. The area under the curve from 0 to 6 minutes is 0.5. From part a,
the area under the curve from 6 to 7 minutes is 0.29. Thus, the
probability of a response time under 7 minutes is 

■
0.5 � 0.29 � 0.79.
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9. Compute the mean and standard deviation of this
sample.

10. Draw a normal curve that represents the
distribution of adult male heights, based on the
sample.

Suppose that the heights of adult women are normally
distributed with inches and inches.
Use the properties of the normal curve and the Empir-
ical Rule to find the probability that a randomly
chosen woman is within the given range.

11. taller than 65 inches

12. shorter than 67.5 inches

13. between 62.5 inches and 67.5 inches

14. between 60 inches and 70 inches

15. between 57.5 inches and 67.5 inches

16. A student took two national standardized tests
while applying for college. On the first test, 
and and on the second test, and

If he scored 630 on the first test and 45 on
the second, on which test did he do better?

17. Four students took a national standardized test
for which the mean was 500 and the standard
deviation was 100. Their scores were 560, 450, 640,
and 530. Determine the z-value for each student.

18. If a student’s z-value was 1.75 on the test
described in problem 17, what was the student’s
score?

19. A sample of restaurants in a city showed that the
average cost of a glass of iced tea is $1.25 with a
standard deviation of Three of the restaurants
charge $1.00, and $1.35. Determine the 
z-value for each restaurant.

20. If a new restaurant charges a price for iced tea
that has a z-value of (see Exercise 19), then
what is the tea’s actual cost?

At a certain restaurant, the wait time for a table is nor-
mally distributed with minutes and 
minutes. Use the table on page 895 to estimate the fol-
lowing:

21. the probability that the wait time for a table is
between 30 and 35 minutes

22. the probability that the wait time for a table is
between 24 and 30 minutes

S � 10M � 30

�1.25

95¢,
7¢.

s � 6.
m � 32s � 75,

m � 475

S � 2.5M � 65

23. the probability that the wait time for a table is
between 25 and 38 minutes

24. the probability that the wait time for a table is less
than 22 minutes

Daytime high temperatures in New York in February
are normally distributed with an average of and
a standard deviation of 

25. Estimate the probability that the temperature on a
given day in February is or higher.

26. Estimate the probability that the temperature on a
given day in February is or lower.

27. Estimate the probability that the temperature on a
given day in February is between and 

28. Estimate the probability that the temperature on a
given day in February is between and 

29. Estimate the probability that the temperature on a
given day in February is between and 

The quartiles of a normal distribution are the values
that divide the area under the curve into fourths.

38°.27°

30°.25°

39°.13°

22°

39°

8.5�.
30.2�

x

Q1

Q2

Q3

1
4

3 4

(center)

−2−3−4 2

1
4

1
4

1
4

y

The and quartiles are approximately to
the left and right of the mean, or

and

30. Find and for a distribution with and

31. Suppose the scores on an exam are normally
distributed with and Find and

, and interpret the result.

32. For the exam in Exercise 31, what exam score
would place a student in the top 25% of the class?

Q3

Q1s � 10.m � 70

s � 4.
m � 20Q3Q1

Q3 � M � 0.675SQ1 � M � 0.675S

0.675S3rd1st
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Important Facts
and Formulas mean:

If are ordered from smallest to largest, then the median
is the middle entry when n is odd and the average of the two mid-
dle entries when n is even.

Population standard Sample standard
deviation deviation

Suppose an experiment has a sample space of n outcomes, all of

which are equally likely. Then the probability of each outcome is 

and the probability of an event E is given by

Fundamental Counting Principle

Consider a set of k experiments. Suppose the first experiment has 
outcomes, the second has outcomes, and so on. Then the total
number of outcomes is for all k experiments.

Permutations

If r items are chosen in order without replacement from n possible
items, the number of permutations is

Combinations

If r items are chosen in any order without replacement from n pos-
sible items, the number of combinations is

nCr �
n!

r!1n � r2!

nPr �
n!1n � r2!

n1 � n2 � p � nk

n2

n1

P1E2 �
number of outcomes in E

n

1
n ,

s �
B

© 1xi � x22
n � 1s �

B

© 1xi � x22
n

median � •
for n odd, the value in the n � 1

2
 position

for n even, the average of the values in

 the 
n
2  and 

n
2 � 1 positions

xnx3, px2,x1,

x �
©xi
n
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Exercises 1–4 refer to the following description: A group of bird-watchers is
trying to determine what types of birds are common to their area. The group
observed 21 sparrows, 15 purple finches, 10 chickadees, 5 cardinals, and 2 blue
jays.

1. Is the data qualitative or quantitative?

2. Create a frequency table for the data.

3. Create a bar graph for the data.

4. Create a pie chart for the data.

Exercises 5–17 refer to the following description: a study is done to determine
the average commuting time of employees at a company. A total of 34 employ-
ees are surveyed, with the following results (in minutes).

31.9, 34, 30.7, 39, 33.1, 35.2, 30.5, 32.7, 29.4, 33.4, 22.3, 31.9, 32.3, 29.4, 33, 18.2,
29.1, 32.5, 22.2, 36.1, 27.7, 36, 31.9, 26, 31.7, 23.2, 30.7, 24.4, 33, 28.4, 28.8, 23.3,
32.2, 22.8

5. Is the data qualitative or quantitative?

6. Is the data discrete or continuous?

In a binomial experiment, 
where p is the probability of success, and is the probabil-
ity of failure. The expected value of a binomial distribution is np,
and the standard deviation is 

A random variable is said to have a normal distribution with mean
and standard deviation if its density function is given by the

equation

Empirical Rule

In a normal distribution:

• about 68% of the data values are within one standard
deviation of the mean.

• about 95% of the data values are within two standard
deviations of the mean.

• about 99.7% of the data values are within three standard
deviations of the mean.

The z-value of the value x in a data set with mean and standard

deviation is z �
x � m
s .s

m

y �
1

s12p
e�
1x�m22

2s2

sm

1npq.

q � 1 � p
P1r successes in n trials2 � nCrp

rqn�r
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7. Create a stem plot for the data.

8. Create a histogram for the data with class intervals of 5 minutes.

9. Use your histogram from Exercise 8 to describe the shape of the data.

10. Find the mean of the data.

11. Find the median of the data.

12. Find the mode of the data.

13. Find the sample standard deviation of the data.

14. Find the range of the data.

15. Find the first and third quartiles of the data.

16. Find the interquartile range of the data.

17. Create a box plot for the data.

Exercises 18–22 refer to the following probability distribution:

Outcome 1 2 3 4 5

Probability 0.1 ? 0.4 ? 0.1

Outcome WWW WWR WRW RWW WRR RWR RRW RRR

Probability 0.512 0.128 0.128 0.128 0.032 0.032 0.032 0.008

18. List the sample space for the probability distribution.

19. Suppose the probabilities are the same for outcomes 2 and 4. Complete the
probability distribution.

20. What is the probability that the outcome is an even number?

21. What is the probability that the outcome is greater than 2?

22. Suppose the experiment with the given probability distribution is repeated
3 times. Assuming the trials are independent, what is the probability of the
outcome {1, 2, 3}?

An experiment consists of spinning the spinner at left 3 times. A probability
distribution for the outcomes is given below. 1W � white, R � red2

A random variable is assigned to the number of times the spinner lands on red.

23. What is the range of the random variable?

24. What is the probability that the value of the random variable is 2?
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25. Create a probability distribution for the random variable.

26. Find the expected value of the random variable, and interpret the result.

27. Graph the probability density function of the random variable, and shade
the area of the graph that corresponds to the probability that the spinner
lands on white 3 times.

28. Suppose the experiment is repeated 25 times, with the following results:
WRW, RRW, WWW, WWW, WWW, WWW, WWR, RWW, WWW, WRW,
WWW, WWR, WWW, RWW, WWW, RWR, WWW, WRW, WWW, RWW,
WWW, WWW, WRW, WWW, WWR
Write a probability distribution of the random variable, based on the
experimental results. How do the probabilities compare to your results in
Exercise 25?

Exercises 29–33 refer to the following experiment: A sock drawer contains 6
identical black socks, 8 identical white socks, and 1 blue sock. A sock is cho-
sen randomly from the drawer. Assume all socks are equally likely to be chosen.

29. What is the probability of choosing a black sock? a white sock? a blue
sock?

30. Suppose a black sock is chosen. What is the probability that the next sock
chosen will also be black? Hint: how many of each color are left in the
drawer?

31. Suppose a white sock is chosen. What is the probability that the next sock
chosen will also be white? Hint: how many of each color are left in the
drawer?

32. Suppose a blue sock is chosen. What is the probability that the next sock
chosen will also be blue? Hint: how many of each color are left in the
drawer?

33. Use your results from Exercises 30 – 32 to determine the probability of
choosing a pair if two socks are chosen randomly from the drawer.

34. A lottery ticket involves matching 5 numbers between 1 and 50 in any
order. What is the probability of matching all 5 numbers? What is the
probability of matching any 4 numbers?

35. Suppose there are 4 people on a subcommittee, and you do not know their
last names. If you have a list of 10 last names of all of the people in the
committee, what is the probability of correctly guessing the last names of
the people in the subcommittee?

902 Chapter Review
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Number of vowels 0 1 2 3 4 5 6 7

Probability ? ? ? ? ? ? ? ?

37. Find the expected value and standard deviation of the number of vowels.

Suppose the scores on an exam are normally distributed with and 
Use properties of the normal curve, the empirical rule, and the table on page
895 to answer Exercises 38–46.

38. Write the equation of the normal curve for the distribution of the scores.

39. Graph the normal curve for the distribution of the scores.

40. Estimate the probability that a randomly chosen score is greater than 75.

41. Estimate the probability that a randomly chosen score is between 67 and 83.

42. Estimate the probability that a randomly chosen score is greater than 59.

43. Estimate the probability that a randomly chosen score is less than 99.

44. Estimate the probability that a randomly chosen score is between 75 and 78.

45. Estimate the probability that a randomly chosen score is between 70 and 82.

46. Estimate the probability that a randomly chosen score is less than 74.

S � 8.M � 75

Section 13.5

A binomial experiment consists of randomly choosing 7 tiles imprinted with
letters of the alphabet. An outcome of a vowel is considered a success, and a
consonant is considered a failure. The probability of success is 

36. Complete the probability distribution below for the number of vowels.

p � 0.44.
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Area Under a Curve

Many applications of calculus involve finding the area under a curve. In
probability, for example, it is often necessary to find areas under a nor-
mal curve or other probability density function. In other areas, such as
physics, the area under a curve can be used to determine total distance
traveled or the total amount of force on an object. In this section, prop-
erties of probability are used to estimate the area under a curve.

Example 1 Area Model for Probability

Consider the graph in Figure 13.C-1. Suppose a point in the rectangle is
chosen randomly. If A is the area of the shaded region, write a formula
in terms of A, a, b, and h for the probability that the point is in the shaded
region.

Solution

If the point is chosen randomly, then all points in the sample space are
equally likely to be chosen. The sample space is all points in the rectan-
gle, and the event above can be described as the set of all points in the
shaded area, both of which are infinite. Since it is impossible to divide
the number of outcomes in the event by the number of outcomes in the
sample space, the areas of the regions are used instead. The area of the
rectangle is 

■

A probability simulation can also be used to find the probability in Exam-
ple 1. Suppose points in the rectangle are chosen randomly, and
470 of them are in the shaded region. Recall that the experimental esti-
mate of the probability of an event is

By setting the two probability estimates equal to each other and solving,
a formula can be found for the area A in terms of a, b, and h.

 A � 0.47 h1b � a2
 A
h1b � a2 � 0.47

P1E2 � number of trials with an outcome in E
n � 470

1000 � 0.47

n � 1000

P1E2 �
area of shaded region

area of rectangle
�

A
h1b � a2

h1b � a2.

Figure 13.C-1
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Using Probability Simulations

To generate a large number of points and determine the number of points
that lie under a curve, a calculator or computer program is usually used.
A sample program is given below. The equation of the graph must be
entered in and the calculator window should contain the desired
region. Note: the choice of window will not affect the answer.

Prompt A A is the left bound of the rectangle.

Prompt B B is the right bound of the rectangle.

Prompt H H is the height of the rectangle.

Prompt N N is the number of points in the rectangle.

E is the number of points in the shaded region.

For (K, 1, N)

( ) This command generates an x-coordinate, X.

This command generates a y-coordinate, Y.

Pt-On (X, Y) This command displays the point (X, Y).

If (X) The point is tested to determine whether it is 
under the curve.

End

Disp (E/N)H( ) This command displays the estimate of the area.

Example 2 Area of a Quarter-Circle

Use a probability simulation to estimate the area under the curve with equa-
tion from 0 to 1. Since this region is one-fourth of a circle with 

radius 1, the area should be p4 � 0.785.

y � 21 � x2

B � A

E � 1 S E

Y � Y1

H rand S Y

rand � A S XB � A

0 S E

Y1,

In general, the area A under a curve between the x-values a
and b with a b may be estimated as follows:

1. Draw a rectangle with a base of length that
contains the desired area. Let h be the height of the
rectangle.

2. Randomly choose n points in the rectangle, using a
calculator or computer. Determine the number of points e
that lie in the desired area.

3. The area is approximated by the formula below.

A � e
n  h1b � a2

b � a

6

Area Under 
a Curve
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Solution

The result of a simulation with points is shown in Figure 13.C-2.
The area estimate is 0.782, which is very close to the predicted area.

n � 500

1.2

�0.25

�1.175 1.175

Figure 13.C-2

0.05

0

40 100

Figure 13.C-3

■ 

This method can also be used to find areas under a normal curve.

Example 3 Area Under a Normal Curve

a. Use a probability simulation to estimate the area under the normal
curve with and between and 

b. Suppose the scores on an exam are normally distributed with 
and Estimate the probability that a randomly chosen score is
between 85 and 95.

Solution

a. The normal curve has the equation y � 0.03989e�0.005(x�70)2
. Trace to

find a good value of h. The closer the value of h is to the maximum
value of the function over the given interval, the better the estimate
will be. A good choice of h is 0.014. The result of a simulation with

points is shown in Figure 13.C-3. The area estimate is 0.0616.n � 500

s � 10.
m � 70

b � 95.a � 85s � 10m � 70

b. The probability that a randomly chosen score is between 85 and 95
is approximately the area under the normal curve, or about 0.06.

■ 
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Exercises

In Exercises 1–6, estimate the area under the given
curve between the given values of a and b.

1.

2.

3.

4.

5.

6.

7. Suppose the weights of apples from a certain tree
are normally distributed with and

Estimate the probability that a randomly
chosen apple weighs between 100 g and 150 g.
s � 18 g.

m � 138 g

a � 7, b � 9y � 1x

a � 3, b � 5y �
1
x

a � 2, b � 10y � e�x

a � 1, b � 4y � �x2 � 5x � 4

a � 0, b � py � sin x

a � 0, b � 1y � x2

8. The function is not defined at and 

the graph has a vertical asymptote. However,
calculus can be used to show that the area under
the curve from 0 to 1 is finite. Use a probability
simulation to estimate the area by letting and

Compare the value of the area estimates for
and 5. Run the simulation at least twice

for each value of h to be sure you have a good
estimate.

9. Use a probability simulation to verify that the area
under the standard normal curve is 1. Hint:
according to the Empirical Rule, 99.7% of the area
under a normal curve is within of the mean.3s

h � 3, 4,
b � 1.

a � 0

x � 0,y �
1
1x
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Terminal Velocity

Parachutists have two forces acting on them, as does any free-falling body. One force is gravity, which causes the
body to speed up as it falls, and the other is air resistance, which causes the body to slow down. As the body
moves faster, the air resistance builds until it nearly balances the gravitational force. So the body speeds up very
little after it has fallen some distance. Terminal velocity is achieved when the air resistance approaches the
gravitational pull. See Exercise 43 in Section 14.5.

Limits and 
Continuity

C H A P T E R

14
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14.1 Limits of Functions

14.2 Properties of Limits

14.2.A Excursion: One-Sided Limits

14.3 The Formal Definition of Limit (Optional)

14.4 Continuity

14.5 Limits Involving Infinity

Chapter Review

can do calculus Riemann Sums

Chapter Outline
Interdependence of Sections

The mathematics presented in previous chapters deals with static prob-

lems, such as 

What is the size of the angle?

What is the average speed of a car between and minutes?

Calculus, on the other hand, deals with dynamic problems, such as

At what rate is the angle increasing in size?

How fast is the car going at time minutes?

The key to dealing with such dynamic problems is the concept of limit,

which is introduced in this chapter.

t � 4.2

t � 5t � 0

14.1 Limits of Functions

Many mathematical problems involve the behavior of a function at a par-
ticular value:

The underlying idea of limit, however, is the behavior of the function near
rather than at You have dealt with limits informally in pre-

vious chapters, but this section will discuss limits in more detail and give
the notation used when talking about them.

Suppose you want to describe the behavior of

f 1x2 �
0.1x4 � 0.8x3 � 1.6x2 � 2x � 8

x � 4

x � c.x � c

What is the value of the function f 1x2 when x � c?

Objectives

• Use the informal definition
of limit

14.3

14.4
14.1 14.2

14.5

>

>
>

>



when x is very close to 4. Notice that the function is not defined when
To see what happens to the values of when x is very close to

4, observe the graph of the function in the viewing window shown in Fig-
ure 14.1-1. (See the Technology Tip about how to produce a graph that
shows the hole.)

f 1x2x � 4.

910 Chapter 14 Limits and Continuity

0

80

3

Figure 14.1-1

To further explore the behavior of the function near perform the
following Graphing Exploration.

x � 4,

> >

The exploration and the table suggest that as x gets closer and closer to
4 from either side, the corresponding values of get closer and closer
to 2. Furthermore, by taking x close enough to 4, the corresponding val-
ues can be made as close as you want to 2.

For instance,

Notation

The statement above is usually expressed by saying

“ ”

which is written symbolically as

The limit of f 1x2 as x approaches 4 is 2,

f 13.999992 � 1.999984    and    f 14.000012 � 2.000016

f 1x2

Technology 
Tip

Once the function is
entered into the calcu-

lator, use the calculator’s
table feature to generate
values of the function. Set
the INPUT or INDPNT to
USER or ASK, and enter
the values of x.

Technology 
Tip

Letting the value of x
that produces the hole 

be the center of the dis-
played parts of the x-axis
will produce a graph that
shows the hole as shown
in Figure 14.1-1. When
holes are at integer values,
a decimal window will
normally show the holes.

Graphing Exploration

Graph in the viewing window with and
Use the trace feature to move along the graph, and exam-

ine the values of when x takes values close to 4. Your results
should be consistent with the following table of values.

x approaches 4 from the left x approaches 4 from the right

x 3.9 3.99 3.999 4 4.001 4.01 4.1

1.8479 1.9841 1.9984 * 2.0016 2.0161 2.168f 1x2

f 1x2
0 � y � 3.

3.5 � x � 4.5f 1x2



Informal Definition of Limit

The following definition of “limit” in the general case is similar to the sit-
uation previously described, but now f is any function, c and L are fixed
real numbers, and the phrase “arbitrarily close” means “as close as you
want.” In the previous discussion, and L � 2.c � 4

lim
xS4

 f 1x2 � 2    or    lim
xS4

 0.1x4 � 0.8x3 � 1.6x2 � 2x � 8
x � 4 � 2
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The limit in
Example 1 is very
important in calculus.

NOTE

Let f be a function and let c be a real number such that is
defined for all values of x near , except possibly at 
itself. Suppose that

whenever x takes values closer and closer but not equal 
to c (on both sides of c), the corresponding values 

of get very close to, and possibly equal, 
to the same real number L

and that

the values of can be made arbitrarily close to L by 
taking values of x close enough to c, but not equal to c.

Then it is said that

The limit of the function as x approaches c
is the number L,

which is written

lim
xSc

 f(x) � L

f(x)

f(x)

f(x)

x � cx � c
f(x)

Informal
Definition of

Limit

Example 1 Limit of a Function

If 

Solution

Although is not defined when a calculator’s trace feature can
be used with the graph of the function to examine the values of when
x is very close to 0. The table feature can also be used.

f 1x2x � 0,f 1x2

f 1x2 �
sin x

x , find lim
xS0

 f 1x2.

Calculator Exploration

Create a table of values for with values of x both smaller 

than and larger than Are the function values approaching the
same value as x approaches 0 from both sides?

x � 0.

f 1x2 �
sin x

x



The exploration should suggest that

a fact that will be proved in calculus.
■

Example 2 Limit of a Function

Find where f is the function given by the following two-part rule.

Solution

A calculator is not much help here, but the function is easily graphed by
hand.

f 1x2 � e0 if x is an integer
1 if x is not an integer

lim
xS2

 f 1x2,

lim
xS0

 f 1x2 � 1 or equivalently, lim
xS0

 sin x
x � 1,
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1
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3
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−1

−2

−3

−2−3

Figure 14.1-3

When x is a number very close but not equal to 2 (either greater than 2
or less than 2), the corresponding value of is 1, and this is true no
matter how close x is to 2. Thus,

Because by definition, the limit of f as x approaches 2 is not the
same as the value of the function f at 

■
x � 2.

f 122 � 0

lim
xS2

 f 1x2 � 1.

f 1x2

Limits and
Function Values

If the limit of a function f as x approaches c exists, this limit
may not be equal to f(c). In fact, f(c) may not even be defined.

Very often the limit of a function as x approaches a point is equal to the
value of the function at that point.



Example 3 Limit of a Function and a Function Value

If find and 

Solution

Using the trace feature on the graph of shown in Figure 14.1-4, sug-
gests that the limit is a number near 1.

A much narrower viewing window is needed to determine the limit more
precisely.

f 1x2,
f 10.52 � f˛ a1

2b � sin2 p2 � cos p2 � 12 � 0 � 1.

lim
xS0.5

 f 1x2.f 10.52f 1x2 � sin2 px � cos px,
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�2

3�3

2

Figure 14.1-4

The Exploration suggests that

Thus, the value of the function at is the same as the limit as x
approaches 0.5.

■

Whenever a calculator was used in preceding examples, it
was said that the information provided by the calculator suggested that
the limit of the function was a particular number. Although such
calculator explorations provide strong evidence, they do not constitute
a proof and in some instances can be very misleading. (See Exercise 36.)
Nevertheless, a calculator can help you develop an intuitive
understanding for limits, which is needed for a rigorous treatment of
the concept.

Nonexistence of Limits

Not every function has a limit at every number. Limits can fail to exist
for several reasons.

NOTE

x � 0.5

lim
xS0.5

 f 1x2 � 1 � f 10.52.

Graphing Exploration

Graph in a viewing window with and
Use the trace feature to move along the graph on

both sides of and confirm that as x gets closer and closer to
0.5, gets closer and closer to 1.f 1x2

x � 0.5
0.99 � y � 1.01.

0.49 � x � 0.51f 1x2



The examples that follow illustrate each of these possibilities.

Example 4 A Function that Approaches Infinity

Discuss the existence of 

Solution

Figure 14.1-5 shows the graph of near As x approaches 

0 from the left or right, the corresponding values of become larger
and larger without bound—rather than approaching one particular 
number—which can be verified by using the trace feature. Therefore, 

does not exist.

■

Example 5 A Function that Approaches Two Values

Find if it exists.

Solution

The function is not defined when 

According to the definition of absolute value, when and
when There are two possibilities.

Consequently, the graph of f looks like Figure 14.1-6a. A table of values
for is shown in Figure 14.1-6b.

If x approaches 0 from the right, that is, through positive values, then the

f 1x2

 If x 6 0, then f 1x2 �
0 x 0
x �

�x
x � �1

 If x 7 0, then f 1x2 �
0 x 0
x �

x
x � 1.

x 6 0.0 x 0 � �x
x 7 00 x 0 � x

x � 0.f 1x2 �
0 x 0
x

lim
xS0

 
0 x 0
x ,

lim
xS0

 1
x2

f 1x2
x � 0.f 1x2 �

1
x2

lim
xS0

 1
x2 .
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�1,000

0.1�0.1

10,000

Figure 14.1-5

y

x

2

1

−1

−2

−2 −1 1 2

Figure 14.1-6a

Figure 14.1-6b

The limit of a function f as x approaches c may fail to exist if:

1. f(x) becomes infinitely large or infinitely small as x
approaches c from either side

2. f(x) approaches L as x approaches c from the right and f(x)
approaches M, with as x approaches c from the left

3. f(x) oscillates infinitely many times between two numbers
as x approaches c from either side

M � L,

Nonexistence of
Limits
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Figure 14.1-7

corresponding value of is always 1. If x approaches 0 from the left,
that is, from negative values, then the corresponding value of is
always Thus, as x approaches 0 from both sides of 0, the correspon-
ding values of do not approach the same real number, as required by
the definition of limit. Therefore, the limit does not exist.

■

Example 6 An Oscillating Function

Find if it exists.

Solution

To understand the behavior of , consider what happens when 

x is close to 0.

As x takes values: Then takes values:

from to to 

from to to 

from to to 

Thus, the graph of sin completes one period of the sine function from 

to another from to and so on. A similar phe-

nomenon occurs for negative values of x. Consequently, the graph of f
oscillates infinitely often between and 1, with the waves becoming
more and more compressed as x approaches 0, as shown in Figure 
14.1-7.

�1

x �
1
6,x �

1
4x �

1
4,x �

1
2

p
x

8p6p1
8

1
6

6p4p1
6

1
4

4p2p1
4

1
2

p
x

f 1x2 � sin px

lim
xS0

 sin px ,

f 1x2�1.
f 1x2f 1x2

As x approaches 0, the function takes every value between and 1 infi-
nitely many times. In particular, does not approach one particular

real number. Therefore, does not exist.

■

lim
xS0

 sin px

f 1x2 �1



In Exercises 11–26, use a calculator to find a reason-
able estimate of the limit. If the limit does not exist,
explain why.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24. lim
xS0

 e
2x � 1

xlim
xS0

 x
ln 0 x 0

lim
xS25

 
2x � 5
x � 25lim

xS3
 
2x � 23

x � 3

lim
xS0

 x � sin 2x
x � sin 2xlim

xS0
 x � tan x
x � sin x

lim
xS0

 tan x
x � sin xlim

xS0
 tan x � x

x3

lim
xS�2

 x
2 � 5x � 6

x2 � x � 6
lim
xS1

 x
3 � 1

x2 � 1

lim
xS1

 x2 � 1
x2 � x � 2

lim
xS3

 x2 � x � 6
x2 � 2x � 3

lim
xS2

 x
5 � 32

x3 � 8
lim

xS�1
 x

6 � 1
x4 � 1
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x 0.001 0.01 0.1

f 1x2
�0.001�0.01�0.1

9. lim
xS0

 cos x � 1
x

10. lim
xSp

4

 tan x � 1

x �
p

4

x 0.78 0.785 0.7853 0.7854 0.7855 0.786

f 1x2

Exercises 14.1

In Exercises 1–10, complete the table and use the result
to estimate the given limit.

1. lim
xS3

 x � 3
x2 � 2x � 3

x 2.9 2.99 2.999 3.001 3.01 3.1

f 1x2

2. lim
xS3

 x � 3
x2 � 9

3. lim
xS0

2x � 2 � 22
x

x 2.9 2.99 2.999 3.001 3.01 3.1

f 1x2

x 0.001 0.01 0.1

f 1x2
�0.001�0.01�0.1

5. lim
xS�7

 
22 � x � 3

x � 7

4. lim
xS0

 
2x � 5 � 25

x

x 0.001 0.01 0.1

f 1x2
�0.001�0.01�0.1

x

f 1x2
�6.9�6.99�6.999�7.001�7.01�7.1

x 0.001 0.01 0.1

f 1x2
�0.001�0.01�0.1

6. lim
xS0

 
21 � x � 1

x

x 0.9 0.99 0.999 1.001 1.01 1.1

f 1x2

7. lim
xS1

  

1
x � 2 �

1
3

x � 1

x

f 1x2
�0.9�0.99�0.999�1.001�1.01�1.1

8. lim
xS�1

 

1
x � 3 �

1
2

x � 1
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25. 26.

In Exercises 27–32, use the graph of the function f to
determine the following:

27.

28.

29.

x

431 20

2

3

4

−1−2
−1

−2

−3

−4

−3−4

y

1

x

431 20

2

3

4

−1−2
−1

−2

−3

−4

−3−4

y

1

x

431 20

2

3

4

−1−2
−1

−2

−3

−4

−3−4

y

1

lim
xS�3

 f(x)   lim
xS0  

f(x)   lim
xS2

 f(x)

lim
xS0
ax sin 1xblim

xS0
 e

x � 1
sin x

30.

31.

32.

33. a. Graph the function f whose rule is

Use the graph in part a to evaluate the
following limits.

b. c. d. lim
xS2

 f 1x2lim
xS1

 f 1x2lim
xS�2

 f 1x2

f 1x2 � µ
3 � x
x � 2

1
4 � x

 if x 6 �2
 if �2 � x 6 2
 if x � 2
 if x 7 2

x

431 20

2

3

4

−1−2
−1

−2

−3

−4

−3−4

y

1

x

431 20

2

3

4

−1−2
−1

−2

−3

−4

−3−4

y

1

x

431 20

2

3

4

−1−2
−1

−2

−3

−4

−3−4

y

1



The same phenomenon occurs with the identity function, which is given
by the rule If c is any real number, then the statement “x
approaches c” is exactly the same as the statement “I(x) approaches c”
because for every x. Thus,I1x2 � x

I1x2 � x.
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For every real number c, lim
xSc

 x � c.
Limit of the

Identity Function

If d is a constant, then lim
xSc

 d � d.
Limit of a
Constant

34. a. Graph the function g whose rule is

Use the graph in part a to evaluate the
following limits.

b. c. d.

35. Critical Thinking Consider the function t whose
rule is

t1x2 � e0 if x is rational
1 if x is irrational

lim
xS1

 g 1x2lim
xS0

 g 1x2lim
xS�1

 g 1x2

g 1x2 � µ
x2

x � 2
2
3 � x 

if x 6 �1
if �1 � x 6 1
if x � 1
if x 7 1

Explain why does not exist for every 

value of c.

36. Critical Thinking If then 

as is shown in calculus. A calculator 

or computer, however, may indicate otherwise.
Graph in a viewing window with

and use the trace feature to
determine the values of when x approaches 0.
What does this suggest that the limit is?

f 1x2
�0.1 � x � 0.1,

f 1x2

lim
xS0

 f 1x2 �
1
 2,

f 1x2 �
1 � cos x6

x12 ,

lim
xSc

 t1x2

14.2 Properties of Limits

Most of the functions that appear in calculus are combinations of simpler
functions, such as sums, products, quotients, and compositions. This sec-
tion presents rules for finding limits of combinations of functions without
a table or a graph.

There are two easy, but important, cases where the limit of a function may
be found by evaluating the function. The first occurs with constant func-
tions, such as To find that is, note that as x

approaches 3, the corresponding value of is always the number 5, so
that Thus, is the number The same
thing is true for any constant function.

f 132 � 5.lim
xS3

 f 1x2lim
xS3

 f 1x2 � lim
xS3

 5 � 5.
f 1x2

lim
xS3

 5,lim
xS3

 f 1x2,f 1x2 � 5.

Objectives

• Find the limit of
the constant function
the identity function

• Use the properties of limits

• Find the limit of
polynomial functions
rational functions

• Use the Limit Theorem



Properties of Limits

There are a number of facts that greatly simplify the computation of lim-
its. Rigorous proofs of these properties will not be given, knowing the
central idea is more important now. For instance, suppose that as x
approaches c, the values of a function f approach a number L and the val-
ues of a function g approach a number M. Then it is plausible that as x
approaches c, the values of the function approach and that
the values of the function approach Following is a formal
statement in terms of limits.

L � M.f � g
L � Mf � g
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If f and g are functions and c, L, and M are numbers such that

,

then

1.

2.

3.

4.

(for )

5. (provided for all x near c)f(x) �� 0lim
xSc
2f (x) � 2L

M � 0 � L
M

 lim
xSc
a f

gb (x) � lim
xSc
a f(x)

g (x)
b

 � L � M

 lim
xSc

 (f � g)(x) � lim
xSc

[f(x) � g(x)]

 � L � M

 lim
xSc

 ( f � g)(x) � lim
xSc

[f(x) � g(x)]

 � L � M

 lim
xSc

 ( f � g)(x) � lim
xSc

[f(x) � g(x)]

lim
xSc

 f(x) � L  and  lim
xSc

 g(x) � M

Properties of
Limits

These properties are often stated somewhat differently. For instance,
because and Property 1 can be written as

and similarly for the other properties.

Limits of Polynomial Functions

Properties 1–3, together with the facts about limits of constants and the
identity function presented at the beginning of the section, now make it
easy to find the limit of any polynomial function.

Example 1 Limit of a Polynomial Function

If find lim
xS�4

 f 1x2 � lim
xS�4

 1x2 � 2x � 32.f 1x2 � x2 � 2x � 3,

lim
xSc

 1 f � g2 1x2 � lim
xSc

 f 1x2 � lim
xSc

 g1x2
lim
xSc

 g 1x2 � M,lim
xSc

 f 1x2 � L

In Property 4, 

does not exist if 

and If 
and the limit may or
may not exist.

L � 0,
M � 0L � 0.M � 0

lim
xSc
a f

gb1x2
NOTE
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Solution

Properties 1 and 2

Property 3

Limit of a constant

Limit of x

Note that the limit of at is the same as the
value of the function at namely, 

■

Because any polynomial function consists of sums and products of con-
stants and x, the same argument used in Example 1 works for any
polynomial function and leads to the following conclusion.

f 1�42 � 1�422 � 21�42 � 3 � 27.x � �4,
x � �4f 1x2 � x2 � 2x � 3

� 27

� 16 � 1�82 � 3

� 321�42� 1�42 1�42 �

� lim
xS�4

 x � lim
xS�4

  x � 2 lim
xS�4

 x � 3

� lim
xS�4

 x � lim
xS�4

 x � lim
xS�4

 2 � lim
xS�4

 x � lim
xS�4

 3

lim
xS�4

 x2 � lim
xS�4

 2x � lim
xS�4

 3 lim
xS�4

 1x2 � 2x � 32 �

�3.1

4.7�4.7

3.1

Figure 14.2-1

Limits of Rational Functions

The fact in the previous box and Property 4 of limits make it easy to com-
pute limits of many rational functions.

Example 2 Limit of a Rational Function

If find 

Solution

The graph of f near suggests that the limit is a number near 
as shown in Figure 14.2-1. You can determine the limit exactly by noting
that is the quotient of the two functions

As x approaches 2, the limit of each can be found by evaluation of the
functions at Therefore,x � 2.

g 1x2 � x3 � 3x2 � 10  and  h1x2 � x2 � 6x � 1.

f 1x2
�0.86,x � 2

lim
xS2

 f 1x2.f 1x2 �
x3 � 3x2 � 10
x2 � 6x � 1

,

If f(x) is a polynomial function and c is any real number, then

In other words, the limit is the value of the polynomial
function f at x � c.

lim
xSc

 f(x) � f(c).

Limits of
Polynomial
Functions



limit property 4

limits of polynomial functions

Note that the limit of as x approaches 2 is the number 
■

The procedure in Example 2 works for other rational functions as well.

f 122.f 1x2
 � 6

�7 � �
6
7 � �0.857

 � 23 � 3 � 22 � 10
22 � 6 � 2 � 1

�
lim
xS2

 1x3 � 3x2 � 102
 lim
xS2

 1x2 � 6x � 12

 lim
xS2

 f 1x2 � lim
xS2

 Qx3 � 3x2 � 10
x2 � 6x � 1

b
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Let f(x) be a rational function and let c be a real number such
that f(c) is defined. Then

lim
xSc

 f(x) � f(c).

Limits of
Rational

Functions

In other words, the limit of a rational function as x approaches c is the
value of the function at if the function is defined there.

When a rational function is not defined at a number, different techniques
must be used to find its limit there—if it exists.

Example 3 Limit of a Rational Function

If find 

Solution

Because is not defined when the limit cannot be found by eval-
uating the function. Although it could be estimated graphically, it can be
found by using algebraic methods. Begin by factoring the numerator.

Because the numerator and denominator have a common factor, the
rational expression may be reduced.

for all 

The definition of the limit as x approaches 3 involves only the behavior
of the function near and not at The preceding equation shows
that both and the function have exactly the same g1x2 � x � 1f 1x2 x � 3.x � 3

x � 3.
1x � 12 1x � 32

x � 3 � x � 1,

x2 � 2x � 3
x � 3 �

1x � 12 1x � 32
x � 3

x � 3,f 1x2

lim
xS3

 f 1x2.f 1x2 �
x2 � 2x � 3

x � 3 ,

x � c,



values at all numbers except So they must have the same limit as
x approaches 3.

as illustrated in Figure 14.2-2.
■

The technique illustrated in Example 3 applies in many cases. When two
functions have identical behavior, except possibly at they will have
the same limit as x approaches c.

x � c,

lim
xS3

 x
2 � 2x � 3

x � 3 � lim
xS3

 1x � 12 � 3 � 1 � 4,

x � 3.
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If f and g are functions that have limits as x approaches c and

for all ,

then

lim
xSc

 f(x) � lim
xSc

 g(x).

x � cf(x) � g(x)

Limit Theorem

Figure 14.2-2

Recall that the difference quotient of a function f is given by

The difference quotient can be evaluated for a specific value of x, say
to obtain a new form.

Limits of the difference quotient of a function f play an important role in
calculus. When computing such limits, the variable is often the quantity
h, as in the following example.

Example 4 Limit of a Difference Quotient

If find 

Solution

Using algebra, write the difference quotient as follows:

 � 10h � h2

h

 �
125 � 10h � h22 � 25

h

 
f 15 � h2 � f 152

h
�
15 � h22 � 52

h

lim
hS0

 
f 15 � h2 � f 152

h
 .f 1x2 � x2,

f 1c � h2 � f 1c2
h

x � c,

f 1x � h2 � f 1x2
h

Do not confuse
the variable h with the
function h. The meaning
should be clear in context.

NOTE
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Exercises 14.2

In Exercises 1–8, use the following facts about the
functions f, g, and h to find the required limit.

1. 2.

3. 4.

5. 6.

7. 8.

In Exercises 9–23, find the limit, if it exists. If the limit
does not exist, explain why.

9.

10.

11. 12.

13.

14. 15.

16. 17.

18. 19. lim
xS0

 x2

 0 x 0lim
xS�2

c x2

 x � 2 �
2x

 x � 2 d

lim
xS1

 a 1
 x � 1 �

2
 x2 � 1

blim
xS0

 
° 2

x � 6 �
1
3

x
¢

lim
xS0

 
° 1

x � 5 �
1
5

x
¢

lim
xS2

 2x2 � x � 3

lim
xS1

 2x3 � 6x2 � 2x � 5

lim 
xS3

x2 � x � 1
 x2 � 2x

lim
xS�2

 3x � 1
2x � 3

lim
xS�1

1x7 � 2x5 � x4 � 3x � 42
lim
xS2

 16x3 � 2x2 � 5x � 32

lim
xS4

 a f � 2g
 4h

b 1x2lim
xS4

 a 3h
 2f � g

b 1x2
lim
xS4

 3h1x2 4 2lim
xS4

 1 fg2 1x2
lim
xS4

 
g
 h
1x2lim

xS4
 

f
 g 1x2

lim
xS4

 1g � h2 1x2lim
xS4

 1 f � g2 1x2
lim
xS4

 f(x) � 5 lim
xS4

 g (x) � 0 lim
xS4

 h (x) � �2

20. 21.

22. 23.

In Exercises 24–27, find

24. 25.

26. 27.

In Exercises 28–29, use a unit circle diagram to explain
why the given statement is true.

28. 29.

Exercises 30–34 involve the greatest integer function,
which is defined to be the greatest integer

that is less than or equal to a given number x. See Sec-
tion 3.1. Use a calculator as an aid in analyzing these
problems.

30. For find if the limit
exists.

31. For find if the limit
exists.

32. For find if the limit 

exists.

lim
xS3

 r 1x2,r 1x2 �
3x 4 � 3�x 4

 x ,

lim
xS2

 g1x2,g1x2 � x � 3�x 4 ,

lim
xS2

 h 1x2,h 1x2 � 3x 4 � 3�x 4 ,

f(x) � [x],

lim
tSp2

 cos t � 0lim
tSp2

 sin t � 1

f 1x2 � 2xf 1x2 � x2 � x � 1

f 1x2 � x3f 1x2 � x2

lim
hS0

 
f(2 � h) � f(2)

 h
.

lim
xS�3

 
0 x � 3 0
 x � 3lim

xS0
c 0 x 0 x �

x
 0 x 0 d

lim
xS0

 
22 � x � 22

 xlim
xS�2

 0 x � 2 0

When the difference quotient is written this way, it is easy to see that it
is a function of h, and the function is not defined when Find the
limit of the difference quotient as h approaches 0.

Factor the numerator.

Limit Theorem

limit of a polynomial function
■

� 10 � 0 � 10

� lim
hS0

 110 � h2
� lim

hS0
 
h110 � h2

h

 lim
hS0

 
f 15 � h2 � f 152

5  � lim
hS0

 10h � h2

h

h � 0.



As x approaches 4 from the right, that is, takes values larger than but close
to 4, the graph shows that the corresponding values of get very close
to 2. Consequently, “the limit of as x approaches 4 from the right 
is 2.”

The small plus sign on 4 indicates that only the values of x with 
are considered. Similarly, as x approaches 4 from the left, the graph
shows that the corresponding values of get very close to Con-
sequently, “the limit of as x approaches 4 from the left is 

The small minus sign indicates that only values of x with are 
considered.

x 6 4

lim
xS4�

 f 1x2 � �1

�1.f 1x2 �1.f 1x2
x 7 4

lim
xS4�

 f 1x2 � 2

f 1x2 f 1x2
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33. For find if the limit 

exists.

34. For find 

35. Critical Thinking Give an example of functions f
and g and a number c such that neither 

nor exists, but does exist.lim
xSc

 1 f � g2 1x2lim
xSc

 g1x2
lim
xSc

 f 1x2

lim
hS0

 
f 10 � h2 � f 102

h
.f 1x2 � x 0 x 0 ,

lim
xS1

 k 1x2,k 1x2 �
x

 3x 4 � 3�x 4 ,

14.2.A Excursion: One-Sided Limits

The function whose graph is shown in Figure 14.2.A-1 is defined for all
values of x except x � 4.

Objectives

• Find one-sided limits

y

x

2 6

4

2

0−2
−2

−4

Figure 14.2.A-1

36. Critical Thinking Give an example of functions f
and g and a number c such that neither 

nor exists, but does exist.lim
xSc

 1 fg2 1x2lim
xSc

 g1x2
lim
xSc

 f 1x2



These “one-sided” limits are a bit different than the “two sided” limits
discussed in Section 14.2. When x approaches 4 from the left and from
the right, the corresponding values of do not approach a single num-
ber, so the limit as x approaches 4, as defined in Section 14.1, does not
exist.

The same notation and terminology are used in the general case, where f
is any function and c and L are real numbers. The definition of the “right-
hand limit,”

is obtained by inserting “ ” in place of the phrase “on both sides of
c” in the definition of limit in Section 14.2. The function f need not be
defined when 

Similarly, inserting “ ” in place of “on both sides of c” in the same
definition produces the definition of the “left-hand limit.”

Again, the function f need not be defined when 

Example 1 One-Sided Limit

Find 

Solution

The function is defined only when that is, for
and values of x to the right of 3. The graph of is shown in Fig-

ure 14.2.A-2a, and a table of values is shown in 14.2.A-2b.
f 1x2x � 3

x � 3,f 1x2 � 2x � 3 � 1

lim
xS3�

 A1x � 3 � 1 B .

x 7 c.

lim
xSc�

 f 1x2 � L

x 6 c

x 6 c.

x 7 c

lim
xSc�

 f 1x2 � L,

f 1x2
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0

42.9

2.2

Figure 14.2.A-2a Figure 14.2.A-2b

The values of approach 1 as x approaches 3 from the right. There-

fore, 
■

Computing One-Sided Limits

The computation of one-sided limits is greatly facilitated by the follow-
ing fact.

lim
xS3�

 A1x � 3 � 1 B � 1.

f 1x2



All the results about limits in Section 14.2, such as the properties
of limits, limits of polynomial functions, and the Limit Theorem,
remain valid if “ ” is replaced by either “ ” or “ ”

Example 2 Using Properties of Limits

Find 

Solution

The function is defined only when because
the quantity under the radical is negative for other values of x. Compute
the limit of as x approaches 3 from the left by using the properties
of limits:

property 5

property 2

property 3

limit of a constant
limit of the identity function

■

Three Types of Limits

Notice that there are three kinds of limits: left-hand limits, right-hand lim-
its, and “two-sided” limits as defined in Section 14.1. Example 1 exhibits
a function that has a right-hand limit at but no left-hand or two
sided limit. Even when a function has both a left-hand and a right-hand
limit at these limits may not be the same, as was shown in the intro-
duction of this Excursion.

It is clear, however, that a function which has a two-sided limit L at 
necessarily has L as both its left-hand and right-hand limit at If the
values of can be made arbitrarily close to L by taking x close enough
to c on both sides of c, then the same thing is true if you take only val-
ues of x on the left of c or on the right of c. Conversely, if a function has
the same left-hand and right-hand limits at then this number must
be a two-sided limit as well. In summary,

x � c,

f 1x2 x � c.
x � c

x � c,

x � 3,

 � 29 � 32 � 0

 � 2 lim
xS3�

9 � A lim
xS3�

 xB A lim
xS3�

 xB
 � 2 lim

xS3�
 9 � lim

xS3�
 x2

 lim
xS3�

 29 � x2 � 2 lim
xS3�
19 � x22

f 1x2
�3 � x � 3,f 1x2 � 29 � x2

lim
xS3�
19 � x2.

x S c�.x S c�x S c
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Let f be a function and let c and L be real numbers. Then

exactly when and lim
xSc�

 f(x) � L.lim
xSc�

 f(x) � Llim
xSc

 f(x) � L

Two-sided
Limits
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y

x

1 2 3 4 5 6 7 8

6

5

4

3

2

1

0−2 −1

Exercises 14.2.A

In Exercises 1–6, use a calculator to find a reasonable
estimate of the limit.

1. 2.

3. 4.

5. 6.

In Exercises 7–10, use the graph of the function f to
determine the required limits.

a. b.

c. d. lim
xS3�

 f 1x2lim
xS3�

 f 1x2
lim

xS0�
 f 1x2lim

xS�2�
 f 1x2

lim
xS0�

 sin 3x
1 � sin 4x

lim
xS0�

 sin 6x
x

lim
xS0�

 a1
xb

x

lim
xS0�

 2x 1ln x2

lim
xSp2

�
1sec x � tan x2lim

xSp�
 sin x
1 � cos x

7.

x

431 20

2

3

4

−1−2
−1

−2

−3

−4

−3−4

y

1

Example 3 Limits

From the following graph, find

a. b. c.

d. e. lim
xS6�

 f 1x2lim
xS6�

 f 1x2
lim
xS2�

 f 1x2lim
xS2�

 f 1x2lim
xS2

 f 1x2

Solution

The graph shows that

a. b. c.

d. e.

■

lim
xS6�

 f 1x2 � 4lim
xS6�

 f 1x2 � 5

lim
xS2�

 f 1x2 � 3lim
xS2�

 f 1x2 � 3lim
xS2

 f 1x2 � 3

Figure 14.2.A-3



10.
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x

431 20

2

3

4

−1−2
−1

−2

−3

−4

−3−4

y

1

x

431 20

2

3

4

−1−2
−1

−2

−3

−4

−3−4

y

1

x

431 20

2

3

4

−1−2
−1

−2

−3

−4

−3−4

y

1

8.

9.

11. In Exercise 33a of Section 14.1, find
a. b.

c. d.

12. In Exercise 34a of Section 14.1, find
a. b.

c. d.

In Exercises 13–22, find the limit.

13. 14.

15. 16.

17. 18.

19.

20.

21.

22.

Exercises 23 and 24 involve the greatest integer func-
tion, See Exercise 30 in Section 14.2.

23. Find 

24. Find lim
xS3�

 1x � 3x 4 2 and lim
xS3�
1x � 3x 4 2.

lim
xS2�

 3x 4  and lim
xS2�

 3x 4 .
f(x) � [x].

lim
xS�4�

 A20 x 0 � 4 � x2 B
lim

xS�3�
 a 0 x � 3 0

x � 3 � 2x � 3 � 1b
lim

xS3�
 A2x � 3 � 23x B

lim 
xS�2.5�

A25 � 2x � x B
lim

xS2�
 x � 1
x2 � x � 2

lim
xS3�

 3
x2 � 9

lim
xS2�

 
0 x � 2 0
x � 2lim

xS4�
 x � 4
x2 � 16

lim
xS3�

 2�3 � xlim
xS1�

 A2x � 1 � 3 B

lim
xS1�

 g 1x2lim
xS1�

 g 1x2
lim

xS�1�
 g 1x2lim

xS�1�
 g 1x2

lim
xS2�

 f 1x2lim
xS2�

 f 1x2
lim

xS�2�
 f 1x2lim

xS�2�
 f 1x2
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14.3 The Formal Definition of Limit (Optional)

The informal definition of limit in Section 14.1 is quite adequate for under-
standing the basic properties of limits and for calculating the limits of
many familiar functions. This definition, or one very much like it, was
used for more than a century and played a crucial role in the develop-
ment of calculus. Nevertheless, the informal definition is not entirely
satisfactory; it is based on ideas that have been illustrated by examples
but not precisely defined.

Mathematical intuition, as exemplified in the informal definition of limit,
is a valuable guide; but it is not infallible. On several occasions in the his-
tory of mathematics, what first seemed intuitively plausible has turned
out to be false. In the long run, the only way to guarantee the accuracy
of mathematical results is to base them on rigorously precise definitions
and theorems. This section takes the first step in building this rigorous
foundation by developing a formal definition of limit.

In order to keep the discussion as concrete as possible, suppose f is a func-
tion such that You do not need to know the rule of f or

anything else about it to understand the following discussion.

The informal definition of the statement that was given
in Section 14.1 has two components:

A. As x takes values very close to but not equal to 5, the
corresponding values of get very close—and possibly are
equal—to 12.

B. The value of can be made arbitrarily close (as close as you
want) to 12 by taking x sufficiently close (but not equal) to 5.

In a sense, Component A is unnecessary because it is included in Com-
ponent B: If the values of can be made arbitrarily close to 12 by taking
x close enough to 5, then presumably can be made to get very close
to 12 by taking values of x very close to 5.

Consequently, to obtain the formal definition of limit, begin with Com-
ponent B of the informal definition.

the value of f(x) can be made 

as close as you want to 12 by taking x close enough to 5.
[1]

The definition above, referred to as Definition [1], will be modified step
by step until the formal definition of limit is reached.

Definition [1] says, in effect, that there is a two-step process involved in
finding a limit, if it exists:

1. Know how close you want to be to 12,
2. Determine how close x must be to 5 to guarantee this.

Definition [1] can now be restated as Definition [2].

f 1x2

lim
xS5  

f(x) � 12 means that

f 1x2f 1x2

f 1x2
f 1x2

–lim
xS5

  f 1x2 � 12–

lim
xS5

  f 1x2 � 12.

Objectives

• Use the formal definition of
limit



whenever you specify how close 

f(x) should be to 12, you know how close x must be to 
5 to guarantee it.

[2]

For example, if you want to be within 0.01 of 12, that is, between
11.99 and 12.01, you can find how close x must be to 5 to guarantee that

Any value of x in the interval around 5 shown in Figure 14.3-1 will pro-
duce 

But “arbitrarily close” implies much more. You must be able to find how
close x is to 5 regardless of how close you want to be to 12. If you
want to be within 0.002 of 12, or 0.0001 of 12, or within any distance
of 12, you must be able to find how close x must be to 5 in each case to
accomplish this. So, Definition [2] can be restated as follows:

no matter what positive number 

you specify in measuring how close you want f(x) to be 
to 12, you must be able to find how close x must be to 
5 in order to guarantee that f(x) is that close to 12.

[3]

Hereafter, the small positive number you specify in measuring how close
should be to 12 will be denoted by the Greek letter (epsilon). When

you know how close x should be to 5 to accomplish this, denote the 
number by the Greek letter (delta). Presumably the number which
measures how close x must be to 5, will depend on the number which
measures how close you want to be to 12. Using this language, Def-
inition [3] becomes Definition [4].

for every positive number 

there is a positive number that depends on with 
[4]this property:

If x is within of 5 but not equal to 5, then 
f(x) is within of 12, and possibly equal to 12.

Although Definition [4] is essentially the formal definition, somewhat
briefer notation is usually used.

If you think of and 12 as numbers on the number line, then the state-
ment

is within of 12

means that

the distance from to 12 is less than 

Because distance on the number line is measured by absolute value (see
Sections 2.4 and 2.5.A), the last statement can be written as

Similarly, saying that x is within of 5 and not equal to 5 means that the
distance from x to 5 is less than but greater than 0, that is

0 6 0 x � 5 0 6 d.

d

d

0 f 1x2 � 12 0 6 e.

e.f 1x2

ef 1x2
f 1x2

E

D

ED

Elim
xS5  

f(x) � 12 means that

f 1x2 e,
d,d

ef 1x2

lim
xS5  

f(x) � 12 means that

f 1x2 f 1x2

11.99 6 f 1x2 6 12.01.

11.99 6 f 1x2 6 12.01.

f 1x2

lim
xS5  

f(x) � 12 means that
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x

5

12.01

11.99

y

x is in this interval when
11.99 6 f 1x2 6 12.01

Figure 14.3-1

ε
ε

δ δ x

5

12

y

Figure 14.3-2



Using this notation, Definition [4] becomes the desired formal definition.

for each positive number 

there is a number that depends on such that [5]
if 

Definition [5] is sufficiently rigorous because the imprecise terms “arbi-
trarily close” and “close enough” in the informal definition have been
replaced by a precise statement using inequalities that can be verified in
specific cases, as will be shown in the examples that follow. There is noth-
ing special about 5 and 12 in the preceding discussion; the entire analysis
applies equally well in the general case and leads to the formal definition
of limit, which is just Definition [5] with c in place of 5, L in place of 12,
and f for any function.

0 66 00 x � 5 00 66 D, then 00 f(x) � 12 00 66 E.
E,D

E,lim
xS5  

f(x) � 12 means that

Section 14.3 The Formal Definition of Limit 931

Epsilon, and
delta, are Greek letters
that are often used to
represent small amounts.

d,
e,NOTE

Definition 
of Limit Let f be a function and let c be a real number such that f (x) is

defined for all x, except possibly in some open interval
containing c. The limit of f (x) as x approaches c is L, which is
written

provided that for each positive number there is a positive
number that depends on with the property

if 0 66 00 x � c 00 66 D,  then  00 f(x) � L 00 66 E.

ED

E,

lim
xSc  

f(x) � L,

x � c,

x

5

12

y

5 − δ

12 + ε

12 − ε

5 + δ

Figure 14.3-3

This definition is often called the definition of limits.

Example 1 Proving a Limit

Let and prove that 

Solution

Apply the definition of limit with and Fig-
ure 14.3-3 illustrates the situation. Suppose that is any positive number.
Find a positive number with the property

Let be the number , and show that this will work. For now, do not 

worry about how was found; just verify that the following argu-

ment is valid.

d �
e
4

d
e
4d

If 0 6 0 x � 5 0 6 d,   then   0 f 1x2 � 12 0 6 e.

d

e

f 1x2 � 4x � 8.c � 5, L � 12,

lim
xS5

  f 1x2 � 12.f 1x2 � 4x � 8

e-d



If then

Multiply both sides by 4.

Rewrite 

This verifies that for each there is a positive with the property

This completes the proof that 

■

Proofs like the one in Example 1 often seem mysterious to beginners.
Although they can follow the argument after has been found, they do
not see how to find . Example 2 gives a fuller picture of the processes
used in proving statements about limits.

Example 2 proves that for any positive number there exists such that

whenever 

Example 2 Use the Definition of Limit

Prove that 

Solution

In this case, and Let be a positive number
and find a with the property

In order to get some idea which might have this property, work back-
wards from the desired conclusion, namely,

The last statement is equivalent to

which in turn is equivalent to each of the following statements.

 0 x � 1 0 6 e2

 2 0 x � 1 0 6 e
 0 2 0  0 x � 1 0 6 e
 0 21x � 12 0 6 e

0 2x � 2 0 6 e,

0 12x � 72 � 9 0 6 e.

d

If 0 6 0 x � 1 0 6 d,  then 0 12x � 72 � 9 0 6 e.

d

eL � 9.f˛ 1x2 � 2x � 7, c � 1,

lim
xS1

 12x � 72 � 9.

E-D

0 6 0 x � 1 0 6 d.0 f ˛1x2 � 9 0 6 e

de,

d

d

lim
xS5

   f 1x2 � 12.

If 0 6 0 x � 5 0 6 d,  then  0 f 1x2 � 12 0 6 e.

de 7 0,

f 1x2 � 4x � 80 f 1x2 � 12 0  6 e
�20 as �8 � 12.0 14x � 82 � 12 0  6 e 

0 4x � 20 0  6 e
0 a 0  0 b 0 � 0 ab 00 41x � 52 0  6 e
4 � 0 4 00 4 0  0 x � 5 0  6 e

4 0 x � 5 0  6 e

d �
e

40 x � 5 0  6  e4

0 x � 5 0  6 d,
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When the conclusion is written this way, it suggests that the number 

would be a good choice for 

Everything up to here has been “scratch work.” Now give the actual proof,
written forwards.

Given a positive number let be the number If then

Multiply both sides by 2.

Therefore, has the required property, and the proof is complete.

■

Proving Limit Properties

Once the algebraic scratch work was done in Examples 1 and 2, the limit
proofs were relatively easy. In most cases, however, a more involved argu-
ment is required. In fact, it can be quite difficult to prove directly from 

the definition, for example, that Fortunately, 

such complicated calculations can often be avoided by using the various
limit properties given in Section 14.2. Of course, these properties must
first be proved using the definition. Surprisingly, the proofs are compar-
atively easy.

Example 3 Proving Limit Properties

Let f and g be functions such that

Prove that 

Solution

Scratch Work: If is any positive number, find a positive with the prop-
erty

If 0 6 0 x � c 0 6 d, then 0 1 f˛ 1x2 � g˛1x2 2 � 1L � M2 0 6 e.

de

lim
xSc

 1 f ˛1x2 � g˛ 1x2 2 � L � M.

lim
xSc

 f˛ 1x2 � L and lim
xSc

 g˛ 1x2 � M.

lim
xS3

 
x2 � 4x � 1

 x3 � 2x2 � x
� �

1
3.

d �
e
2

f ˛1x2 � 2x � 7 0 f ˛1x2 � 9 0 6 e
Rewrite �2 as 7 � 9. 0 12x � 72 � 9 0 6 e

 0 2x � 2 0 6 e
0 a 0  0 b 0 � 0 ab 0 0 21x � 12 0 6 e
2 � 0 2 0 0 2 0  0 x � 1 0 6 e

 2 0 x � 1 0 6 e

d �
e

2 0 x � 1 0 6 e2

0 6 0 x � 1 0 6 d,e
2.de,

d.

e
2
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Figure 14.3-4



Note the following result of the triangle inequality. (See Section 2.4.)

If there is a with the property

then the smaller quantity will also be less than
when Such a can be found as follows.

Proof Let be any positive number. Because apply the def-

inition of limit with in place of 

Similarly, because 

there is a positive number with the property

Now let be the smaller of the two numbers and so that and
Then it must be true that

Therefore,

Consequently, if then

It has been shown that for any there is a with the property:

Therefore, .

■

The proofs of the other limit properties and theorems of Section 14.2 are
introduced in calculus.

lim
xSc

 1 f ˛1x2 � g˛1x2 2 � L � M

If 0 6 0 x � c 0 6 d,  then  0 1 f ˛1x2 � g˛1x2 2 � 1L � M2 0 6 e.

d 7 0e 7 0,

 � e

 6 e2 �
e
2

 � 0 f ˛1x2 � L 0 � 0 g˛1x2 � M 0
0 1 f ˛1x2 � g˛1x2 2 � 1L � M2 0  � 0 1 f ˛1x2 � L2 � 1g˛1x2 � M2 0

0 6 0 x � c 0 6 d,

0 f˛ 1x2 � L 0 6 e2 and 0 g ˛1x2 � M 0 6 e2.

0 6 0 x � c 0 6 d1 and 0 6 0 x � c 0 6 d2.

if 0 6 0 x � c 0 6 d,d � d2.
d � d1d2,d1d

If 0 6 0 x � c 0 6 d2, then 0 g ˛1x2 � M 0 6 e2.

d2

lim
xSc

 g˛ 1x2 � M,

If 0 6 0 x � c 0 6 d1, then 0 f ˛1x2 � L 0 6 e2.

there is a positive number d1 with the property

e:e
2

lim
xSc

 f ˛1x2 � L,e

d0 6 0 x � c 0 6 d.e

0 1 f ˛1x2 � g ˛1x2 2 � 1L � M2 0
If 0 6 0 x � c 0 6 d, then 0 f ˛1x2 � L 0 � 0 g ˛1x2 � M 0 6 e,

d

 � 0 f˛ 1x2 � L 0 � 0 g˛ 1x2 � M 0
0 1 f ˛1x2 � g˛ 1x2 2 � 1L � M2 0  � 0 1 f˛ 1x2 � L2 � 1g ˛1x2 � M2 0
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One-Sided Limits

The formal definition of limit may easily be carried over to one-sided lim-
its, as defined informally in Excursion 14.2.A, by using the following fact:

which is equivalent to

Thus, the numbers between c and lie to the right of c, within dis-
tance of c, and the numbers between and c lie to the left of c, within
distance of c.

Consequently, the formal definition of right-hand limits can be obtained
from the definition above by replacing the phrase “if ”
with “ ” For a formal definition of the left-hand limits,
replace the phrase “if ” with “if ”c � d 6 x 6 c.0 6 0 x � c 0 6 d

c 6 x 6 c � d.
0 6 0 x � c 0 6 d

d

c � dd

c � d

0 x � c 0 6 d  exactly when  c � d 6 x 6 c � d.

0 x � c 0 6 d  exactly when  �d 6 x � c 6 d,
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Exercises 14.3

In Exercises 1–12, use the formal definition of limit to
prove the given statement, as in Example 1.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10. lim
xS1

 12x � 72 � �5

lim
xS4

 1x � 62 � �2

lim
xS2

 p � p

lim
xS1

 4 � 4

lim
xS7

 1�2x � 192 � 5

lim
xS2

 16x � 32 � 15

lim
xS0

 1x � 22 � 2

lim
xS5

 x � 5

lim
xS1

 14x � 22 � 6

lim
xS3

 13x � 22 � 7

11.

12.

In Exercises 13 and 14, use the formal definition of
limit to prove the statement.

13.

14.

In Exercises 15 and 16, let f and g be functions such
that

15. Critical Thinking Prove that
Hint: see Example 3.

16. Critical Thinking If k is a constant, prove that
lim
xSc

 k f 1x2 � kL.

lim
xSc

 1 f ˛1x2 � g˛1x2 2 � L � M.

lim
xSc

 f˛(x) � L and lim
xSc

 
 
g˛(x) � M.

lim
xS0

 x3 � 0

lim
xS0

 x2 � 0

lim
xS�3

 12x � 42 � �10

lim
xS�2

 12x � 52 � 1
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y

x

c

y

x

c

c c

y y

x x

(c, f(c))
(c, f(c))

(c, f(c)) (c, f(c))

Figure 14.4-1

Thus, a function is continuous at if its graph around the point 
is connected and unbroken.

On the other hand, none of the functions whose graphs are shown in 
Figure 14.4-2 is continuous at Try to draw one of these graphs at
and near without lifting your pencil from the paper.1c, f ˛1c2 2 x � c.

1c, f ˛1c2 2x � c

14.4 Continuity

Calculus deals in large part with continuous functions, and the proper-
ties of continuous functions are essential for understanding many of 
the key theorems in calculus. This section presents the intuitive idea of
continuity, its formal definition, and the various properties of continu-
ity—which were used in the work with graphs in earlier chapters.

Continuity Informally

Let c be a real number in the domain of a function f. Informally, the func-
tion f is continuous at if you can draw the graph of f at and near
the point without lifting your pencil from the paper. For example,
each of the four graphs in Figure 14.4-1 is the graph of a function that is
continuous at x � c.

1c, f ˛1c2 2 x � c

Objectives

• Determine if a function is
continuous at a point

• Determine if a function is
continuous on an interval

• Apply properties of
continuous functions



Figure 14.4-2 shows that a function is discontinuous, that is, not contin-
uous, at if the graph has a break, gap, hole, or jump when 

Calculators and Discontinuity

When a calculator uses “connected” mode to graph a function, it plots a
number of points and then connects them with line segments to produce
a curve. Thus, the calculator assumes that the function is continuous at
any point it plots. For example, a calculator may not show the hole in
graph d of Figure 14.4-2, or it may insert a vertical line segment where
the graph jumps in graph b of Figure 14.4-2. Consequently, a calculator
may present misleading information about the continuity of a function.

Analytic Description of Continuity

The goal is to find a mathematical description of continuity at a point that
does not depend on having the graph given in advance. This is done by
expressing in analytic terms the intuitive geometric idea of continuity
given above.

x � c.x � c
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c

a.

y

x

c

y

x

c

y

x

b.

c. d.

c

y

x

(c, f(c))

(c, f(c))

Figure 14.4-2
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(c, f(c)) is an
interior point
of the graph.

(c, f(c))

(c, f(c)) is an
endpoint of
the graph.

(c, f(c))

Figure 14.4-3

Continuity at an Interior Point

If the point is an interior point of the graph, and the graph can be
drawn around the point without lifting pencil from paper, then at
the very least, the following two statments are true.

• must be defined for 
• must be defined for when t is any number near c

For if is not defined for some t near c, there will be a hole in the graph
at the point which would require lifting the pencil when drawing
the graph. See graphs c and d of Figure 14.4-2 for functions that are not
defined at The situation can be described more precisely by saying:

f(x) is defined for all x in some open interval con-
taining c. In other words, there are numbers a and b [1]
with such that f(x) is defined for all x with

In particular, f(c) is defined.

Although condition [1] is necessary in order for f to be continuous at  
this condition by itself does not guarantee continuity. For instance, 
and the graphs a and b in Figure 14.4-2 show functions whose graphs are
defined for all values of x near c, but are not continuous at 

If is defined, there are two conditions that can prevent a function from
being continuous at 

• There is a jump at that is, the limit of as x approaches c
does not exist.

• There is a hole in the graph at that is, limit of exists at
but it is not equal to .

The conditions that prevent a function from being continuous at a point
are shown in Figure 14.4-4. Notice the reason that the graph is not con-
tinuous at at and at x � c.x � b,x � a,

f ˛1c2x � c,
f˛ 1x2x � c,

f ˛1x2x � c,

x � c:
f ˛1c2

x � c.

x � c
x � c,

a 66 x 66 b.
a 66 c 66 b

x � c.

1t, f 1t2 2,f ˛1t2
x � t,f ˛1x2
x � cf ˛1x2

1c, f ˛1c2 21c, f˛ 1c2 2

If the graph of f can be drawn at and near a point without lifting
pencil from paper, then there are two possibilities:

1c, f ˛1c2 2
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x

cba

y

f(a) is not defined.

lim f(x) does not exist.
x→b

lim f(x) ≠ f(c)
x→c

Figure 14.4-4

The preceding analysis leads to the following formal definition of conti-
nuity for interior points.

Let f be a function that is defined for all x in some open
interval containing c. Then f is said to be continuous at 
under the following conditions:

1. f(c) is defined

2. exists

3. lim
xSc

 f˛ (x) � f˛ (c)

lim
xSc

 f˛ (x)

x � c

Definition of
Continuity

Example 1 Continuity at a Point

Without graphing, show that the function 

is continuous at 

Solution

To show continuity of f at show that 

 � �
213

8

 f ˛1�32 �
21�322 � 1�32 � 1

1�32 � 5

f˛ 1�32 � lim
xS�3

 
2x2 � x � 1

x � 5 .

x � �3,

x � �3.

f ˛1x2 �
2x2 � x � 1

x � 5
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By the properties of limits given in Section 14.2,

limit of a quotient

limit of a root

limit of a polynomial

Therefore, and f is continuous at 

■

The facts about limits presented in Sections 14.1 and 14.2 and the defini-
tion of continuity provide justification for several assumptions about
graphs that were made earlier in this book.

x � �3.lim
xS�3

  f ˛1x2 � f˛ 1�32
 � �

213
8

 �
21�322 � 1�32 � 1

1�32 � 5

 �
2 lim

xS�3
 x2 � x � 1

lim
xS�3

 1x � 52

 �
lim

xS�3
 2x2 � x � 1

lim
xS�3

 1x � 52

 lim
xS�3

 f 1x2 � lim
xS�3

 
2x2 � x � 1

x � 5

Every polynomial function is continuous at every real number.

Every rational function is continuous at every real number in
its domain.

Every exponential function is continuous at every real number.

Every logarithmic function is continuous at every positive
real number.

and are continuous at every real
number.

is continuous at every real number in its domain.h(x) � tan x

g ˛(x) � cos xf ˛(x) � sin x

Continuity of
Special

Functions

Continuity on an Interval

Consider continuity at an endpoint of the graph of a function f, such as
or shown in Figure 14.4-5.1b, f 1b2 21a, f 1a2 2

One-sided limits,
which were discussed in
Section 14.2.A, are a
prerequisite for the material
on continuity on an
interval.

NOTE



The intuitive idea of continuity at is that the graph of f can be
drawn at and to the right of the point without lifting the
pencil from the paper. Essentially the same analysis that was given above
can be made here if we consider only values of x to the right of In
short, continuity at the endpoint means that An 
analogous discussion applies to the endpoint which leads to the
formal definition.

1b, f 1b2 2,
lim
xSa�

 f 1x2 � f 1a2.1a, f 1a2 2 x � a.

1a, f 1a2 2x � a
1a, f 1a2 2
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(a, f(a))

(b, f(b))

Figure 14.4-5

A function f is continuous from the right at provided that 

A function f is continuous from the left at provided that

lim
xSb�

 f˛(x) � f(b).

x � b

lim
xSa�

 f(x) � f(a).

x � a
Continuity from

the Left and
Right

Example 2 Continuity at an Endpoint

Show that is continuous from the right at 

Solution

The function which is not defined when is continuous
from the right at because and

■

The most useful functions are those that are continuous at every point in
an interval. Consider the following three examples.

• is continuous at every number in the interval 

• is continuous at every number in 
• is continuous at every number in 1�q, q 2f ˛1x2 � sin x

10, q 2g ˛1x2 � ln x

a�p2 , p2 bh 1x2 � tan x

lim
xS0�

 f 1x2 � lim
xS0�

 1x � 0 � f 102.
f 102 � 20 � 0,x � 0

x 6 0,f ˛1x2 � 2x,

x � 0.f ˛1x2 � 2x
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Intuitively, this means that their graphs can be drawn over the entire inter-
val without lifting the pencil from the paper. Most of the functions in this
book are of this type.

A function f is said to be continuous on an open interval (a, b)
provided that f is continuous at every value in the interval.

A function f is said to be continuous on a closed interval [a, b]
provided that f is continuous from the right at 
continuous from the left at and continuous at every
value in the open interval (a, b).

x � b,
x � a,

Continuity on
an Interval

Analogous definitions may be given for continuity on intervals of the form
and 

Example 3 Continuity of a Function

Discuss the continuity of the function shown in Figure 14.4-6.

1�q, q 2.3a, b2, 1a, b 4 , 1a, q 2, 3a, q 2, 1�q, b2, 1�q, b 4 ,

y

x

2 4 6

2

0
−4 −2

−2

Figure 14.4-6

Solution

The function is discontinuous at and but it is continuous
on each of the intervals 

■

Properties of Continuous Functions

Using the definition is not always the most convenient way to show that
a particular function is continuous. It is often easier to establish continu-
ity by using the following facts.

12, q 2.1�5, �32, 3�3, 2 4 , x � 2,x � �3
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If the functions f and g are continuous at then each of
the following functions is also continuous at 

1. the sum function 

2. the difference function 

3. the product function fg

4. the quotient function g (c) � 0
f
g ,

f � g

f � g

x � c:
x � c,

Properties of
Continuous

Functions

Proof By the definition of the sum function, 
Because f and g are continuous at 

Therefore, by the first property of limits,

This says that is continuous at 

The remaining statements are proved similarly, using limit properties 2,
3, and 4.

Example 4 Continuity of Functions

Assume that and are continuous at 
Prove that the following functions are continuous at 

a. b.

c. d.

Solution

Because f an g are continuous at , each of the following functions
are continuous at by the listed property of continuous functions.

a. sum of continuous functions

b. difference of continuous functions

c. product of continuous functions

d. quotient of continuous functions

■

sin x
x3 � 5x � 2

� a f
gb 1x2

1sin x2 1x3 � 5x � 22 � fg 1x2
sin x � 1x3 � 5x � 22 � 1 f � g2 1x2
sin x � 1x3 � 5x � 22 � 1 f � g2 1x2

x � 0
x � 0

sin x
x3 � 5x � 2

1sin x2 1x3 � 5x � 22
sin x � 1x3 � 5x � 22sin x � 1x3 � 5x � 22

x � 0.
x � 0.g 1x2 � x3 � 5x � 2f  1x2 � sin x

x � c.f � g

 � 1 f � g2 1c2
 � f 1c2 � g 1c2
 � lim

xSc
  f 1x2 � lim

xSc
 g 1x2

 lim
xSc

  1 f � g2 1x2 � lim
xSc

 1 f 1x2 � g 1x2 2

lim
xSc

  f 1x2 � f 1c2 and lim
xSc

 g 1x2 � g 1c2.
x � c,

1 f � g2 1x2 � f 1x2 � g 1x2.
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Composite Functions

Composition of functions is often used to construct new functions from
given ones.

If the function f is continuous on the closed interval [a, b]
and k is any number between f(a) and f(b), then there exists
at least one number c between a and b such that f(c) � k.

The
Intermediate

Value Theorem

Example 5 Continuity of Composite Functions

Show that is continuous at 

Solution

The polynomial function is continuous at 
and The function is continuous
at 5 because by limit property 5

By the box above, with and the composite function 
which is given by

is also continuous at 
■

The Intermediate Value Theorem

This section’s introduction to continuity will close by mentioning, with-
out proof, a very important property of continuous functions.

x � 2.

1g � f 2 1x2 � g 1 f 1x2 2 � g 1x3 � 3x2 � x � 72 � 2x3 � 3x2 � x � 7

g � f,f 1c2 � 5,c � 2

lim
xS5

 2x � 2lim
xS5 x � 25 � g 152.

g˛ 1x2 � 2xf 122 � 23 � 31222 � 2 � 7 � 5.
x � 2f ˛1x2 � x3 � 3x2 � x � 7

x � 2.h 1x2 � 2x3 � 3x2 � x � 7

If the function f is continuous at and the function g is
continuous at then the composite function is
continuous at x � c.

g �� fx � f(c),
x � c

Continuity of
Composite
Functions

The truth of the Intermediate Value Theorem can be understood geo-
metrically by remembering that since f is continuous on the graph
of f can be drawn from the point to the point without lift-
ing the pencil from the paper. As suggested in Figure 14.4-7, there is no
way that this can be done unless the graph crosses the horizontal line

where f 1a2 6 k 6 f 1b2.y � k,

1b, f 1b2 21a, f 1a2 2 3a, b 4 ,
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a c b

y

x

f(a)

f(b)

k

(a, f(a))

(c, f(c)) = (c, k)

(b, f(b))

Figure 14.4-7

The first coordinate of the point where the graph crosses this line is some
number c between a and b, and its second coordinate is because the
point is on the graph of f. But is also on the line so its sec-
ond coordinate must be k; that is, 

The Intermediate Value Theorem further explains why the graph of a con-
tinuous function is connected and unbroken. If the function f is continuous
on the interval then its graph cannot go from the point to
the point without moving through all the y values between 
and 

The graphical method of solving equations that has been used through-
out this book is based on the Intermediate Value Theorem, as are some
root-finding features on calculators. If f is continuous on the interval 
and and have opposite signs, then 0 is a number between 
and Consequently, by the Intermediate Value Theorem, with 
there is at least one number c between a and b such that In other
words, is a solution of the equation 

So when a calculator shows that the graph of a continuous function f has
points above and below the x-axis, there really is an x-intercept between
these points, that is, a solution of Zoom-in uses this fact by look-
ing at smaller and smaller viewing windows that contain points of the
graph on both sides of the x-axis. The closer together the points are hor-
izontally, the better the approximation of the x-intercept, or solution, that
can be read from the graph.

f 1x2 � 0.

f 1x2 � 0.x � c
f 1c2 � 0.

k � 0,f 1b2. f 1a2f˛ 1b2f 1a2 3a, b 4

f 1b2. f 1a21b, f 1b2 2 1a, f 1a2 23a, b 4 ,

f 1c2 � k.
y � k,1c, f 1c2 2 f 1c2
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Exercises 14.4

In Exercises 1 and 2, use the graph to find all the num-
bers at which the function is not continuous.

1.

2.

In Exercises 3 – 6, determine whether the function
whose graph is given is continuous at at 
and at 

3. y

x

1−1 3

x � 3.
x � 0,x � �2,

y

x1

1

y

x

1 3

4.

5.

6.

In Exercises 7–12, use the definition of continuity and
the properties of limits to show that the function is
continuous at the given number.

7.

8.

9.

10.

11.

12. k1x2 �
28 � x2

2x2 � 5
, x � �2

f 1x2 �
x2x
1x � 622 , x � 36

h1x2 �
x � 3

1x2 � x � 12 1x2 � 12 , x � �2

f 1x2 �
x2 � 9

1x2 � x � 62 1x2 � 6x � 92 , x � 2

g˛1x2 � 1x2 � 3x � 102 1x2 � 2x2 � 5x � 42, x � �1

f 1x2 � x2 � 51x � 227, x � 3

y

x

1−1 3

y

x

1−1 3

y

x

1−1 3



In Exercises 13–18, explain why the function is not con-
tinuous at the given number.

13.

14.

15.

16.

17.

18.

In Exercises 19–24, determine whether or not the func-
tion is continuous at the given number.

19.

20.

21.

22.

23.

24.

In Exercises 25–28, determine all numbers at which the
function is continuous.

25. f˛ 1x2 � µ
x2 � x � 2

x2 � 4x � 3
 if x � 1

�
3
2         if x � 1

k 1x2 � �0 x � 2 0 � 3, x � �2

f 1x2 � 0 x � 3 0 , x � 3

g 1x2 � ex3 � x � 1   if x 6 2
3x2 � 2x � 1 if x � 2, x � 2

f 1x2 � ex2 � x if x � 0
2x2 if x 7 0, x � 0

g˛1x2 � e�2x � 5 if x 6 �1
�2x � 1 if x � �1 , x � �1

f 1x2 � e�2x � 4 if x � 2
  2x � 4 if x 7 2, x � 2

f 1x2 �
22 � x � 22

x , x � 0

f 1x2 � ex2 if x � 0
1 if x � 0, x � 0

g˛1x2 � • sin px  if x � 0

1 if x � 0
, x � 0

f 1x2 �
x2 � 4x � 3
x2 � x � 2

, x � �1

h 1x2 �
x2 � 4

x2 � x � 2
, x � 2

f 1x2 �
1

1x � 323 , x � 3
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26.

27.

28.

29. Critical Thinking For what values of b is the
following function continuous at 

30. Critical Thinking Show that is
continuous at 

A function f that is not defined at is said to have
a removable discontinuity at if there is a func-
tion g such that g (c) is defined, g is continuous at 
and for In Exercises 31–34, show that
the function f has a removable discontinuity by find-
ing an appropriate function g.

31.

32.

33.

34.

35. Show that the function has a 

discontinuity at that is not removable.x � 0

f˛ 1x2 �
0 x 0
x

f 1x2 �
sin x

x  Hint: See Example 1 of Section 14.1.

f 1x2 �
2 � 2x

4 � x

f 1x2 �
x2

0 x 0

f˛ 1x2 �
x � 1
x2 � 1

x � c.g ˛(x) � f˛ (x)
x � c,

x � c
x � c

x � 0.
f 1x2 � 20 x 0

f 1x2 � e bx � 4  if x � 3
bx2 � 2 if x 7 3

x � 3?

h1x2 � • 1
x   if x 6 1 and x � 0

x2 if x � 1

f 1x2 � •x2 � 1    if x 6 0
x        if 0 6 x � 2
�2x � 3 if x 7 2

g˛1x2 � µ
x2 � x � 6

x2 � 4
 if x � �2

4
5           if x � �2
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The graph shows that as x approaches 3 from the left or right, the corre-
sponding values of do not get closer and closer to a particular number.
Instead, they become larger and larger without bound. Although there is
no limit as defined in Section 14.1, it is convenient to describe this situa-
tion symbolically by writing

which is read “the limit of as x approaches 3 is infinity.” Similarly, f
does not have a limit as x approaches 1 from the left or right, because the
corresponding values of get smaller and smaller without bound. We
say that “the limit of as x approaches 1 is negative infinity” and write

lim
 
xS1

 f˛ 1x2 � �q.

f˛ 1x2 f˛ 1x2
f˛ 1x2

lim
 
xS3

 f˛ 1x2 � q,

f 1x2

14.5 Limits Involving Infinity

In the discussion that follows, it is important to remember that

There is no real number called “infinity,” and the symbol which is
usually read “infinity,” does not represent any real number.

Nevertheless, the word “infinity” and the symbol are often used as a
convenient shorthand to describe the way some functions behave under
certain circumstances. Generally speaking, “infinity” indicates a situation
in which some numerical quantity gets larger and larger without bound,
meaning that it can be made larger than any given number. Similarly,
“negative infinity,” indicates a situation in which a numerical quan-
tity gets smaller and smaller without bound, meaning that it can be made
smaller than any given negative number.

In Section 14.1, several ways were discussed in which a function might
fail to have a limit as x approaches a number c. The word “infinity” is
often used to describe one such situation. Consider the function f whose
graph is shown in Figure 14.5-1.

�q,

q

q,

Objectives

• Define limits involving
infinity

• Use properties of limits at
infinity

• Use the Limit Theorem

y

x

1 3 5

Figure 14.5-1

Excursion 14.2.A
is a prerequisite for some of
the material that follows.

NOTE



Near the values of get very large on the left side of 5 and very
small on the right side of 5, so we write

and

which are read “The limit as x approaches 5 from the left is infinity” and
“the limit as x approaches 5 from the right is negative infinity.”

There are many cases like the ones illustrated above in which the lan-
guage of limits and the word “infinity” can be useful for describing the
behavior of a function that actually does not have a limit in the sense of
Section 14.1.

Example 1 Infinite Limits

Describe the behavior of near 

Solution

The graph of f is shown in Figure 14.5-2. The trace feature indicates that
the values of get small without bound as x approaches 0 from the
left or from the right.

f 1x2

x � 0.f 1x2 � �
5
x4

lim
xS5�

 f 1x2 � �q,lim
xS5�

 f 1x2 � q

f˛ 1x2x � 5,
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�500,000

0.5�0.5
0

Figure 14.5-2

Therefore, 

■

Example 2 Infinite Limits

Describe the behavior of the function near 

Solution

As shown in Figure 14.5-3, the graph of g is not continuous at To
the left of the values of get large without bound, and the val-
ues of to the right of get small without bound.x � �2g1x2 g1x2x � �2,

x � �2.

x � �2.g1x2 �
8

x2 � 2x � 8

lim
 
xS0

�
5
x4 � �q.
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Therefore, and

■

Infinite Limits and Vertical Asymptotes
The “infinite limits” considered in Figure 14.5-1 and in Examples 1 and 2
can be interpreted geometrically: Each such limit corresponds to a verti-
cal asymptote of the graph.

lim
xS�2�

 8
x2 � 2x � 8

� �q.lim
xS�2�

 8
x2 � 2x � 8

� q

�10

5�3

10

Figure 14.5-3

The vertical line is a vertical asymptote of the graph of the
function f if at least one of the following is true.

lim
xSc

 f(x) � ��lim
xSc�

 f(x) � ��lim
xSc�

 f(x) � ��

lim
xSc

 f(x) � �lim
xSc�

 f(x) � �lim
xSc�

 f(x) � �

x � c
Vertical

Asymptotes

Limits at Infinity

Whenever the word “limit” has been used up to now, it referred to the
behavior of a function when x was near a particular number c. Now, the
behavior of a function when x takes very large or very small values will
be considered. That is, the end behavior of a function will be discussed.

The graph of is shown in Figure 14.5-4.f 1x2 �
5

1 � 24e�
x
4

� 1

As you move to the right, the graph gets very close to the horizontal
line In other words, as x gets larger and larger, the correspondingy � 6.

Graphing Exploration

Produce the graph shown in Figure 14.5-4 and use the trace feature
to find values of as x gets larger and larger. Are the values
approaching a single value?

f 1x2

�1

80�80

7

Figure 14.5-4



values of get closer and closer to 6, which can be expressed sym-
bolically as

The last statement is read “the limit of as x approaches infinity is 6.”

Toward the left the graph gets very close to the horizontal line that
is, as x gets smaller and smaller, the corresponding values of get closer
and closer to 1. (See note.) It is said that “the limit of as x approaches
negative infinity is 1,” which is written

The types of limits when x gets large or small without bound are similar
to those in Section 14.1 in that the values of the function do approach a
fixed number. The definition in the general case is similar: f is any func-
tion, L is a real number, and the phrase “arbitrarily close” means “as close
as you want.”

lim
 
xS�q

 f 1x2 � 1.

f 1x2 f 1x2y � 1;

f 1x2
lim
xSq

 f 1x2 � 6.

f 1x2

Section 14.5 Limits Involving Infinity 951

Due to rounding,
the trace feature on most
calculators will display

when x is smaller
than approximately 
However, the value of the
function is always greater
than 1. Why?

�60.
y � 1

NOTE

Let f be a function that is defined for all for some
number a. If

as x takes larger and larger positive values, increasing
without bound, the corresponding values of f(x) get very
close, and possibly are equal, to a single real number L

and

the values of f(x) can be made arbitrarily close (as close
as you want) to L by taking large enough values of x,

then

the limit of f(x) as x approaches infinity is L,

which is written

lim
xS�

 f(x) � L.

x 77 a
Limits at Infinity

Limits as x approaches negative infinity are defined analogously by
replacing “ ” with “ ”, “increasing” with “decreasing”, and
“larger and larger positive” with “smaller and smaller negative” in the
preceding definition. These definitions are informal because such phrases
as “arbitrarily close” have not been precisely defined. Rigorous defini-
tions, similar to those in Section 14.3 for ordinary limits, are discussed in
Exercises 49–50.

Horizontal Asymptotes and Limits at Infinity
Limits as x approaches infinity or negative infinity correspond to hori-
zontal asymptotes of the graph of the function.

x 6 ax 7 a
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Example 3 Limits at Infinity

Discuss the behavior of as x approaches infinity and as x

approaches negative infinity.

Solution

When x is a very large positive number, is a positive number that is 

very close to 0. Similarly, when x is a very small negative number—which 

is large in absolute value—such as is a negative number 

that is very close to 0. These facts suggest that is a horizontal asymp-
tote, or

and

as confirmed in Figure 14.5-5.
■

Example 4 Limits at Positive and Negative Infinity

Discuss the behavior of as x approaches infinity and
as x approaches negative infinity.

Solution

As shown in Figure 14.5-6, does not approach a single value as x
approaches infinity or as x approaches negative infinity.

f 1x2

f 1x2 � x3 � 10x � 5

lim
xS�q

 f 1x2 � 0,lim
 
xSq

 f 1x2 � 0

y � 0

�5,000,000, 1x

1
x

f 1x2 �
1
x

The line is a horizontal asymptote of the graph of the
function f if either

or lim

 
xS�qq

 f(x) � L.lim

 
xSqq

 f(x) � L

y � L
Horizontal

Asymptotes

�1

20�20

1

Figure 14.5-5

0

5,0000

100,000,000,000

Figure 14.5-6
�100,000,000,000

0�5,000
0



Thus, and as defined in Section 14.1, do not exist. 
However, the situations are often described by writing

and

■

In fact, no polynomial graph has a horizontal asymptote. That is, no poly-
nomial function has a limit as x approaches infinity or negative infinity.

Limit of a Constant Function

The limits of constant functions are easily found. Consider, for example,
the function As x approaches infinity or negative infinity, the
corresponding value of is always the number 5, so and 

A similar argument works for any constant function.lim
 
xS�q

 f 1x2 � 5.
lim
 
xSq

 f 1x2 � 5f 1x2f 1x2 � 5.

lim
 
xS�q

 f 1x2 � �qlim
 
xSq

 f 1x2 � q

lim
 
xS�q

 f 1x2,lim
 
xSq

 f 1x2
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If c is a constant, then and lim

 
xS�qq

 c � c.lim

 
xSqq

 c � c
Limit of a
Constant

Properties of Limits

Infinite limits have the same useful properties that ordinary limits have.
For instance, suppose that as x approaches infinity, the values of a func-
tion f approach a number L, and the values of a function g approach a
number M. Then it is plausible that the values of approach

the values of approach and so forth. Similar remarks
apply when x approaches negative infinity.

L � M,1 fg2 1x2L � M,
1 f � g2 1x2

If f and g are functions and L and M are numbers such that

and

then

1.

2.

3.

4.

5. provided for all large xf(x) �� 0lim

 
xSqq
2f(x) � 2L,

M � 0lim

 
xSqq

 a f
gb(x) � lim

 
xSqq

 a f(x)
g(x)
b �

lim
xSqq

 f(x)

lim
xSqq

 g(x)
�

L
M ,

lim

 
xSqq

( fg)(x) � lim

 
xSqq

( f (x) � g(x)) � A lim
 
xSqq

 f(x)B Alim
 
xSqq

 g(x)B � L � M

lim

 
xSqq

( f � g)(x) � lim

 
xSqq

( f(x) � g(x)) � lim

 
xSqq

 f(x) � lim

 
xSqq

 g(x) � L �M

lim

 
xSqq

( f � g)(x) � lim

 
xSqq

( f(x) � g(x)) � lim

 
xSqq

 f(x) � lim

 
xSqq

 g(x) � L � M

lim

 
xSqq

 g(x) � M,lim

 
xSqq

 f(x) � L

Properties of
Limits at Infinity

Properties 1–5 also hold with in place of provided that for prop-
erty for all small x.5, f 1x2 � 0

q,�q
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Limit of 

If c is a constant, then Property 3 and Example 3 show that

Repeatedly using Property 3 with this fact and Example 3, note that the
result holds for any integer .

A similar argument works with in place of and produces this use-
ful result, which is essentially a formal statement of half of the Big-Little
Concept discussed in Section 4.4.

q�q

 � 0
 � 0 � 0 � 0 � p � 0

 � a lim
 
xSq

 
c
xba lim

 
xSq  

1
xba lim

 
xSq  

1
xb p a lim

 
xSq  

1
xb

lim
 
xSq

 
c

xn  � lim
 
xSq
a c

x �
1
x �

1
x � p �

1
xb

n � 2

lim
 
xSq

 c
x � lim

 
xSq
ac �

1
xb � Q lim

 
xSq

 cb � a lim
 
xSq

 1xb � c � 0 � 0.

c
x n

If c is a constant, then for each positive integer n,

and lim
xS�q

 c
xn � 0lim

 
xSq 

c
xn � 0

Limit Theorem

The Limit Theorem and the limit properties now make it possible to deter-
mine the limit, if it exists, of any rational function as x approaches infinity
or negative infinity.

Example 5 End Behavior of a Rational Function

Describe the end behavior of and justify your 

conclusion.

Solution

If you graph to the right of the y-axis you will see 

that there appears to be a horizontal asymptote close to as shown
in Figure 14.5-7. This can be confirmed algebraically by computing

Property 4 cannot be used directly because neither the numerator nor
denominator have a finite limit as x approaches infinity, as discussed in
Example 4. To rewrite the expression in an equivalent form, divide both

lim
 
xSq 

3x2 � 2x � 1
2x2 � 4x � 5

.

y � 1.5,

f 1x2 �
3x2 � 2x � 1
2x2 � 4x � 5

,

f 1x2 �
3x2 � 2x � 1
2x2 � 4x � 5

�5

20�10

5

Figure 14.5-7



numerator and denominator by the highest power of x that appears, 

namely Dividing both by is the same as multiplying by a 

form of 1, so the value of the fraction is not changed.

property 4

property 1, 2

limit of constant

limit theorem

■

A slight variation on the last example can be used to compute certain lim-
its involving square roots.

Example 6 Limits at Infinity

Find each limit.

a. b. lim
 
xS�q

23x2 � 1
2x � 3lim

 
xSq

23x2 � 1
2x � 3

 � 3
2

 � 3 � 0 � 0
2 � 0 � 0

 �
3 � lim

 
xSq

 
2
x � lim

 
xSq

 
1
x2

2 � lim
 
xSq

 
4
x � lim

 
xSq

 
5
x2

 �
lim
 
xSq

 
3 � lim

 
xSq

 2
x � lim

 
xSq

 1
x2

lim
 
xSq

 2 � lim
 
xSq

 
4
x � lim

 
xSq

 
5
x2

 �
lim
xSqa3 �

2
x �

1
x2b

lim
xSq
a2 �

4
x �

5
x2b

 � lim
 
xSq

3 �
2
x �

1
x2

2 �
4
x �

5
x2

 � lim
 
xSq  

3x2

x2 �
2x
x2 �

1
x2

2x2

x2 �
4x
x2 �

5
x2

 lim
 
xSq  

3x2 � 2x � 1
2x2 � 4x � 5

� lim
 
xSq  

3x2 � 2x � 1
x2

2x2 � 4x � 5
x2

1
x2

1
x2

,x2x2.
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Solution

a. Only positive values of x need to be considered when finding the
limit as x approaches infinity. When x is positive, 
Therefore,

multiply by

property 4

property 5

property 1

constant limit and limit theorem

b. To compute the limit as x approaches negative infinity, you need
only consider negative values of x and use the fact that when x is
negative, For instance, Then
an argument similar to the one in part a shows that

■

lim
 
xS�q

23x2 � 1
2x � 3 � �

23
2

�2 � �21�222 � �24.x � �2x2.

 � 23
2

 � 23 � 0
2 � 0

 �
B

lim
xSq

 3 � lim
xSq

1
x2

lim
xSq

 2 � lim
xSq

3
x

 �
B

lim
xSq
a3 �

1
x2b

lim
xSq
a2 �

3
xb

 �
lim
xSqB

3 �
1
x2

lim
xSq
a2 �

3
xb

 � lim
xSq

B
3 �

1
x2

2 �
3
x

2a
2b

�
B

a
b

 � lim
xSq

B
3x2 � 1

x2

2x � 3
x

2x2 � x, for x 7 0 � lim
xSq

23x2 � 1
2x2

2x � 3
x

1
x
1
x

 lim
 
xSq

23x2 � 1
2x � 3 � lim

 
xSq

23x2 � 1
x

2x � 3
x

2x2 � x.



Although the properties of limits and some algebraic ingenuity can often
by used to compute limits, as in the preceding examples, more sophisti-
cated techniques are needed to determine certain limits. This is the case, 

for example, with the proof that exists and is the number e.lim
nSq
a1 �

1
nb

n
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Exercises 14.5

In Exercises 1–8, use a calculator to estimate the limit.

1.

2.

3. 4.

5. 6.

7.

8.

In Exercises 9–14, list the vertical asymptotes of the
graph, if any exist. Then use the graph of the function
to find

and

9. y

x

−10

1

2

3

−5 5 10

lim
xS�q

 f(x).lim
xSq

 f(x)

lim
xSq

 
5

1 � 11.12� x
20

lim
 
xSq

 
ln x

x

lim
 
xSq

 
sin x

xlim
xS�q

 sin 1x

lim
xSq

 
x

5
4 � x

2x � x
5
4

lim
xS�q

 
x

2
3 � x

4
3

x3

lim
 
xSq

 C2x2 � x � 1 � xD
lim
 
xSq

 C2x2 � 1 � 1x � 12D
10.

11.

12. y

x

−40

−15

−10

−5

5

10

15

−20 20 40 60

y

x

−3

−2

−1

1

2

3

−20 20 40 60

y

x

−20
−1

1

2

3

−10 10 20 30



958 Chapter 14 Limits and Continuity

13.

14.

In Exercises 15–20, use the limit theorem and the prop-
erties of limits to find the horizontal asymptotes of the
graph of the given function.

15.

16.

17.

18.

19.

20.

In Exercises 21–39, use the limit theorem and the prop-
erties of limits to find the limit.

g1x2 �
2x5 � x3 � 2x � 9

5 � x5

f 1x2 �
3x4 � 2x3 � 5x2 � x � 1

7x3 � 4x2 � 6x � 12

k1x2 �
3x � x2 � 4
2x � x3 � x2

h1x2 �
2x2 � 6x � 1
2 � x � x2

g1x2 �
x2

x2 � 2x � 1

f 1x2 �
3x2 � 5

4x2 � 6x � 2

y

x

−40−60

−8

−4

4

8

12

−20 20 40 60

y

x

−20

−15

−10

−5

5

10

15

−10 10 20 30

21.

22.

23. 24.

25.

26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. Hint: Rationalize the denominator.

38.

39.

Hint: Multiply by 

In Exercises 40–42, find the limit by adapting the hint
from Exercise 39.

40.

41.

42.

43. A free-falling body has two forces acting on it:
gravity, which causes the body to speed up as it
falls, and air resistance, which causes the body to
slow down. Assuming that a free-falling body has
an initial velocity of zero and that its velocity is
proportional to the force due to air resistance, the

lim
 
xS�q

 A2x2 � 5x � 5 � x � 1 B
lim
 
xSq

 A2x2 � 1 � 2x2 � 1 B
lim

 
xS�q

 Ax � 2x2 � 4 B

2x2 � 1 � x
2x2 � 1 � x

.

lim
 
xSq

 A2x2 � 1 � x B
lim
 
xSq

 
2x � 2
2x � 3

lim
 
xSq

 
1 � 2x
1 � 2x

lim
 
xSq

 
2x6 � x2

2x3lim
 
xS�q

 
x2 � 2x � 1
2x4 � 2x

lim
 
xSq

 
23x2 � 2x

2x � 1lim
 
xS�q

 
23x2 � 3

x � 3

lim
 
xS�q

 
22x2 � 1

3x � 5lim
 
xSq

 
22x2 � 1

3x � 5

lim
 
xSq

 
3x � 2
22x2 � 1

lim
 
xS�q

 
3x � 2
22x2 � 1

lim
 
xS�q

 
x

2x2 � 1
lim
 
xSq

 
2x

2x2 � 2x

lim
 
xSq

 a x
x2 � 1

�
2x2

x3 � x
b

lim
 
xS�q

 a 3x
x � 2 �

2x
x � 1b

lim
 
xS�q

 13x2 � 12�2lim
 
xSq

 a3x �
1
x2b

lim
 
xSq

 
12x � 12 13x � 22

3x2 � 2x � 5

lim
 
xS�q

 
1x � 32 1x � 22
2x2 � x � 1



velocity of a falling object can be written as a
function of the amount of elapsed time.

velocity

The variable m represents the mass of the body, 
g is acceleration due to gravity ( 32 feet per
second per second), and k is the contant of
proportionality. For a fall with a parachute,

without a parachute, 

When the air resistance has built until it nearly
balances the gravitational force, the body speeds
up very little. Upon reaching this condition, the
body continues to move downward with a
constant maximum speed called terminal velocity.
Find the terminal velocity of falling bodies with a
parachute and without a parachute by finding the
limit as t approaches infinity.

In Exercises 44–45, find the limit.

44. Critical Thinking

45. Critical Thinking

46. Critical Thinking Let denote the greatest integer
function and find

a. b.

47. Critical Thinking Find lim
xSq

 
4x � 3x � 2x

2x � 1
.

lim
 
xS�q

 
3x 4
xlim

 
xSq

 
3x 4
x

3x 4
lim

 
xS�q

 
0 x 0
0 x 0 � 1

lim
 
xSq

 
x0 x 0

k � 0.18m.k � 1.6m;

�

� f 1t2 �
mg
k Q1 � e�

k
m tR
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48. Critical Thinking Let be a nonzero polynomial
with leading coefficient a, and let be a
nonzero polynomial with leading coefficient c.
Prove that

a.

b.

c. if degree then 

does not exist.

Formal definitions of limits at infinity and negative
infinity are given in Exercises 49 and 50. Adapt the 
discussion in Section 14.3 to explain how these defi-
nitions are derived from the informal definitions in
this section.

49. Critical Thinking Let f be a function and L be a real
number. Then the statement means 
that for each positive number there is a positive
real number k that depends on with the
following property:

Hint: Concentrate on the second part of the
informal definition. The number k measures “large
enough,” that is, how large the values of x must
be in order to guarantee that is as close as
you want to L.

50. Critical Thinking Let f be a function and L be a real
number. Then the statement means 
that for each positive number there is a
negative real number n that depends on with
the following property:

If x 6 n, then 0 f 1x2 � L 0 6 e

e

e,
lim

xS�q
 f 1x2 � L

f 1x2

If x 7 k, then 0 f 1x2 � L 0 6 e

e

e,
lim
 
xSq

 f 1x2 � L

 lim
xSq

 
f 1x2
g 1x2f 1x2 7 degree g 1x2,

if degree f 1x2 � degree g 1x2, then lim
xSq

 
f 1x2
g 1x2 �

a
c .

if degree f 1x2 6 degree g 1x2, then lim
 
xSq

 
f 1x2
g 1x2 � 0.

g 1x2
f 1x2
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In Exercises 1–2, use a calculator to estimate the limit.

1.

2.

In Exercises 3–4, use the graph of the function to determine the limit.

3.

4.

In Exercises 5–6, assume that and 

5. 6.

In Exercises 7–10, find the limit if it exists. If the limit does not exist, explain
why.

7. 8.

9. 10. lim
 
xS2

 
x2 � 2x � 3
x2 � 6x � 9

lim
 
xS0

 
21 � x � 1

x

lim
 
xS�2

 
x2 � x � 6
x2 � x � 2

lim
 
xS1

 
x2 � 1

x2 � 3x � 2

Find lim
 
xS3

 
2f 1x2 � 2g1x2

f 1x2 � g1x2Find lim
 
xS3

 
f 1x2g1x2 � 2f 1x2

3g1x2 4 2

lim

 
xS3

 g(x) � �2.lim

 
xS3

  f(x) � 5

y

x

−2−3

−3

−2

−1

1

2

3

−1 1 2 3

lim
 
xS�1

 f 1x2

y

x

−2−3

−3

−2

−1

1

2

3

−1 1 2 3

lim
 
xS2

 f 1x2

lim
xSp2

 1 � sin x
1 � cos 2x

lim
xS0

 
3x � sin x

x

Review Exercises
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11.

12.

13. 14.

In Exercises 15–16, use the formal definition of limit to prove the statement.

15. 16.

In Exercises 17–18, determine whether the function whose graph is given is
continuous at and 

17.

18.

19. Show that has the given traits.

a. continuous at b. discontinuous at x � 3x � 2

f 1x2 �
x2 � x � 6

x2 � 9

y

x

−2−3

−3

−2

−1

1

2

3

−1 1 2 3 4

y

x

−2−3

−3

−2

−1

1

2

3

−1 1 2 3

x � 2.x � �3

lim
 
xS2

 a1
2 x � 3b � 4lim

 
xS3

 12x � 12 � 7

lim
 
xS7�

 A27 � x2 � 6x � 2 Blim
xS�5�

 
0 x � 5 0
x � 5

If f 1x2 � 3x � 2 and c is a constant, find lim
 
hS0

 
f 1c � h2 � f 1c2

h
.

If f 1x2 � x2 � 1, find lim
 
hS0

 
f 12 � h2 � f 122

h
.
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20. Is the function given by

continuous at Justify your answer.

In Exercises 21–22, find the vertical asymptotes of the graph of the given func-
tion, and state whether the graph moves upward or downward on each side of
each asymptote.

21.

22.

In Exercises 23–26, find the limit.

23.

24.

25.

26.

In Exercises 27–28, find the horizontal asymptotes of the graph of the given
function algebraically, and verify your results graphically with a calculator.

27.

28. f 1x2 �
x � 9

24x2 � 3x � 2

f 1x2 �
x2 � x � 7

2x2 � 5x � 7

lim
 
xSq

 
23x2 � 2

4x � 1

lim
 
xS�q

 a2x � 1
x � 3 �

4x � 1
3x b

lim
 
xS�q

 
4 � 3x � 2x2

x3 � 2x � 5

lim
 
xSq

 
2x3 � 3x2 � 5x � 1
4x3 � 2x2 � x � 10

g1x2 �
x2 � 1

x2 � 3x � 2

f 1x2 �
x2 � 1

x2 � x � 2

x � 3?

f 1x2 � e3x � 2  if x � 3
10 � x  if x 7 3
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Figure 14.C-1

C H A P T E R

14

Riemann Sums

Calculus deals with rates of change, such as the speed of a car, and prob-
lems such as the following:

If you know the continuously changing speed of a car at any
instant, can you determine how far the car has traveled?

A special case of this question will be answered in this section by using
Riemann sums.

Example 1 Total Distance Given Velocities

Suppose a racecar is moving with increasing velocity. The velocity of the
car at various times is given in the table. Estimate the total distance trav-
eled in the 4-second interval.

Solution

Because the velocity is increasing, the car has gone at least 14 feet during
the first second, at least 29 feet during the second, at least 61 feet during
the third second, and at least 128 feet during the fourth second. During
the four-second interval, the car has traveled at least

underestimate

Therefore, 232 feet is an underestimate of the total distance traveled.

An overestimate can be found by noting that the car travels no more than
29 feet in the first second, no more than 61 feet in the next second, no
more than 128 in the third second, and no more than 268 feet in the last
second. Altogether, the car traveled no more than

overestimate

Therefore, the total distance traveled is between 232 feet and 486 feet.
■

The lower and upper estimates can be represented on a graph, where the
velocity is shown as a smooth curve passing through each point given in
the table, and the estimates of the distance traveled each second are rep-
resented by the area of rectangles. See Figure 14.C-1. The darker rectangles
represent the underestimate for each second and the darker and lighter
rectangles stacked together represent the overestimate.

Because the time interval between each measurement is 1 second, each
rectangle is 1 unit wide. Each height corresponds to how far the car could
have traveled during each time interval. Therefore, the areas of the darker
rectangles are 14, 29, 61, and 128, and the sum of the areas represents the
total underestimate of 232.

29 � 61 � 128 � 268 � 486 feet

14 � 29 � 61 � 128 � 232 feet

Time Velocity
(sec) (ft/sec)

0 14

1 29

2 61

3 128

4 268

250

200

150

100

50

0 1 2 3 4

time

velocity
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Similarly, the sum of the areas of the darker and lighter rectangles, which
represents the overestimate, is 486.

There is a difference of feet between the estimates. This
difference can also be found by adding the areas of the lighter rectangles.

A Better Estimate

To get a better estimate of how far the car traveled during the 4-second
interval, the velocity is measured for each half second, as shown in the
table. The graph shown in Figure 14.C-2 displays the new data.

In the first half second, the car travels at least feet and at most 

feet. The distance traveled in each half second is calculated 

for both the underestimate and the overestimate as

where represents the velocity as measured at one end of the time inter-
val and represents length of each the time interval.

Underestimate

Overestimate

The difference between the estimates is again shown as the area of the
lighter rectangles. This difference is

Notice that the difference between the better estimates is half what it was
in Example 1. By halving the intervals of measurement, the difference
between the estimates is halved. Similarly, if the interval of measurement
was given for every tenth of a second, the estimates would differ by

25.4 feet, and if the interval of measurement was every thou-
sandth of a second, the difference between the estimates would be
25410.0012 � 0.254.

25410.12 �

410.5 � 283.5 � 127.

� 88 a1
2b � 128 a1

2b � 185 a1
2b � 268 a1

2b � 410.5 feet

� 20 a1
2b � 29 a1

2b � 42 a1
2b � 61 a1

2b
� 61 a1

2b � 88 a1
2b � 128 a1

2b � 185 a1
2b � 283.5 feet

� 14 a1
2b � 20 a1

2b � 29 a1
2b � 42 a1

2b
¢t

vi

vi1¢t2

20 a1
2b � 10

14 a1
2b � 7

486 � 232 � 254

Figure 14.C-2

250

200

150

100

50

0 21 3 4

time

velocity

Time Velocity
(sec) (ft/sec)

0 14

0.5 20

1 29

1.5 42

2 61

2.5 88

3 128

3.5 185

4 268
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Figure 14.C-3

t1

f(t4) = f(b)

f(t0) = f(a)

t0 = a t4 = bt2 t3

velocity

f(t2)

f(t3)

f(t1)

Example 2 Accuracy of Estimates

How frequently must the velocity be measured to ensure that the esti-
mated distances traveled by the race car are within 5 feet of each other?

Solution

The difference between the velocity at the beginning and end of the meas-
urements is If the time between each measurement is 
then the difference between the estimates is For the differences
of the estimates to be within 5 feet,

.
■

As the length of the intervals of measurement become smaller and smaller,
the underestimate and overestimate approach the same number—the area
under the curve—which represents the total distance traveled.

Riemann Sums

Suppose that velocity is given as an increasing function of time: 
To find the total distance traveled by a moving object over the time in-
terval divide the interval into n equally spaced times 

where each time interval is in duration.

The velocity at the beginning or end of each time interval is given by 
so the estimated distance traveled during each interval is velocity times
the length of each time interval.

distance at each 

Both the underestimate and the overestimate of the total distance trav-
eled can be written as the sum of the individual distances. The
underestimate sum begins with and the overestimate sum begins
with 

overestimate

underestimate

Total distance traveled 

As Examples 1 and 2 show, these estimates will be very close to each other
when n is very large and the correspoding is very small. In fact, the
actual total distance can be found by taking the limit of one of these sums
as n gets very large without bound, written n S q.

¢t

 � lim
nSqa

n

i�1
f 1ti2¢t

 � lim
nSq 

f 1t12¢t � f 1t22¢t � p � f 1tn2¢t

f 1t02¢t � f 1t12¢t � p f 1tn�12¢t � a
n�1

i�0
f 1ti2¢t

f 1t12¢t � f 1t22¢t � p f 1tn2¢t � a
n

i�1
f 1ti2¢t

f 1t12¢t
f 1t02¢t

¢tf 1ti2¢t

f 1ti2,
¢t �

b � a
ntn � b,t0 � a, t1, p , 

a 6 t 6 b,

v � f 1t2.

2541¢t2 6 5  or    ¢t 6 0.0196850394 seconds

2541¢t2. ¢t,268 � 14 � 254.
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Time (sec) 0 1 2 3 4 5

Velocity
102 70 46 29 12 0

(ft/sec)

a. Find an upper and lower estimate of the
distance traveled by the car after the brakes
were applied.

b. Sketch the graph of velocity versus time, and
show the upper and lower estimates and the
difference between them.

c. How often would the velocity need to be
measured to assure that the estimates differ by
less than 5 feet? by less than 1 foot?

2. Use the grid to estimate the area of the region
bounded by the curve, the horizontal axis, and the
lines Get an upper and a lower estimate
that are within 4 square units of one another.
Explain your procedure.

x � ±4.

This limit can be interpreted geometrically as the area between the graph 

of f and the horizontal axis from to The sum is called 

a Riemann sum. The limit of the Riemann sums

is called the definite integral of f from a to b and is denoted by

.

Definite integrals are studied fully in calculus. They have a wide variety
of other applications, including determining the lengths of curves and the
volumes of irregularly shaped solids, finding the amount of work done
by a force, and making sophisticated probability calculations.

�
b

a

f 1t2dt

lim
nSqa

n

i�1
f 1ti2¢t

a
n

i�1
˛

f 1ti2¢tt � b.t � a

Exercises

1. A driver slams on the brakes and comes to a stop
in five seconds. The following velocities are
recorded after the brakes are applied.

3. a. For the diagram below, estimate the shaded
area with an error of at most 0.1.

b. How can the shaded area be approximated to
any desired degree of accuracy?

y

t

4

420−2−4

2

y y = e

t

10−1

x2

3−

y

t

9 107 81 2 3 4 5 60

2

4. Estimate the total distance an object travels
between and if the graph below
represents the velocity v of the object in ft/sec.

t � 10t � 0

5. Suppose the velocity of an object is given by 
for Estimate the distance

traveled during the 1.5-second interval, accurate
to one decimal place.

6. A snail is crawling at a velocity given by 

where hours and v is in feet per hour.
Estimate the distance that the snail crawls during
the second hour.

1 � t � 2

v1t2 �
1
t ,

0 � t � 1.5.� cos tv1t2
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Section A.1 Integral Exponents 969

This appendix reviews the fundamental algebraic facts that are used fre-
quently in this book. You must be able to handle these algebraic
manipulations in order to succeed in this course and in calculus.

ALGEBRA REVIEW

A.1 Integral Exponents

Exponents provide a convenient shorthand for certain products. If c is a
real number, then denotes cc and denotes ccc. More generally, for any
positive integer n

denotes the product (n factors).

In this notation is just c, so we usually omit the exponent 1.

Example 1

and

For every positive integer n,
■

Example 2

To find use the ^ (or or ) key on your calculator:*

2.4 ^ 9 ENTER*

which produces the (approximate) answer 2641.80754.
■

Because exponents are just shorthand for multiplication, it is easy to deter-
mine the rules they obey. For instance,

c7

c4 �
ccccccc

cccc �
ccccccc

cccc � ccc � c3,  that is,  c7

c4 � c7�4.

c3c5 � 1ccc2 1ccccc2 � c8,  that is,  c3c5 � c3�5.

xyab12.429

0n � 0 p  0 � 0.

1�225 � 1�22 1�22 1�22 1�22 1�22 � �32.

34 � 3 � 3 � 3 � 3 � 81

c1

ccc p  ccn

c3c2

*The ENTER key is labeled EXE on Casio calculators.
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Similar arguments work in the general case:

To multiply by add the exponents: 

To divide by subtract the exponents: 

Example 3

and

■

The notation can be extended to the cases when n is zero or negative
as follows:

If then is defined to be the number 1.

If and n is a positive integer, then

is defined to be the number 

Note that and negative powers of 0 are not defined (negative powers
of 0 would involve division by 0). The reason for choosing these defini-
tions of for nonzero c is that the multiplication and division rules for
exponents remain valid. For instance,

Example 4

and A calculator shows that 

■

If c and d are nonzero real numbers and m and n are integers (positive,
negative, or zero), then we have these

10.2872�12 � 3,201,969.857.*

1�22�5 �
1
1�225 � �

1
32.6�3 �

1
63 �

1
216

c7c�7 � c7a 1
c7b � 1 � c0,  so that  c7c�7 � c7�7.

c5 � c0 � c5 � 1 � c5,  so that  c5c0 � c5�0.

c�n

00

1
cn .c�n

c � 0

c0c � 0,

cn

28

23 � 28�3 � 25.42 � 47 � 42�7 � 49

cm

cn � cm�n.cn,cm

cmcn � cm�n.cn,cm

* means “approximately equal to.”�

1. 2.

3. 4.

5. 6. c�n �
1
cnQ cdR

n
�

cn

dn

(cd)n � cndn(cm)n � cmn

cm

cn � cm� ncmcn � cm�nExponent Laws
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Example 5

Here are examples of each of the six exponent laws.

1. 4.

2. 5.

3. 6.

■

The exponent laws can often be used to simplify complicated expressions.

Example 6

a.

Law (4) Law (3)

b.

Law (4) Law (3)

c. ■

Law (3) Law (4) Law (3) Law (2)
■

It is usually more efficient to use the exponent laws with the negative expo-
nents rather than first converting to positive exponents. If positive
exponents are required, the conversion can be made in the last step.

Example 7

Simplify and express without negative exponents

Solution

Law (4) Law (3)

Law (2)
■

c

 � a�2� 1�62b�4� 1�102c�6�1 � a4b6c�7 �
a4b6

c7 .

cc

 
a�2 1b2c32�2

1a�3b�522c �
a�2 1b22�21c32�2

1a�3221b�522c �
a�2b�4c�6

a�6b�10c

a�21b2c32�2

1a�3b�522c .

cccc

x51y223
1x2y22 �

x5y6

1x2 y22 �
x5y6

1x222y2 �
x5y6

x4y2 � x5�4y6�2 � xy4.

cc

1r�3s22�2 � 1r�32�21s22�2 � r6s�4 �
r6

s4 .

cc
12x2y3z24 � 241x2241y324z4 � 16x8y12z4.

1
x�5 �

1

a 1
x5b

� x5.15�322 � 51�322 � 5�6.

a7
3b

10

�
710

310 .x9

x4 � x9�4 � x5.

12x25 � 25x5 � 32x5.p�5p2 � p�5�2 � p�3 �
1
p3 .

CAUTION

is not the same as
Part 4 of Example 5

shows that 
and not 2x 5.

12x 25 � 32x5
2x 5.
12x 25
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Since any even power of such as or will
be equal to 1. Every odd power of is equal to for instance

Consequently, for every positive number c

Example 8

and 
■

1�523 � �53 � �125.1�324 � 34 � 81

e cn

�cn

if n is even
if n is odd

.(�c)n � [(�1)c]n � (�1)ncn �

1�125 � 1�1241�12 � 11�12 � �1.
�1;�1

1�1212,1�124�1,1�12 1�12 � �1,

Exercises A.1

In Exercises 1–18, evaluate the expression.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

In Exercises 19–38, simplify the expression. Each let-
ter represents a nonzero real number and should
appear at most once in your answer.

32a1
3 �

1
3�2b1

23 �
1

2�4

43 � 5�2 � 42 � 5�122 � 3�3 � 32 � 2�3

13�1 � 332212�2 � 222
33 � 3�724 � 27

a5
7b

2

� a2
7b

2a1
3b

3

� a2
3b

3

�a7
4 �

3
4b

2a�5
4 b

3

1�422 � 2
1�422 � 7

� 1
1�322 � 1�224

�22 � 1

1�3222 � 42 � 15 � 4132 � 232
�621�622

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

In Exercises 39–42, express the given number as a
power of 2.

39. 40.

41. 42. a1
2 b

�8a1
4 b

4a 1
16 b

�3124 � 16�223

a1
8b

316422

13x 2y42012x2y2013xy2
12y32313y22�21�3a42219x32�1

13x2�312y2�212x212x2�212y2314x2
c4d5c�3a�2b3a3

13d2412d2215d212w2313w2 14w22
1b32 1�b22 13b21a22 17a2 1�3a32
12xy32313x2y22
13y3245y212x2233x

11.32z3 � z510.032y2 � y7

y � y4 � y6x2 � x3 � x5

CAUTION

Be careful with negative bases. For instance, if you want to
compute which is a positive number, but you key in 12
^ 4 ENTER the calculator will interpret this as and produce
a negative answer. To get the correct answer, you must key in the
parentheses:

( ( ) 12 ) ^ 4 ENTER.�

�11242 1�21�1224,
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In Exercises 43–60, simplify and write the given
expression without negative exponents. All letters rep-
resent nonzero real numbers.

43. 44.

45. 46.

47. 48.

49. 50.

51. 52.

53. 54.

55. 56.

57. 58.

59. 60. a�2

b�2 �
b2

a2a21a�1 � a�32
3 1x2y�122 4�31c�1d�22�3

1�2cd2e�123
15c�3de2�2

1a�3b2c2�2

1ab�2c32�1

a5u2v
2uv2b

2 a�3uv
2u2v

b�3a3x
y2 b

�3a�x
2y3b

2

a x�1

2y�1b a2y
x b

�2a c5

d�3b
�2

ax�2

y�2b
2a a6

b�4b
2

13x221 y223x2

12xy223aab2c3d4

abc2d
b2

ax7

y6b
2

� ay2

x b
4ae6

c4b
2

� ac3

e b
3

az2

t3 b
4

� az3

t b
5x41x223

x3

In Exercises 61–66, determine the sign of the given
number without calculating the product.

61. 62.

63. 64.

65.

66.

In Exercises 67–72, r, s, and t are positive integers and
a, b, and c are nonzero real numbers. Simplify and write
the given expression without negative exponents.

67. 68. 69.

70. 71. 72.

In Exercises 73–80, give an example to show that the
statement may be false for some numbers.

73. 74.

75. 76.

77. 78.

79. 80. 1�a2 1�b2 � �ab1�a22 � �a2

1a � 12 1b � 12 � ab � 1
r
scr

cs � c

c�r � �crarbs � 1ab2r�s

aras � arsar � br � 1a � b2r

1arb�s2�t

1btcr 2�s

1c�rbs2t
1ctb�s2r

c�t

16b2�s

a a6

b�4b
t4�1t�12

4 2�t
3�r

3�s�r

145.82�71�7.92�91�8.52�4

1�3.12�314.62�617.227
1�4212691�12916.725
14.12�212.52�31�2.6231�4.32�2

A.2 Arithmetic of Algebraic Expressions

Expressions such as

are called algebraic expressions. Each expression represents a number
that is obtained by performing various algebraic operations (such as addi-
tion or taking roots) on one or more numbers, some of which may be
denoted by letters.

A letter that denotes a particular real number is called a constant; its value
remains unchanged throughout the discussion. For example, the Greek
letter has long been used to denote the number 
Sometimes a constant is a fixed but unspecified real number, as in “an
angle of k degrees” or “a triangle with base of length b.”

A letter that can represent any real number is called a variable. In 
the expression for example, the variable x can be any real 2x � 5,

3.14159 p .p

b � 3c2,  3x2 � 5x � 4,  2x3 � z,  
x3 � 4xy � p

x2 � xy
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*We assume any conditions on the constants and variables necessary to guarantee that an
algebraic expression does represent a real number. For instance, in we assume 

and in we assume c � 0.1
c

z � 01z

number. If then If then 

and so on.*

Constants are usually denoted by letters near the beginning of the alpha-
bet and variables by letters near the end of the alphabet. Consequently,
in expressions such as and it is understood that c and d
are constants and x and y are variables.

The usual rules of arithmetic are valid for algebraic expressions:
Commutative Laws:

Associative Laws:

Distributive Laws:

Example 1

Use the distributive law to combine like terms; for instance,

In practice, you do the middle part in your head and simply write

■

Example 2

In more complicated expressions, eliminate parentheses, use the commu-
tative law to group like terms together, and then combine them.

■

Regroup:

Combine like terms:
■

5ab.�41c�8a2b�

� a2b � 7a2b � 31c � 71c � 5ab

Aa2b � 31c B � A5ab � 71c B � 7a2b � a2b � 31c � 5ab � 71c � 7a2b

3x � 5x � 4x � 12x.

3x � 5x � 4x � 13 � 5 � 42x � 12x.

a1b � c2 � ab � ac and 1b � c2a � ba � ca.

1a � b2 � c � a � 1b � c2 and 1ab2c � a1bc2

a � b � b � a and ab � ba

cy2 � dy,cx � d

2x � 5 � 2 �
1
2 � 5 � 6,

x �
1
2,2x � 5 � 2 � 3 � 5 � 11.x � 3,

CAUTION

Be careful when parentheses are preceded by a minus sign:
and not Here’s the reason: 

means , so that by the distributive law,

Similarly, �17 � y2 � �7 � 1�y2 � �7 � y.

�1b � 32 � 1�12 1b � 32 � 1�12b � 1�123 � �b � 3.

1�12 1b � 32 �1b � 32�b � 3.�1b � 32 � �b � 3

⎧ ⎪ ⎨ ⎪ ⎩ ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩
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The examples in the Caution Box illustrate the following.

The usual method of multiplying algebraic expressions is to use the dis-
tributive laws repeatedly, as shown in the following examples. The net
result is to multiply every term in the first sum by every term in the second
sum.

Example 3

To compute we first apply the distributive law,
treating as a single number:

■

Example 4

We follow the same procedure with 

■

Observe the pattern in the second line of Example 4 and its relationship
to the terms being multiplied:

� 20y2.7xy� 6x2 �

 � 6x2 � 8xy � 15xy � 20y2

 � 2x � 3x � 2x � 4y � 1�5y2 � 3x � 1�5y2 � 4y

 12x � 5y2 13x � 4y2 � 2x13x � 4y2 � 5y13x � 4y2
12x � 5y2 13x � 4y2:

� 8.18y�13y2� 3y3 �

 � 3y3 � 7y2 � 6y2 � 4y � 14y � 8
 � 3y3 � 7y2 � 4y � 6y2 � 14y � 8

 1y � 22 13y2 � 7y � 42 � y13y2 � 7y � 42 � 213y2 � 7y � 42
13y2 � 7y � 421y � 22 13y2 � 7y � 42,

Parentheses preceded by a plus sign (or no sign) may be
deleted.

Parentheses preceded by a minus sign may be deleted if the
sign of every term within the parentheses is changed.

Rules for
Eliminating

Parentheses

Distributive law:

Regroup:

Combine like terms:

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩

12x � 5y2 13x � 4y2
12x � 5y2 13x � 4y2
12x � 5y2 13x � 4y2
12x � 5y2 13x � 4y2 � 2x � 3x � 2x � 4y � 1�5y2 � 3x � 1�5y2 � 4y>

First terms

>

Outside terms

>

Inside terms

>

Last terms
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This pattern is easy to remember by using the acronym FOIL (First, Out-
side, Inside, Last). The FOIL method makes it easy to find products such
as this one mentally, without the necessity of writing out the intermedi-
ate steps.

Example 5

First Outside Inside Last
■

cccc
13x � 22 1x � 52 � 3x2 � 15x � 2x � 10 � 3x2 � 17x � 10.

Exercises A.2

In Exercises 1–54, perform the indicated operations
and simplify your answer.

1. 2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14. 15.

16.

17. 18.

19. 20.

21. 22.

23. 24. 1x � 22 12x � 521x � 12 1x � 22
1�3ay2 14ay � 5y23ab14a � 6b � 2a2b2
�3x2112x6 � 7x526z312z � 52
2x1x2 � 3xy � 2y223ax14ax � 2a2y � 2ay2

x2y1xy � 6xy22
1�5y2 1�3y2 � 122x1x2 � 22

1x2 � 3xy2 � 1x � xy2 � 1x2 � xy2
Ax � 1y � z B � Ax � 1y � z2 � 11y � z � x B
19x � x3 � 12 � 32x3 � 1�62x � 1�72 4
1x5y � 2x � 3xy32 � 1�2x � x5y � 2xy32
34z � 6z2w � 1�22z3w2 4 � 18 � 6z2w � zw3 � 4z3w22
A6a2b � 3a1c � 5ab1c B � A�6ab2 � 3ab � 6ab1c B
Su4 � 1�32u3 �

u
2 � 1T � Qu4 � 2u3 � 5 �

u
2R

Su4 � 1�32u3 �
u
2 � 1T � Qu4 � 2u3 � 5 �

u
2R

1x2 � 2x � 12 � 1x3 � 3x2 � 42
�6x31t � 7x31t � 15x31t

6a2b � 1�8b2a2

5w � 7w � 3wx � 7x

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

43.

44.

45.

46.

47.

48.

49. 50.

51.

52.

53.

54. 12x � y2 13x � 2y2 1 y � x2
1x � 4y2 12y � x2 13x � y2
1 y � 22 13y � 22 1 y � 22
1x � 12 1x � 22 1x � 32

3y1�y � 22 13y � 122x13x � 12 14x � 22
15x � 2y2 1x2 � 2xy � 3y22
15w � 62 1�3w2 � 4w � 32
1x � 2y2 12x2 � xy � y22
12y � 32 1 y2 � 3y � 12
1c � 22 12c2 � 3c � 12
1�3x2 � 2y422

14x3 � 5y22 14x3 � 5y2214x3 � y422
12s2 � 9y2 12s2 � 9y215x � b22
12x � 3y221 y � 1122
1x � 62214a � 5b2 14a � 5b2
13x � y2 13x � y21x � 42 1x � 42
1 y � 82 1 y � 821 y � 32 13y2 � 42
1ab � 12 1a � 2213x � 72 1�2x � 52
1w � 22 13w � 121 y � 32 1 y � 42
1 y � 62 12y � 221�2x � 42 1�x � 32

CAUTION

The FOIL method can
be used only when
multiplying two
expressions that each
have two terms.
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In Exercises 55–64, find the coefficient of in the
given product. Avoid doing any more multiplying than
necessary.

55. 56.

57. 58.

59. 60.

61.

62.

63.

64.

In Exercises 65–70, perform the indicated multiplica-
tion and simplify your answer if possible.

65.

66.

67. 68.

69. 70.

In Exercises 71–76, compute the product and arrange
the terms of your answer according to decreasing pow-
ers of x, with each power of x appearing at most once.

Example: 

71. 72.

73. 74.

75. 76.

In Exercises 77–82, assume that all exponents are non-
negative integers and find the product.

77. 78. 12xn2 18xk23r343t

 � 6xk�1 � 2xk�n�1.

Example:  2xk(3x � xn�1) � (2xk)(3x) � (2xk)(xn�1)

12dx � c2 13cx � d21x � a2 1x � b2 1x � c2
rx13rx � 12 14x � r21ax � b2 1bx � a2
14x � c2 1dx � c21ax � b2 13x � 22

(ax � b)(4x � c) � 4ax2 � (4b � ac)x � bc.

A2y � 13 B A15y � 1 BA1 � 13x B Ax � 13 B
A7w � 12x B 2A3 � 1y 2 2

A21x � 12y B A21x � 12y B
A1x � 5 B A1x � 5 B

11 � 2x2 14x2 � x � 12
12x � 12 1x2 � 3x � 22
12x2 � 12 12x2 � 12
1x2 � x � 12 1x2 � x � 12

1x2 � x � 12 1x � 121x � 223
A13 � x B A13 � x B1x3 � 2x � 62 1x2 � 12
1x2 � 12 1x � 121x2 � 3x � 12 12x � 32

x2 79. 80.

81.

82.

In Exercises 83–92, find a numerical example to show
that the given statement is false. Then find the mis-
take in the statement and correct it.

Example: The statement is false
when since but The
mistake is the sign on the 2. The correct statement 
is 

83.

84.

85. 86.

87. 88.

89. 90.

91.

92.

In Exercises 93 and 94, explain algebraically why each
of these parlor tricks always works.

93. Critical Thinking Write down a nonzero number.
Add 1 to it and square the result. Subtract 1 from
the original number and square the result.
Subtract this second square from the first one.
Divide by the number with which you started.
The answer is 4.

94. Critical Thinking Write down a positive number.
Add 4 to it. Multiply the result by the original
number. Add 4 to this result and then take the
square root. Subtract the number with which you
started. The answer is 2.

95. Critical Thinking Invent a similar parlor trick in
which the answer is always the number with
which you started.

1a � b2 1a2 � b22 � a3 � b3

1x � 32 1x � 22 � x2 � 5x � 6

1a � b22 � a2 � b2y � y � y � y3

1x � y22 � x2 � y217x2 17y2 � 7xy

12x23 � 2x31x � y22 � x � y2

x � 13y � 42 � x � 3y � 4

31 y � 22 � 3y � 2

�(b � 2) � �b � 2.

�5 � 2 � �3.�(5 � 2) � �7b � 5,
�(b � 2) � �b � 2

13y 2k � yk � 12 1 yk � 32
12xn � 52 1x3n � 4xn � 12

1 yr � 12 1 ys � 421xm � 22 1xn � 32
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A.3 Factoring

Factoring is the reverse of multiplication: We begin with a product and
find the factors that multiply together to produce this product. Factoring
skills are necessary to simplify expressions, to do arithmetic with frac-
tional expressions, and to solve equations and inequalities.

The first general rule for factoring is

If there is a common factor in every term of the expression,
factor out the common factor of highest degree.

Common
Factors

Example 1

In for example, each term contains a factor of so that
Similarly, the common factor of highest degree in

is and

■

You can greatly increase your factoring proficiency by learning to recog-
nize multiplication patterns that appear frequently. Here are the most
common ones.

x3y2 � 2xy3 � 3x2y4 � xy21x2 � 2y � 3xy22.
xy2x3y2 � 2xy3 � 3x2y4

4x6 � 8x � 4x1x5 � 22. 4x,4x6 � 8x,

Difference of Squares

Perfect Squares

u2 � 2uv � v2 � (u � v)2

u2 � 2uv � v2 � (u � v)2

u2 � v2 � (u � v)(u � v)
Quadratic
Factoring
Patterns

Example 2

a. can be written a difference of squares. Therefore,

b.

c.

■
 � 213r � 4s2213r � 4s2 � 413r � 4s2 13r � 4s2. 36r2 � 64s2 � 16r22 � 18s22 � 16r � 8s2 16r � 8s2

y2 � 7 � y2 � A17 B 2 � Ay � 17 B Ay � 17 B .*
x2 � 9y2 � 1x � 3y2 1x � 3y2.x2 � 13y22,x2 � 9y2

*When a polynomial has integer coefficients, we normally look only for factors with inte-
ger coefficients. But when it is easy to find other factors, as here, we shall do so.
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Difference of Cubes

Sum of Cubes

Perfect Cubes

u3 � 3u2v � 3uv2 � v3 � (u � v)3

u3 � 3u2v � 3uv2 � v3 � (u � v)3

u3 � v3 � (u � v)(u2 � uv � v2)

u3 � v3 � (u � v)(u2 � uv � v2)
Cubic 

Factoring
Patterns

Example 3

Since the first and last terms of are perfect squares, we try
to use the perfect square pattern with and 

■
 � 12x22 � 2 � 2x � 9 � 92 � 12x � 922.

 4x2 � 36x � 81 � 12x22 � 36x � 92

v � 9:u � 2x
4x2 � 36x � 81

Example 4

a.

b.

c.

■

When none of the multiplication patterns applies, use trial and error to
factor quadratic polynomials. If a quadratic has two first-degree factors,
then the factors must be of the form and for some constants
a, b, c, d. The product of such factors is

Note that ac is the coefficient of and bd is the constant term of the prod-
uct polynomial. This pattern can be used to factor quadratics by reversing
the FOIL process.

Example 5

If factors as then we must have (coef-
ficient of ) and (constant term). Thus, and (the
only integer factors of 1). The only possibilities for b and d are

We mentally try the various possibilities, using FOIL as our guide. For
example, we try and check this factorization: 
The sum of the outside and inside terms is so this prod-9x � 2x � 11x,

1x � 22 1x � 92.d � 9b � 2,

±1, ±18  or  ±2, ±9  or  ±3, ±6.

c � ±1a � ±1bd � 18x 2
ac � 11ax � b2 1cx � d2,x2 � 9x � 18

x2

 � acx2 � 1ad � bc2x � bd.
 1ax � b2 1cx � d2 � acx2 � adx � bcx � bd

cx � dax � b

 � 1x � 423. � x3 � 3x2 � 4 � 3x � 42 � 43
 x3 � 12x2 � 48x � 64 � x3 � 12x2 � 48x � 43

 � 1x � 2y2 1x2 � 2xy � 4y22. x3 � 8y3 � x3 � 12y23 � 1x � 2y2 3x2 � x � 2y � 12y22 4
 � 1x � 52 1x2 � 5x � 252. x3 � 125 � x3 � 53 � 1x � 52 1x2 � 5x � 522
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uct can’t be By trying other possibilities we find that 
leads to the correct factorization: 

■

Example 6

To factor as we must find numbers a and
c whose product is 6, the coefficient of and numbers b and d whose
product is the constant term 4. Some possibilities are

x2,
1ax � b2 1cx � d2,6x2 � 11x � 4

x2 � 9x � 18 � 1x � 32 1x � 62.d � 6
b � 3,x2 � 9x � 18.

a

c ±1±2±3±6

±6±3±2±1 b

d ±1±2±4

±4±2±1ac � 6  bd � 4

Trial and error shows that 
■

Occasionally the patterns above can be used to factor expressions involv-
ing larger exponents than 2.

Example 7

a.

b.

■

Example 8

To factor let Then,

■

■

■

■

Example 9

can be factored by regrouping and using the distrib-
utive law to factor out a common factor:

■

■
■

 � 13x2 � 22 1x � 12.
 13x3 � 3x22 � 12x � 22 � 3x21x � 12 � 21x � 12

3x3 � 3x2 � 2x � 2

� Ax2 � 1 B Ax � 13 B Ax � 13 B .
� 1x2 � 12 1x2 � 32

 � u2 � 2u � 3 � 1u � 12 1u � 32
 x4 � 2x2 � 3 � 1x222 � 2x2 � 3

u � x2.x4 � 2x2 � 3,

 � 1x4 � 12 1x2 � 12 1x � 12 1x � 12.
 � 1x4 � 12 1x2 � 12 1x2 � 12

 x8 � 1 � 1x422 � 1 � 1x4 � 12 1x4 � 12
 � 1x � y2 1x2 � xy � y22 1x � y2 1x2 � xy � y22. x6 � y6 � 1x322 � 1y322 � 1x3 � y32 1x3 � y32

12x � 12 13x � 42 � 6x2 � 11x � 4.
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Exercises A.3

In Exercises 1–58, factor the expression.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36. 63u2 � 46uv � 8v24x2 � 20xy � 25y2

2y2 � 4y � 28u2 � 6u � 9

7z2 � 23z � 610x2 � 8x � 2

4x2 � 4x � 39x2 � 72x

10x2 � 17x � 32z2 � 11z � 12

4y2 � 4y � 13x2 � 4x � 1

x2 � 3xy � 28y2x2 � 11x � 18

w2 � 6w � 16x2 � 7x � 10

4y2 � 81x2 � 6x � 9

z2 � 9z � 14y2 � 5y � 36

x2 � 8x � 15z2 � 4z � 3

y2 � 11y � 30x2 � x � 6

x2 �
1
9x4 � y4

25u2 � 20uv � 4v249 � 28z � 4z2

1 � 36u25 � x2

4x2 � 12x � 981x2 � 36x � 4

y2 � 4y � 49y2 � 25

x2 � 6x � 9x2 � 4

37. 38.

39. 40.

41. 42.

43.

44. 45.

46. 47.

48. 49.

50. 51.

52. 53.

54. 55.

56. 57.

58.

In Exercises 59–64, factor by regrouping and using the
distributive law (as in Example 9).

59. 60.

61. 62.

63. 64.

65. Critical Thinking Show that there do not exist real
numbers c and d such that 
1x � c2 1x � d2.

x2 � 1 �

z8 � 5z7 � 2z � 10x3 � 4x2 � 8x � 32

u2v � 2w2 � 2uvw � uwa3 � 2b2 � 2a2b � ab

x6 � 2x4 � 8x2 � 16x2 � yz � xz � xy

x8 � 17x4 � 16

x4 � 2x2y � 3y2y6 � 26y3 � 27

z6 � 1x6 � 16x3 � 64

81 � y4z4 � 5z2 � 6

y4 � 7y2 � 10x5 � 8x2

x6 � 641x � 123 � 1

8x3 � y3x3 � 1

x3 � 127 � t3

�x3 � 15x2 � 75x � 125

z3 � 9z2 � 27z � 278 � x3

y3 � 3y2 � 3y � 1x3 � 6x2 � 12x � 8

y3 � 64x3 � 125

A.4 Fractional Expressions

Quotients of algebraic expressions are called fractional expressions. A
quotient of two polynomials is sometimes called a rational expression.
The basic rules for dealing with fractional expressions are essentially the 

same as those for ordinary numerical fractions. For instance, and 

the “cross products” are equal: In the general case we have2 � 6 � 4 � 3.

2
4 �

3
6
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The cancellation property follows directly from the equality rule because

Example 1

Here are examples of the two properties:

1. because the cross products are equal:

2.

■

A fraction is in lowest terms if its numerator (top) and denominator (bot-
tom) have no common factors except To express a fraction in lowest
terms, factor numerator and denominator and cancel common factors.

Example 2

■

To add two fractions with the same denominator, simply add the numer-

ators as in ordinary arithmetic: Subtraction is done 

similarly.

Example 3

■

 � 3x2 � 2x � 7
x2 � 3

.

 � 7x2 � 2 � 4x2 � 2x � 5
x2 � 3

 7x2 � 2
x2 � 3

�
4x2 � 2x � 5

x2 � 3
�
17x2 � 22 � 14x2 � 2x � 52

x2 � 3

a
b

�
c
b

�
a � c

b
.

x2 � x � 6
x2 � 3x � 2

�
1x � 22 1x � 32
1x � 22 1x � 12 �

x � 3
x � 1.

±1.

x4 � 1
x2 � 1

�
1x2 � 12 1x2 � 12
1x2 � 12 �

x2 � 1
1 � x2 � 1.

1x2 � 2x2 1x � 12 � x3 � x2 � 2x � 1x2 � x � 22x.

x2 � 2x
x2 � x � 2

�
x

x � 1

1ka2b � 1kb2a.

1. Equality rule: exactly when *

2. Cancellation property: If then ka
kb

�
a
b

.k � 0,

ad � bc.a
b

�
c
d

Properties 
of Fractions

*Throughout this section we assume that all denominators are nonzero.
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To add or subtract fractions with different denominators, you must first
find a common denominator. One common denominator for a/b and c/d
is the product of the two denominators bd because both fractions can be
expressed with this denominator:

Consequently,

Example 4

■

Although the product of the denominators can always be used as a com-
mon denominator, it’s often more efficient to use the least common
denominator. The least common denominator can be found by factoring
each denominator completely (with integer coefficients) and then taking
the product of the highest power of each of the distinct factors.

Example 5

In the sum the denominators are and 

The distinct factors are 2, 3, 5. The highest exponent of 
2 in either denominator is 3, the highest of 3 is 1, and the highest of 5 is
2. So the least common denominator is 

■

Example 6

To find the least common denominator of and 

factor each of the denominators completely:

1x � 122,  x1x � 12,  x31x � 12,

3x � 7
x4 � x3 ,

5x
x2 � x

,1
x2 � 2x � 1

,

1
100 �

1
120 �

6
600 �

5
600 �

11
600.

23 � 3 � 52 � 600

120 � 23 � 3 � 5.

100 � 22 � 521
100 �

1
120,

 � �3x3 � 2x2 � 5x � 1
3x2 � 3x

.

 � 2x2 � x � 1 � 3x3 � 6x
3x2 � 3x

 �
12x � 12 1x � 12 � 3x1x2 � 22

3x1x � 12

 2x � 1
3x �

x2 � 2
x � 1 �

12x � 12 1x � 12
3x1x � 12 �

3x1x2 � 22
3x1x � 12

a
b

�
c
d

�
ad
bd

�
bc
bd

�
ad � bc

bd
  and  a

b
�

c
d

�
ad
bd

�
bc
bd

�
ad � bc

bd
.

a
b

�
ad
bd

  and  c
d

�
bc
bd

.
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The distinct factors are and The least common denomi-
nator is determined by the highest power of each factor:

■

To express one of several fractions in terms of the least common denomi-
nator, multiply its numerator and denominator by those factors in the
common denominator that don’t appear in the denominator of the fraction.

Example 7

The preceding example shows the least common denominator (LCD) of 

and to be Therefore,

■

Example 8

To find we use the LCD 

■

Multiplication of fractions is easy: Multiply corresponding numerators
and denominators, then simplify your answer.

Example 9

■

 �
1x � 12 1x � 12 13x � 42
1x2 � 22 1x � 12 �

1x � 12 13x � 42
x2 � 2

.

 x
2 � 1

x2 � 2
�

3x � 4
x � 1 �

1x2 � 12 13x � 42
1x2 � 22 1x � 12

 � 2z3 � 4z2 � 2z � 1
z1z � 122 .

 � z2 � 2z � 1 � 3z3 � 3z2 � z3

z1z � 122
 �
1z � 122 � 3z21z � 12 � z3

z1z � 122

 1z �
3z

z � 1 �
z2

1z � 122 �
1z � 122

z1z � 122 �
3z21z � 12
z1z � 122 �

z3

z1z � 122

z1z � 122:1
z �

3z
z � 1 �

z2

1z � 122

 3x � 7
x31x � 12 �

3x � 7
x31x � 12 �

1x � 12 1x � 12
1x � 12 1x � 12 �

13x � 72 1x � 12 1x � 12
x31x � 1221x � 12 .

 5x
x1x � 12 �

5x
x1x � 12 �

x21x � 122
x21x � 122 �

5x31x � 122
x31x � 1221x � 12

 1
1x � 122 �

1
1x � 122 �

x31x � 12
x31x � 12 �

x31x � 12
x31x � 1221x � 12

x31x � 1221x � 12.3x � 7
x31x � 12

5x
x1x � 12 ,1

1x � 122 ,

x31x � 1221x � 12.
x � 1.x � 1,x,
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Division of fractions is given by the rule:

Invert the divisor and multiply:

Example 10

■

Division problems can also be written as fractions. For instance, means 

Similarly, the compound fraction means So, 

the basic rule for simplifying compound fractions is: Invert the denomina-
tor and multiply it by the numerator.

Example 11

a.  

16y2z
8yz2

yz
6y3z3

�
16y2z
8yz2 �

6y3z3

yz
�

16 � 6 � y5z4

8y2z3

a
b

�
c
d

.

a
b
c
d

8 � 2 � 4.

8
2

 � x � 21x � 32 1x � 12 .
 �
1x � 22 1x � 12
1x � 322 �

x � 3
1x � 12 1x � 12

 x
2 � x � 2

x2 � 6x � 9
�

x2 � 1
x � 3 �

x2 � x � 2
x2 � 6x � 9

�
x � 3
x2 � 1

a
b

�
c
d

�
a
b

�
d
c �

ad
bc

.

Exercises A.4

In Exercises 1–10, express the fraction in lowest terms.

1. 2. 3.

4. 5. 6. z � 1
z3 � 1

x2 � x � 2
x2 � 2x � 1

x2 � 4
x � 2

13 � 27 � 22 � 10
6 � 4 � 11 � 12

121
33

63
49

7. 8.

9. 10.
x4 � y4

1x2 � y22 1x2 � xy2
1x � c2 1x2 � cx � c22

x4 � c3x

x4 � 3x2

x3
a2 � b2

a3 � b3

b.

■

 �
y

1y � 22 1y2 � 12 .
 �

y2

1y � 22y1y2 � 12

 

y2

y � 2

 y3 � y 
�

y2

y � 2
�

1
y3 � y

�
y2

1y � 22 1y3 � y2

 � 2 � 6 � y5�2z4�3 � 12y3z.
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In Exercises 11–28, perform the indicated operations.

11. 12. 13.

14. 15. 16.

17. 18. 19.

20.

21.

22. 23.

24. 25.

26.

27.

28.

In Exercises 29–42, express in lowest terms.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39.

40.

41.

42.
2x2 � 3xy � 2y2

6x2 � 5xy � 4y2 �
6x2 � 6xy

x2 � xy � 2y2

2u2 � uv � v2

4u2 � 4uv � v2 �
8u2 � 6uv � 9v2

4u2 � 9v2

t2 � t � 6
t2 � 6t � 9

�
t2 � 4t � 5

t2 � 25

u
u � 1 �

u2 � 1
u2

6x � 12
6x �

8x2

x � 2
5y � 25

3 �
y2

y2 � 25

4x � 16
3x � 15 �

2x � 10
x � 4

3x � 9
2x �

8x2

x2 � 9

ab
c2 �

cd
a2b

�
ad
bc2

7x
11y

�
66y2

14x3

6x2y
2x �

y
21xy

3a2c
4ac

�
8ac3

9a2c4

10
45 �

6
14 �

1
2

3
4 �

12
5 �

10
9

x � y
1x2 � xy2 1x � y22 �

2
1x2 � y222

1
4x1x � 12 1x � 223 �

6x � 2
41x � 123

6
51x � 12 1x � 222 �

x
31x � 1221x � 22

1
x � y �

x � y
x3 � y3

3
x � 1 �

4
x � 1

1
x �

1
3x � 4

1
x �

1
xy �

1
xy2

1
x � 4 �

2
1x � 422 �

3
x2 � 8x � 16

1
2x � 1 �

1
2x � 1

1
x � 1 �

1
x

a
b

�
2a
b2 �

3a
b3

b
c �

c
b

r
s �

s
t �

t
r

c
d

�
3c
e

1
a �

2a
b

a19
7 �

1
2b �

1
3

7
8 �

5
6

3
7 �

2
5

In Exercises 43–60, compute the quotient and express
in lowest terms.

43. 44. 45.

46. 47. 48.

49. 50.

51. 52. 53.

54. 55.

56. 57.

58. 59.

60.

In Exercises 61–67, find a numerical example to show
that the given statement is false. Then find the mis-
take in the statement and correct it.

61. 62.

63. 64.

65. 66.

67. A1x � 1y B  1
1x � 1y

� x � y

1
x

 1y  
�

1
xy

u
v �

v
u � 1

r � s
r � t � 1 �

s
ta 1

1a � 1b
b2

�
1

a � b

x2

x2 � x6 � 1 � x31
a

�
1
b

�
1

a � b

1x � y2�1

x�1 � y�1

1x�1 � y�12�1

 1
1x � h22 �

1
x2  

h

 1
x � h

�
1
x

 

h

 1
3x �

1
4y

 

5
6x2 �

1
y

6
y � 3

 1 �
1

y � 1 

 x
x � 1 �

1
x

 

1
x

�
1

x � 1

 1
x2 �

1
y2  

1
x �

1
y

1
x

�
3
2

 2
x � 2 �

5
x

 

 1c � d22 
c2 � d2

cd

u3 � v3

u2 � v2

 u
2 � uv � v2

u � v  

x � y
x � 2y � ax � y

xy
b2

 
1x � 222
1x � 222  

x2 � 2x
x2 � 4

 x � 3
x � 4 

2x
x � 4

3x2y
1xy22 �

3xyz
x2y

uv
v2w

�
uv
u2v

 100
52  

27
26

5
12 �

4
14
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Before proving the distance formula, we shall see how it is used.

Example 1

To find the distance between the points and in Figure
A.5–1, substitute for and for in the distance
formula.

Distance formula:

Substitute:

Simplify:

The order in which the points are used in the distance formula doesn’t
make a difference. If we substitute for and for

we get the same answer:

■

Example 2

To find the distance from (a, b) to where a and b are fixed real
numbers, substitute a for b for 2a for and for in the dis-
tance formula:

■
 � 2a2 � 4b2

 � 21�a22 � 1b � b22 � 2a2 � 12b22
 21x1 � x222 � 1y1 � y222 � 21a � 2a22 � 1b � 1�b2 22

y2�bx2,y1,x1,
12a, �b2,

2 32 � 1�12 4 2 � 3�4 � 1�32 4 2 � 232 � 1�122 � 110.

1x2, y22,
1�1, �321x1, y1212, �42

 � 19 � 1 � 110

 � 21�322 � 1�3 � 422
 � 21�1 � 222 � 1�3 � 1�42 22

 distance � 21x1 � x222 � 1y1 � y222
1x2, y2212, �421x1, y121�1, �32 12, �421�1, �32

A.5 The Coordinate Plane

The Distance Formula

We shall often identify a point with its coordinates and refer, for exam-
ple, to the point (2, 3). When dealing with several points simultaneously,
it is customary to label the coordinates of the first point the sec-
ond point the third point and so on.* Once the plane is
coordinatized, it’s easy to compute the distance between any two points:

1x3, y32,1x2, y22,
1x1, y12,

The distance between points and is

.2(x1 � x2)
2 � (y1 � y2)

2

(x2, y2)(x1, y1)
The Distance

Formula

y

−2

−4

−2 2

10(−1, −3)

(2, −4)

x

Figure A.5-1

* “ ” is read “x-one” or “x-sub-one”; it is a single symbol denoting the first coordinate of the
first point, just as c denotes the first coordinate of (c, d). Analogous remarks apply to 

and so on.x2,
y1,

x1

CAUTION

cannot be
simplified. In particu-
lar, it is not equal to
a � 2b.

2a 2 � 4b 2
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Proof of the Distance Formula Figure A.5-2 shows typical points P
and Q in the plane. We must find length d of line segment PQ.

y

2

−1 3

(3, 1)

(−1, 4)

x

(1, 5
2)

Figure A.5-3

y

R

d

P(x1, y1)

Q(x2, y2)

⎜y1 − y2 ⎜

y2

y1

⎜x1 − x2 ⎜

x1 x2

x

Figure A.5-2

As shown in Figure A.5-2, the length of RQ is the same as the distance from
to on the x-axis (number line), namely, Similarly, the length

of PR is the same as the distance from to on the y-axis, namely, 
According to the Pythagorean Theorem* the length d of PQ is given by:

Since (because this equation becomes:

Since the length d is nonnegative, we must have

The distance formula can be used to prove the following useful fact (see
Exercise 54).

d � 21x1 � x222 � 1y1 � y222

d2 � 1x1 � x222 � 1y1 � y222
c2 � 02,0 c 0 2 � 0 c 0 � 0 c 0 � 0 c2 0 � c2

 d2 � 0 x1 � x2 0 2 � 0 y1 � y2 0 2
 1Length PQ22 � 1length RQ22 � 1length PR22

0y1 � y2 0 .y2y1

0 x1 � x2 0 .x2x1

The midpoint of the line segment from to is

ax1 � x2

2 , 
y1 � y2

2 b
(x2, y2)(x1, y1)

The Midpoint
Formula

Example 3

To find the midpoint of the segment joining and (3, 1), use the for-
mula in the box with and The midpoint is

as shown in Figure A.5-3.
■

ax1 � x2

2 , 
y1 � y2

2 b � a�1 � 3
2 , 4 � 1

2 b � a1, 52b
y2 � 1.x2 � 3,y1 � 4,x1 � �1,

1�1, 42

*See the Geometry Review Appendix.
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Graphs

A graph is a set of points in the plane. Some graphs are based on data
points. Other graphs arise from equations, as follows. A solution of an
equation in variables x and y is a pair of numbers such that the substitu-
tion of the first number for x and the second for y produces a true
statement. For instance, is a solution of because

and is not a solution because The graph of an
equation in two variables is the set of points in the plane whose coordi-
nates are solutions of the equation. Thus the graph is a geometric picture
of the solutions.

Example 4

The graph of is shown in Figure A.5-4. You can readily
verify that each of the points whose coordinates are labeled is a solu-
tion of the equation. For instance, is a solution because

■

Circles If (c, d ) is a point in the plane and r a positive number, then the
circle with center (c, d ) and radius r consists of all points (x, y) that lie r
units from (c, d), as shown in Figure A.5-5. According to the distance for-
mula, the statement that “the distance from (x, y) to (c, d) is r units” is
equivalent to:

Squaring both sides shows that (x, y) satisfies this equation:

Reversing the procedure shows that any solution (x, y) of this equation is
a point on the circle. Therefore,

1x � c22 � 1y � d22 � r2

21x � c22 � 1y � d22 � r

�1 � 02 � 2102 � 1.
10, �12

y � x2 � 2x � 1

51�22 � 7 � 3 � 1.1�2, 32
5 � 3 � 71�22 � 1

5x � 7y � 113, �22

y

−2

1

2

3

4

−1−2 2 3

y = x2 − 2x − 1

1
(0, −1)

(1.5, −1.75)

(−1, 2)

x

Figure A.5-4

(c, d)

(x, y)

r

Figure A.5-5

We say that is the equation of the circle with cen-
ter (c, d) and radius r. If the center is at the origin, then and
the equation has a simpler form:

1c, d2 � 10, 021x � c22 � 1y � d22 � r2

The circle with center (c, d) and radius r is the graph of

(x � c)2 � (y � d)2 � r 2.

Circle Equation

The circle with center (0, 0) and radius r is the graph of

x2 � y2 � r2.

Circle at 
the Origin
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Example 5

a. Letting shows that the graph of is the circle of radius
1 centered at the origin, as shown in Figure A.5-6. This circle is called
the unit circle.

b. The circle with center and radius 2, shown in Figure A.5-7, is
the graph of the equation

or equivalently,

■
1x � 322 � 1y � 222 � 4.

1 1x � 1�32 22 � 1y � 222 � 22

1�3, 22

x2 � y2 � 1r � 1

2
2

1

−1 1−2−3−4−5

3

4

x

y

(−3, 2)

y

2

1

−1

−2

−1−2 21

x

Figure A.5-6 Figure A.5-7

(3, −1)

(2, 4)

x

y

26

Figure A.5-8

Example 6

Find the equation of the circle with center that passes through 
(2, 4).

Solution

We must first find the radius. Since (2, 4) is on the circle, the radius is the
distance from (2, 4) to as shown in Figure A.5-8, namely,

The equation of the circle with center at and radius is

■

The equation of any circle can always be written in the form

for some constants B, C, D, as in Example 6 (where 
Conversely, the graph of such an equation can always be 

determined.
D � �162. C � 2,B � �6,

x2 � y2 � Bx � Cy � D � 0

x2 � y2 � 6x � 2y � 16 � 0.
 x2 � 6x � 9 � y2 � 2y � 1 � 26

 1x � 322 � 1y � 122 � 26
 1x � 322 � 1y � 1�12 22 � A126 B 2

12613, �12
212 � 322 � 14 � 1�12 22 � 11 � 25 � 126

13, �12

13, �12
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Example 7

To find the graph of we divide both
sides by 3 and rewrite the equation as

Next we complete the square in both expressions in parentheses (see page
91). To complete the square in we add 4 (the square of half the
coefficient of x) and to complete the square in we add 25 (why?).
In order to have an equivalent equation we must add these numbers to
both sides:

Since this is the equation of the circle with center (2, 5) and
radius 

■
114.

14 � 111422,
 1x � 222 � 1y � 522 � 14

 1x2 � 4x � 42 � 1y2 � 10y � 252 � �15 � 4 � 25

y2 � 10y
x2 � 4x,

1x2 � 4x2 � 1y2 � 10y2 � �15.

3x2 � 3y2 � 12x � 30y � 45 � 0,

Exercises A.5

In Exercises 1–8, find the distance between the two
points and the midpoint of the segment joining them.

1. 2.

3. 4.

5. 6.

7. 8.

9. According to the Information Technology Industry
Council, there were about 12 million personal
computers sold in the United States in 1992 and
about 36 million in 1998.
a. Represent the data graphically by two points.
b. Find the midpoint of the line segment joining

these points.
c. How might this midpoint be interpreted? What

assumptions, if any, are needed to make this
interpretation?

10. A standard baseball diamond (which is actually a
square) is shown in the figure at right. Suppose it
is placed on a coordinate plane with home plate at
the origin, first base on the positive x-axis, and
third base on the positive y-axis. The unit of
measurement is feet. 
a. Find the coordinates of first, second, and third

base.
b. If the left fielder is at the point (50, 325), how

far is he from first base?
c. How far is the left fielder in part b from the

right fielder, who is at the point (280, 20)?

1s, t2, 10, 021a, b2, 1b, a2
A�1, 15 B , A12, �13 BA12, 1 B , A13, 2 B
1�2, 32, 1�3, 2211, �52, 12, �12
12, 42, 11, 521�3, 52, 12, �72

In Exercises 11–14, find the equation of the circle with
given center and radius r.

11. 12.

13. 14.

In Exercises 15–18, sketch the graph of the equation.

15.

16.

17.

18. 1x � 622 � y2 � 4

1x � 522 � 1y � 222 � 5

1x � 122 � 1y � 322 � 9

1x � 222 � 1y � 422 � 1

15, �22; r � 110, 02; r � 12

1�2, �12; r � 31�3, 42; r � 2

Home plate

90 ft 90 ft

60.5 ft

90 ft90 ft

Pitcher's
mound 1st base3rd base

2nd base
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In Exercises 19–24, find the center and radius of the
circle whose equation is given.

19.

20.

21.

22.

23.

24.

In Exercises 25–27, show that the three points are the 
vertices of a right triangle, and state the length of the
hypotenuse. [You may assume that a triangle with
sides of lengths a, b, c is a right triangle with
hypotenuse c provided that ]

25.

26.

27.

28. What is the perimeter of the triangle with vertices
(1, 1), (5, 4), and 

In Exercises 29–36, find the equation of the circle.

29. Center (2, 2); passes through the origin.

30. Center passes through 

31. Center (1, 2); intersects x-axis at and 3.

32. Center (3, 1); diameter 2.

33. Center tangent (touching at one point) to
the x-axis.

34. Center tangent to the y-axis.

35. Endpoints of diameter are (3, 3) and 

36. Endpoints of diameter are and 

37. One diagonal of a square has endpoints 
and Find the endpoints of the other
diagonal.

38. Find the vertices of all possible squares with this
property: Two of the vertices are (2, 1) and (2, 5).
Hint: There are three such squares.

39. Do Exercise 38 with (c, d) and (c, k) in place of 
(2, 1) and (2, 5).

12, �42.
1�3, 12
17, �52.1�3, 52
11, �12.

12, �62;

1�5, 42;

�1

1�4, �22.1�1, �32;

1�2, 52?

13, �22, 10, 42, 1�2, 32
a12

2 , 0b, a12
2 , 
12
2 b, 10, 02

10, 02, 11, 12, 12, �22
a2 � b2 � c2.

3x2 � 3y2 � 12x � 12 � 18y

x2 � y2 � 25x � 10y � �12

x2 � y2 � 10x � 75 � 0

x2 � y2 � 6x � 4y � 15 � 0

15x2 � 15y2 � 10

x2 � y2 � 8x � 6y � 15 � 0

40. Find the three points that divide the line segment
from to into four parts of equal
length.

41. Find all points P on the x-axis that are 5 units
from (3, 4). Hint: P must have coordinates (x, 0)
for some x and the distance from P to (3, 4) is 5.

42. Find all points on the y-axis that are 8 units from

43. Find all points with first coordinate 3 that are 6
units from 

44. Find all points with second coordinate that are
4 units from (2, 3).

45. Find a number x such that (0, 0), (3, 2), and (x, 0)
are the vertices of an isosceles triangle, neither of
whose two equal sides lie on the x-axis.

46. Do Exercise 45 if one of the two equal sides lies
on the positive x-axis.

47. Show that the midpoint M of the hypotenuse of a
right triangle is equidistant from the vertices of
the triangle. Hint: Place the triangle in the first
quadrant of the plane, with right angle at the
origin so that the situation looks like the figure.

48. Show that the diagonals of a parallelogram bisect
each other. Hint: Place the parallelogram in the
first quadrant with a vertex at the origin and one
side along the x-axis, so that the situation looks
like the figure.

(c, 0)

(a, b) (a + c, b)

y

x

c

c

(s, 0)

(0, r)

y

x

M

�1

1�2, �52.

1�2, 42.

110, �921�4, 72
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49. Show that the diagonals of a rectangle have the
same length. Hint: Place the rectangle in the first
quadrant of the plane and label its vertices
appropriately, as in Exercises 47–48.

50. If the diagonals of a parallelogram have the same
length, show that the parallelogram is actually a
rectangle. Hint: See Exercise 48.

51. Critical Thinking For each nonzero real number k,
the graph of is a circle. Describe
all possible such circles.

52. Critical Thinking Suppose every point in the
coordinate plane is moved 5 units straight up.
a. To what point does each of these points go:

(2, 2), (5, 0), (5, 5), (4, 1)?
b. Which points go to each of the points in 

part a?
c. To what point does (a, b) go?
d. To what point does go?
e. What point goes to 
f. What points go to themselves?

1�4a, b2?
1a, b � 52

10, �52,

1x � k22 � y2 � k2

53. Critical Thinking Let (c, d) be any point in the
plane with Prove that (c, d) and 
lie on the same straight line through the origin, 
on opposite sides of the origin, the same distance
from the origin. Hint: Find the midpoint of the
line segment joining (c, d) and 

54. Critical Thinking Proof of the Midpoint Formula Let
P and Q be the points and 
respectively and let M be the point with
coordinates

Use the distance formula to compute the following:
a. the distance d from P to Q;
b. the distance from M to P;
c. the distance from M to Q.
d. Verify that 
e. Show that Hint: Verify that 

and 

f. Explain why parts d and e show that M is the
midpoint of PQ.

d2 �
1
2 d.d1 �

1
2 d

d1 � d2 � d.
d1 � d2.

d2

d1

ax1 � x2

2 , 
y1 � y2

2 b .

1x2, y221x1, y12

1�c, �d2.

1�c, �d2c � 0.
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B.1 The Binomial Theorem

The Binomial Theorem provides a formula for calculating the product
for any positive integer n. Before we state the theorem, some pre-

liminaries are needed.

Let n be a positive integer. The symbol (read n factorial) denotes the
product of all the integers from 1 to n. For example,

.

In general, we have this result:

10! � 1 � 2 � 3 � 4 � 5 � 6 � 7 � 8 � 9 � 10 � 3,628,800
5! � 1 � 2 � 3 � 4 � 5 � 120,

2! � 1 � 2 � 2,  3! � 1 � 2 � 3 � 6,  4! � 1 � 2 � 3 � 4 � 24,

n!

1x � y2n

Let n be a positive integer. Then

0! is defined to be the number 1.

n! � 1 � 2 � 3 � 4 p  (n � 2)(n � 1)n.

n Factorial

Learn to use your calculator to compute factorials. You will find ! in the
PROB (or PRB) submenu of the MATH or OPTN menu.

Calculator Exploration

15! is such a large number your calculator will switch to scientific
notation to express it. Many calculators cannot compute factorials
larger than 69! If yours does compute larger ones, what is the
largest factorial that you can compute without getting an error
message?



If r and n are integers with then0 � r � n,
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Either of the symbols or denotes the number 

is called a binomial coefficient.an
r
b

n!
r!(n � r)!

.nCran
r
b

Binomial
Coefficients 

For example,

Binomial coefficients can be computed on a calculator by using or
Comb in the PROB (or PRB) submenu of the MATH or OPTN menu.

nCr

4C2 � a4
2
b �

4!
2!14 � 22! �

4!
2!2! �

1 � 2 � 3 � 4
11 � 22 11 � 22 �

3 � 4
2 � 6.

5C3 � a5
3
b �

5!
3!15 � 32! �

5!
3!2! �

1 � 2 � 3 � 4 � 5
11 � 2 � 32 11 � 22 �

4 � 5
2 � 10

Calculator Exploration

Compute Although calculators cannot compute 475!, 

they can compute many binomial coefficients, such as 

because most of the factors cancel out (as in the previous example). 

Check yours. Will it also compute a475 
20
b ?

a475
400
b ,

� a56
47
b .56C47

The preceding examples illustrate a fact whose proof will be omitted:
Every binomial coefficient is an integer. Furthermore, for every nonnegative
integer n,

because

If we list the binomial coefficients for each value of n in this manner, we
find that they form a rectangular array.

an
n
b �

n!
n!1n � n2! �

n!
n!0! �

n!
n! � 1.

an
0
b �

n!
0!1n � 02! �

n!
0!n! �

n!
n! � 1  and

an
0
b � 1  and  an

n
b � 1



Calculating each binomial coefficient, we obtain the following array of
numbers:

row 0 1

row 1 1 1

row 2 1 2 1

row 3 1 3 3 1

row 4 1 4 6 4 1

This array is called Pascal’s triangle. Its pattern is easy to remember. Each
entry (except the 1’s at the beginning or end of a row) is the sum of the
two closest entries in the row above it. In the fourth row, for instance, 6
is the sum of the two 3’s above it, and each 4 is the sum of the 1 and 3
above it. See Exercise 47 for a proof.

In order to develop a formula for calculating we first calculate
these products for small values of n to see if we can find some kind of
pattern:

1

(*)

One pattern is immediately obvious: the coefficients here (shown in color)
are the top part of Pascal’s triangle! In the case for example, this
means that the coefficients are the numbers

1 4 6 4 1

a4
4
b.a4

3
b,a4

2
b,a4

1
b,a4

0
b,

n � 4,

1x4 � 4x3y � 6x2y2 � 4xy3 � 1y41x � y24 �n � 4

1x3 � 3x2y � 3xy2 � 1y31x � y23 �n � 3

1x2 � 2xy � 1y21x � y22 �n � 2

1x � 1y1x � y21 �n � 1

1x � y20 �n � 0

1x � y2n,

∞†o

∞†o

a4
4
ba4

3
ba4

2
ba4

1
ba4

0
bn � 4

a3
3
ba3

2
ba3

1
ba3

0
bn � 3

a2
2
ba2

1
ba2

0
bn � 2

a1
1
ba1

0
bn � 1

a0
0
bn � 0
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If this pattern holds for larger n, then the coefficients in the expansion of
are

As for the xy-terms associated with each of these coefficients, look at the
pattern in (*) above: the exponent of x goes down by 1 and the exponent
of y goes up by 1 as you go from term to term, which suggests that the
terms of the expansion of (without the coefficients) are:

Combining the patterns of coefficients and xy-terms and using the fact 

that and suggests that the following result is true about 

the expansion of 1x � y2n.

an
n
b � 1an

0
b � 1

xn,  xn�1y,  xn�2y2,  xn�3y3, . . . , xyn�1, yn.

1x � y2n

an
0
b , an

1
b , an

2
b , an

3
b , p , an

n�1
b , an

n
b .

1x � y2n
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For each positive integer n,

an
3
b xn�3y3 � p � a n

n � 1
b xyn�1 � yn.

(x � y)n � xn � an
1
b xn�1y � an

2
b xn�2y2 �

The Binomial
Theorem 

Using summation notation and the fact that we can write
the Binomial Theorem compactly as

The Binomial Theorem will be proved in Section B.2 by means of math-
ematical induction. We shall assume its truth for now and illustrate some
of its uses.

Example 1

Expand 

Solution

We apply the Binomial Theorem in the case 

The coefficients can be computed individually by hand or by using 
(or COMB) on a calculator; for instance,

8C2 � a8
2
b �

8!
2!6! � 28  or  8C3 � a8

3
b �

8!
3!5! � 56.

nCr

� a8
4
bx4y4 � a8

5
bx3y5 � a8

6
bx2y6 � a8

7
bxy7 � y8.

1x � y28 � x8 � a8
1
bx7y � a8

2
bx6y2 � a8

3
bx 5y3

n � 8:

1x � y28.

1x � y2n � a
n

j�0
an

j
b xn� jy j.

an
0
b � 1 � an

n
b ,
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Figure B.1-1

Alternatively, you can display all the coefficients at once by making a table
of values for the function as shown in Figure B.1-1 at left.

Substituting these values in the preceding expansion, we have

■

Example 2

Expand 

Solution

Note that and apply the Binomial Theorem with 
and 

■

Example 3

The unemployment rate in the United States can be modeled by 

where x � 4 corresponds to 1994.* Write and simplify the rule of 
a function g(x) that provides the same information as f but has x � 0 
corresponding to 1994.

*Source: Bureau of Labor Statistics

Solution

The graph of g will be the graph of f shifted 4 units to the left, which
means that .

■
g1x2 � �.0051x4 � .099x3 � .534x2 � .455x � 5.92

�12.1394
�10.82121x � 42�2.2202 3x2 � 2x142 � 1422 4�.1813 3x3 � 3x2142 � 3x1422 � 1423 4g1x2 � �.0051 3x4 � 4x3142 � 6x21422 � 4x1423 � 1424 4

g1x2��.00511x�424� .18131x�423�2.22021x�422�10.82121x�42�12.1394

g1x2 � f1x � 42

f1x2� �.0051x4 � .1813x3 � 2.2202x2 � 10.8212x � 12.1394   14 � x �14 2

 � 1 � 6z � 15z2 � 20z3 � 15z4 � 6z5 � z6.

 � 1 � a6
1
b z � a6

2
b z2 � a6

3
b z3 � a6

4
b z4 � a6

5
b z5 � z6

� a6
4
b12 1�z24 � a6

5
b1 1�z25 � 1�z26

 11 � z26 � 16 � a6
1
b15 1�z2 � a6

2
b14 1�z22 � a6

3
b13 1�z23

n � 6:y � �z,
x � 1,1 � z � 1 � 1�z2

11 � z26.

� 56x5y3 � 70x4y4 � 56x3y5 � 28x2y6 � 8xy7 � y8.
1x � y28 � x8 � 8x7y � 28x6y2

f 1x2 � 8Cx ,



Example 4

Show that without using a calculator.

Solution

We write 1.001 as and apply the Binomial Theorem with 
and 

But Therefore, 

and other positive terms
other positive terms.

Hence, 
■

Sometimes we need to know only one term in the expansion of 
If you examine the expansion given by the Binomial Theorem, you will
see that in the second term y has exponent 1, in the third term y has expo-
nent 2, and so on. Thus,

1x � y2n.

11.00121000 7 2.

� 2 �11.00121000 � 1 � 1 �1,0001.0012 � 1

a1000
1
b 1.0012 �a1000

1
b �

1000!
1!999! �

1000 � 999!
999! � 1000.

 � 1 � a1000
1
b 1.0012 � other positive terms.

 � 11000 � a1000
1
b19991.0012 � other positive terms

 11.00121000 � 11 � .00121000

n � 1000:y � .001,
x � 1,1 � .001

11.00121000 7 2
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In the binomial expansion of 

The exponent of y is always one less than the number of
the term.

Furthermore, in each of the middle terms of the expansion,

The coefficient of the term containing is 

The sum of the x exponent and the y exponent is n.

an
r
b.yr

(x � y)n,
Properties of
the Binomial

Expansion

For instance, in the ninth term of the expansion of y has expo-

nent 8, the coefficient is and x must have exponent 5 (since 

Thus, the ninth term is a13
8
bx5y8.8 � 5 � 132.

a13
8
b ,

1x � y213,



Example 5

Find the ninth term of the expansion of 

Solution

We shall use the Binomial Theorem with and with in place of 

x and in place of y. The remarks on the previous page show that the

ninth term is

Since and we can simplify as follows:

■

 � 286
9 x10y2.

 � a13
8
b 2

34 x10y2 �
13 � 12 � 11 � 10 � 9

5 � 4 � 3 � 2 �
2
34 x10y2

 a13
8
b 12x2 25a 41y

16
b8

� a13
8
b 25 1x2 25 Ay

1
4 B 8

A31
2 B 8A21

2 B 8 � a13
8
b 25x10 y2

34 � 24

16 � 1312 � 3
1
2 2

1
2,41y � y

1
4

a13
8
b 12x22 5 a 41y

16
b8

.

41y
16

2x2n � 13

a2x2 �
41y
16
b13

.
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Exercises B.1

In Exercises 1–10, evaluate the expression.

1. 6! 2. 3. 4.

5. 6.

7.

8.

9. 10.

In Exercises 11–16, expand the expression.

11. 12. 13.

14. 15. 16.

In Exercises 17–26, use the Binomial Theorem to
expand and (where possible) simplify the expression.

17. 18. A2 � 1y B 5A1x � 1 B 6

13u � v32612x � y2251c � d28
1a � b251a � b271x � y25

a75
72
ba100

96
b

a6
0
b � a6

1
b � a6

2
b � a6

3
b � a6

4
b � a6

5
b � a6

6
b

a6
0
b � a6

1
b � a6

2
b � a6

3
b � a6

4
b � a6

5
b � a6

6
b

a12
11
b � a11

10
b � a7

0
ba5

3
b � a5

2
b � a6

3
b

9! � 8!
7!

12!
9!3!

11!
8!

19. 20.

21. 22.

23.

24.

25. where 

26. The median income of U.S. households (in
thousands of dollars) from 1992 through 2002 
can be modeled by 

where x � 2 corresponds to 1992.* Write and
simplify the rule of a function g(x) that provides
the same information as f but has x � 0
corresponding to 2000.

*Source: U.S. Census Bureau

� .322x � 30.345    12 � x � 122
f1x2 � �.001x4 � .003x3 � .211x2

i2 � �111 � i26,
A13 � 1 B 6 � A13 � 1 B 6
A1 � 13 B 4 � A1 � 13 B 4

13x�2 � x2261x�3 � x24
a1c �

1
1c
b711 � c210
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In Exercises 27–32, find the indicated term of the
expansion of the given expression.

27. third, 28. fourth, 

29. fifth, 30. third, 

31. fourth, 32. fifth, 

33. Find the coefficient of in the expansion of

34. Find the coefficient of in the expansion of

35. Find the coefficient of in the expansion of 

36. Find the constant term in the expansion of 

37. a. Verify that and 

b. Prove that for each positive integer n,

and Note: Part a is just the case 

when and 

38. a. Verify that 

b. Let r and n be integers with Prove 

that Note: Part a is just the 

case when and 

39. Prove that for any positive integer n,

Hint:

40. Prove that for any positive integer n,

41. Use the Binomial Theorem with and
to find where

i2 � �1.
1 cos  u � i  sin  u24y �  cos  u

x �  sin  u

� 1�12k an
k
b � p � 1�12n an

n
b � 0.

an
0
b � an

1
b � an

2
b � an

3
b � an

4
b � p

2 � 1 � 1.

2n � an
0
b � an

1
b � an

2
b � p � an

n
b.

r � 2.n � 7

an
r
b � a n

n � r
b.

0 � r � n.

a7
2
b � a7

5
b.

n � 1 � 8.n � 9

a n
n � 1

b � n.

an
1
b � n

a9
8
b � 9.a9

1
b � 9

ay �
1

2yb
10

.

a2x �
1
x2b

6

.

1
x3

1x3 � 3y210.
x12y6

12x � y229.
x5y8

A1x � 12 B 7au�2 �
u
2b

7

1a � 2281c � d27
1a � b261x � y25

42. a. Use DeMoivre’s Theorem on page 441 to find

b. Use the fact that the two expressions obtained
in part a and in Exercise 41 must be equal to
express cos 4 and sin in terms of sin and
cos 

43. a. Let f be the function given by Let 
h be a nonzero number and compute

(but leave all binomial 

coefficients in the form here and below).

b. Use part a to show that h is a factor of 

and find 

c. If h is very close to 0, find a simple 

approximation of the quantity 

See part b.

44. Do Exercise 43 with in place of

45. Do Exercise 43 with in place of

46. Let n be a fixed positive integer. Do Exercise 43
with in place of 

47. Let r and n be integers such that 
a. Verify that 
b. Verify that 

c. Prove that for any 

Hint: Write out the terms on the 
left side and use parts a and b to express each
of them as a fraction with denominator

Then add these two fractions,
simplify the numerator, and compare the result 

with 

d. Use part c to explain why each entry in
Pascal’s triangle (except the 1’s at the
beginning or end of a row) is the sum of the
two closest entries in the row above it.

48. a. Find these numbers and write them one below
the next: 

b. Compare the list in part a with rows 0 to 4 of
Pascal’s triangle. What’s the explanation?

c. What can be said about and row 5 of
Pascal’s triangle?

d. Calculate all integer powers of 101 from to
list the results one under the other, and

compare the list with rows 0 to 8 of Pascal’s
triangle. What’s the explanation? What
happens with 1019?

1018,
1010

115

114.113,112,111,110,

an � 1
r � 1

b.

1r � 12!1n � r2!.

r � n � 1.

a n
r � 1

b � an
r
b � an � 1

r � 1
b

1n � r2! � 3 1n � 12 � 1r � 12 4 !
1n � r2! � 1n � r2 3n � 1r � 12 4 !

0 � r � n.

f 1x2 � x5.f 1x2 � xn

f 1x2 � x5.
f 1x2 � x12

f 1x2 � x5.
f 1x2 � x8

f 1x � h2 � f 1x2
h

.

f 1x � h2 � f 1x2
h

.f 1x � h2 � f 1x2

a5
r
b

f 1x � h2 � f 1x2
f 1x2 � x5.

u.
u4uu

1 cos  u � i  sin  u24.
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B.2 Mathematical Induction

Mathematical induction is a method of proof that can be used to prove a
wide variety of mathematical facts, including the Binomial Theorem,
DeMoivre’s Theorem, and statements such as:

The sum of the first n positive integers is the number 

for every positive integer n.

For each positive integer n, 4 is a factor of 

All of the preceding statements have a common property. For example, a
statement such as

The sum of the first n positive integers is the number 

or, in symbols,

is really an infinite sequence of statements, one for each possible value 
of n:

and so on. Obviously, there isn’t time enough to verify every one of the
statements on this list, one at a time. But we can find a workable method
of proof by examining how each statement on the list is related to the next
statement on the list.

For example, for the statement is

At the moment, we don’t know whether or not this statement is true. But
just suppose that it were true. What could then be said about the next state-
ment, the one for 

Well, if it is true that

then adding 51 to both sides and simplifying the right side would yield
these equalities:

1 � 2 � 3 � p � 50 �
501512

2

1 � 2 � 3 � p � 50 � 51 �
511522

2 ?

n � 51:

1 � 2 � 3 � p � 50 �
501512

2 .

n � 50,

 1 � 2 � 3 �
3142

2n � 3:

 1 � 2 �
2132

2n � 2:

 1 �
1122

2n � 1:

1 � 2 � 3 � p � n �
n1n � 12

2

n(n � 1)
2

7n � 3n.

2n 7 n

n1n � 12
2 .



Since this last equality is just the original statement for we con-
clude that

If the statement is true for then it is also true for 

We have not proved that the statement actually is true for but only
that if it is, then it is also true for 

We claim that this same conditional relationship holds for any two con-
secutive values of n. In other words, we claim that for any positive inte-
ger k,

If the statement is true for then it is also true for

The proof of this claim is the same argument used earlier (with k and
in place of 50 and 51): If it is true that

[Original statement for ]

then adding to both sides and simplifying the right side produces
these equalities:

k � 1

n � k1 � 2 � 3 � p � k �
k 1k � 12

2

k � 1

n � k � 1.
n � k,�1

n � 51.
n � 50,

n � 51.n � 50,

n � 51,

 1 � 2 � 3 � p � 50 � 51 �
511522

2 .

 1 � 2 � 3 � p � 50 � 51 �
150 � 2251

2

 1 � 2 � 3 � p � 50 � 51 �
501512

2 �
21512

2 �
501512 � 21512

2

 1 � 2 � 3 � p � 50 � 51 �
501512

2 � 51
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[Original statement for ]n � k � 1

 1 � 2 � 3 � p � k � 1k � 12 �
1k � 12 3 1k � 12 � 1 4

2 .

 1 � 2 � 3 � p � k � 1k � 12 �
1k � 22 1k � 12

2

 1 � 2 � 3 � p � k � 1k � 12 �
k 1k � 12

2 �
21k � 12

2 �
k 1k � 12 � 21k � 12

2

 1 � 2 � 3 � p � k � 1k � 12 �
k 1k � 12

2 � 1k � 12

We have proved that claim is valid for each positive integer k. We
have not proved that the original statement is true for any value of n, but
only that if it is true for then it is also true for Apply-
ing this fact when 2, 3, . . . , we see that a recursive pattern emerges.
Beginning with the smallest positive integer, 1,

k � 1,
n � k � 1.n � k,

�1



and so on.

We are finally in a position to prove the original statement:
Obviously, it is true for since

Now apply in turn each of the propositions on list . Since
the statement is true for it must also be true for and hence
for and hence for and so on, for every value of n. Therefore,
the original statement is true for every positive integer n.

The preceding proof is an illustration of the following principle:

n � 4,n � 3,
n � 2,n � 1,

�21 � 1122/2.
n � 11 � 2 � 3 � p � n � n1n � 12/2.
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If the statement is true for then it is also true for

If the statement is true for then it is also true for

If the statement is true for then it is also true for

If the statement is true for then it is also true for

If the statement is true for then it is also true for

..

.
n � 51 � 1 � 52;

n � 51,

n � 50 � 1 � 51;
n � 50,

..

.
�2

n � 3 � 1 � 4;
n � 3,

n � 2 � 1 � 3;
n � 2,

n � 1 � 1 � 2;
n � 1,⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

Suppose there is given a statement involving the positive
integer n and that:

(i) The statement is true for 

(ii) If the statement is true for (where k is any
positive integer), then the statement is also true for

Then the statement is true for every positive integer n.

n � k � 1.

n � k

n � 1.

Principle of
Mathematical

Induction

Property (i) is simply a statement of fact. To verify that it holds, you must
prove the given statement is true for This is usually easy, as in the
preceding example.

Property (ii) is a conditional property. It does not assert that the given state-
ment is true for but only that if it is true for then it is also
true for So to verify that property (ii) holds, you need only
prove this conditional proposition:

If the statement is true for then it is also true for 

In order to prove this, or any conditional proposition, you must proceed
as in the previous example: Assume the “if” part and use this assump-
tion to prove the “then” part. As we saw earlier, the same argument will
usually work for any possible k. Once this conditional proposition has
been proved, you can use it together with property (i) to conclude that the

n � k � 1.n � k,

n � k � 1.
n � k,n � k,

n � 1.



given statement is necessarily true for every n, just as in the preceding
example.

Thus proof by mathematical induction reduces to two steps:

Step 1

Prove that the given statement is true for 

Step 2

Let k be a positive integer. Assume that the given statement is true for
Use this assumption to prove that the statement is true for

Step 2 may be performed before step 1 if you wish. Step 2 is sometimes
referred to as the inductive step. The assumption that the given state-
ment is true for in this inductive step is called the induction
hypothesis.

Example 1

Prove that for every positive integer n.

Solution

Here the statement involving n is 

Step 1

When we have the statement This is obviously true.

Step 2

Let k be any positive integer. We assume that the statement is true for
that is, we assume that We shall use this assumption to

prove that the statement is true for that is, that 

We begin with the induction hypothesis:* Multiplying both sides
of this inequality by 2 yields:

Since k is a positive integer, we know that Adding k to each side
of the inequality we have

Combining this result with inequality , we see that

2k�1 7 2k � k � 1.

�3

 2k � k � 1.
 k � k � k � 1

k � 1,
k � 1.

2k�1 7 2k.�3
2 � 2k 7 2k

2k 7 k.

2k�1 7 k � 1.n � k � 1,
2k 7 k.n � k,

21 7 1.n � 1,

2n 7 n.

2n 7 n

n � k

n � k � 1.
n � k.

n � 1.
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*This is the point at which you usually must do some work. Remember that what follows
is the “finished proof.” It does not include all the thought, scratch work, false starts, and
so on that were done before this proof was actually found.



The first and last terms of this inequality show that There-
fore, the statement is true for This argument works for any
positive integer k. Thus, we have completed the inductive step. By the
Principle of Mathematical Induction, we conclude that for every
positive integer n.

■

Example 2

Simple arithmetic shows that

and

In each case, 4 is a factor. These examples suggest that

For each positive integer n, 4 is a factor of 
This conjecture can be proved by induction as follows.

Step 1

When the statement is “4 is a factor of Since
the statement is true for 

Step 2

Let k be a positive integer and assume that the statement is true for 
that is, that 4 is a factor of Let us denote the other factor by D, so
that the induction hypothesis is: We must use this assump-
tion to prove that the statement is true for that is, that 4 is a
factor of Here is the proof:

[Since ]

[Factor]

[Induction hypothesis]

[ ]

[Factor out 4]

From this last line, we see that 4 is a factor of Thus, the state-
ment is true for and the inductive step is complete. Therefore,
by the Principle of Mathematical Induction the conjecture is actually true
for every positive integer n.

■

Another example of mathematical induction, the proof of the Binomial
Theorem, is given at the end of this section.

Sometimes a statement involving the integer n may be false for and
(possibly) other small values of n, but true for all values of n beyond a
particular number. For instance, the statement is false for 
2, 3, 4. But it is true for and all larger values of n. A variation on
the Principle of Mathematical Induction can be used to prove this fact and
similar statements. See Exercise 28 for details.

n � 5
n � 1,2n 7 n2

n � 1

n � k � 1,
7k�1 � 3k�1.

 � 417D � 3k2.
7 � 3 � 4 � 714D2 � 4 � 3k

 � 714D2 � 17 � 323k

 � 717k � 3k2 � 17 � 323k

�7 � 3k � 7 � 3k � 0 7k�1 � 3k�1 � 7k�1 � 7 � 3k � 7 � 3k � 3k�1

7k�1 � 3k�1.
n � k � 1,

7k � 3k � 4D.
7k � 3k.

n � k,

n � 1.71 � 31 � 4 � 4 � 1,
71 � 31.”n � 1,

7n � 3n.

73 � 33 � 343 � 27 � 316 � 4 � 79.

72 � 32 � 49 � 9 � 40 � 4 � 10

2n 7 n

n � k � 1.
2k�1 7 k � 1.
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A Common Mistake with Induction

It is sometimes tempting to omit step 2 of an inductive proof when the
given statement can easily be verified for small values of n, especially if
a clear pattern seems to be developing. As the next example shows, how-
ever, omitting step 2 may lead to error.

Example 3

An integer is said to be prime if its only positive integer factors are
itself and 1. For instance, 11 is prime since its only positive integer fac-
tors are 11 and 1. But 15 is not prime because it has factors other than 15
and 1 (namely, 3 and 5). For each positive integer n, consider the number

You can readily verify that

and that each of these numbers is prime. Furthermore, there is a clear pat-
tern: The first two numbers (11 and 13) differ by 2; the next two (13 and
17) differ by 4; the next two (17 and 23) differ by 6; and so on. On the
basis of this evidence, we might conjecture:

For each positive integer n, the number is prime.

We have seen that this conjecture is true for 2, 3, 4, 5. Unfortu-
nately, however, it is false for some values of n. For instance, when 

But 121 is obviously not prime since it has a factor other than 121 and 1,
namely, 11. You can verify that the statement is also false for but
true for 

■

In the preceding example, the proposition

If the statement is true for then it is true for 

is false when and If you were not aware of this and
tried to complete step 2 of an inductive proof, you would not have been
able to find a valid proof for it. Of course, the fact that you can’t find a
proof of a proposition doesn’t always mean that no proof exists. But when
you are unable to complete step 2, you are warned that there is a possi-
bility that the given statement may be false for some values of n. This
warning should prevent you from drawing any wrong conclusions.

Proof of the Binomial Theorem

We shall use induction to prove that for every positive integer n,

 � an
2
b xn�2y2 � an

3
b xn�3y3 � p � a n

n � 1
b xyn�1 � yn.

 1x � y2n � xn � an
1
b xn�1y

k � 1 � 11.k � 10

n � k � 1n � k,

n � 13.
n � 12

f 1112 � 112 � 11 � 11 � 112 � 121.

n � 11,
n � 1,

f 1n2 � n2 � n � 11

f 112 � 11,  f 122 � 13,  f 132 � 17,  f 142 � 23,  f 152 � 31

f 1n2 � n2 � n � 11.

17 12
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This theorem was discussed and its notation explained in Section B.1.

Step 1

When there are only two terms on the right side of the preceding
equation, and the statement reads This is certainly
true.

Step 2

Let k be any positive integer and assume that the theorem is true for 
that is, that

[On the right side of this equation, we have included a typical middle

term The sum of the exponents is k, and the bottom part of the

binomial coefficient is the same as the y exponent.] We shall use this
assumption to prove that the theorem is true for that is, that

We have simplified some of the terms on the right side; for instance,
and But this is the correct state-

ment for The coefficients of the middle terms are 

and so on; the sum of the exponents of each middle 

term is and the bottom part of each binomial coefficient is the same
as the y exponent.

In order to prove the theorem for we shall need this fact about
binomial coefficients: For any integers r and k with 

A proof of this fact is outlined in Exercise 47 on page 1001.

To prove the theorem for we first note that

Applying the induction hypothesis to we see that

 � x�xk � ak
1
b xk�1y � p � yk� � y�xk � ak

1
b xk�1y � p � yk�.

� a k
r � 1

b xk� 1r�12yr�1 � p � a k
k � 1

b xyk�1 � yk�
1x � y2 k�1 � 1x � y2�xk � ak

1
b xk�1y � ak

2
b xk�2y2 � p � ak

r
b xk�ryr

1x � y2k,
1x � y2k�1 � 1x � y2 1x � y2k.

n � k � 1,

a k
r � 1

b � ak
r
b � ak � 1

r � 1
b .�4

0 � r 6 k,
n � k � 1,

k � 1,

ak � 1
3
b,ak � 1

2
b,

ak � 1
1
b,n � k � 1:

1k � 12 � 1r � 12 � k � r.1k � 12 � 1 � k

� ak � 1
r � 1

b xk�ryr�1 � p � ak � 1
k
b xyk � yk�1.

1x � y2k�1 � xk�1 � ak � 1
1 b xky � ak � 1

2
b xk�1y2 � p

n � k � 1,

ak
r
bxk�ryr.

� ak
r
b xk�ryr � p � a k

k � 1
b xyk�1 � yk.

1x � y2k � xk � ak
1
b xk�1y � ak

2
b xk�2 y2 � p

n � k,

x1 � y1.1x � y21 �
n � 1,
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Next we multiply out the right-hand side. Remember that multiplying by
x increases the x exponent by 1 and multiplying by y increases the y expo-
nent by 1.

Now apply statement to each of the coefficients of the middle terms.

For instance, with statement shows that 

Similarly, with and so on. Then 

the expression above for becomes

Since this last statement says the theorem is true for the induc-
tive step is complete. By the Principle of Mathematical Induction the
theorem is true for every positive integer n.

n � k � 1,

� ak � 1
r � 1

b xk�ryr�1 � p � ak � 1
k
b xyk � yk�1.

1x � y2k�1 � xk�1 � ak � 1
1
b xky � ak � 1

2
b xk�1y2 � p

1x � y2k�1

ak
1
b � 1 � ak

1
b � ak

0
b � ak � 1

1
b,r � 0,

ak
2
b � ak

1
b � ak � 1

2
b .�4r � 1,

�4

� �a k
r � 1

b � ak
r
b�xk�ryr�1 � p � �1 � a k

k � 1
b� xyk � yk�1.

� xk�1 � �ak1b � 1�xky � �ak2b � ak
1
b�xk�1y2 � p

� a k
r � 1

b xk� 1r�12yr�2 � p � a k
k � 1

b xyk � yk�1�
� �xky � ak

1
b xk�1y2 � ak

2
b xk�2y3 � p � ak

r
b xk�ryr�1

� a k
r � 1

b xk�ryr�1 � p � a k
k � 1

b x2 yk�1 � xyk�
1x � y2 k�1 � �xk�1 � ak

1
bxky � ak

2
bxk�1y2 � p � ak

r
bxk�r�1yr
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Exercises B.2

In Exercises 1–18, use mathematical induction to prove
that each of the given statements is true for every pos-
itive integer n.

1.

2.

3.

4.

5. 12 � 22 � 32 � p � n2 �
n1n � 12 12n � 12

6

2 � 4 � 6 � 8 � p � 2n � n2 � n

1 � 3 � 5 � 7 � p � 12n � 12 � n2

1 � 3 � 32 � 33 � 34 � p � 3n�1 �
3n � 1

2

1 � 2 � 22 � 23 � 24 � p � 2n�1 � 2n � 1

6.

7.

8.

9. 10.

11. 12.

13. 14.

15. 3 is a factor of 22n�1 � 1

a3
2b

n

7 n3n 7 n � 1

3n � 1 � 2n3n � 3n

2n � 2 7 nn � 2 7 n

a1 �
1
1ba1 �

1
2ba1 �

1
3b p a1 �

1
nb � n � 1

1
1 � 2 �

1
2 � 3 �

1
3 � 4 � p �

1
n1n � 12 �

n
n � 1

1
2 �

1
4 �

1
8 � p �

1
2n � 1 �

1
2n
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16. 5 is a factor of 

17. 64 is a factor of 

18. 64 is a factor of 

19. Let c and d be fixed real numbers. Prove that

20. Let r be a fixed real number with Prove that

Remember: so when the left side
reduces to 

21. a. Write each of and as a
product of and another factor.

b. Make a conjecture as to how can be
written as a product of and another
factor. Use induction to prove your conjecture.

22. Let 

and so on. Prove that
for every positive integer n.

In Exercises 23–27, if the given statement is true, prove
it. If it is false, give a counterexample.

23. Every odd positive integer is prime.

24. The number is prime for every
positive integer n.

25. for every positive integer n.

26. 3 is a factor of the number for every
positive integer n.

27. 4 is a factor of the number for every
positive integer n.

28. Let q be a fixed integer. Suppose a statement
involving the integer n has these two properties:
i. The statement is true for 
ii. If the statement is true for (where k is

any integer with then the statement is
also true for 

Then we claim that the statement is true for every
integer n greater than or equal to q.
a. Give an informal explanation that shows why

this claim should be valid. Note that when
this claim is precisely the Principle of

Mathematical Induction.
b. The claim made before part a will be called the

Extended Principle of Mathematical Induction.

q � 1,

n � k � 1.
k � q2,

n � k
n � q.

n4 � n � 4

n3 � n � 3

1n � 122 7 n2 � 1

n2 � n � 17

xn 6 2
x3 � 32 � 22 � 12;

x2 � 22 � 12;x1 � 12;

x � y
xn � yn

x � y
x4 � y4x3 � y3,x2 � y2,

r0 � 1.
n � 11 � r0;

1 � r � r2 � r3 � p � rn�1 �
rn � 1
r � 1 .

r � 1.

� 3c � 1n � 12d 4 �
n 32c � 1n � 12d 4

2

c � 1c � d2 � 1c � 2d2 � 1c � 3d2 � p

9n � 8n � 1

32n�2 � 8n � 9

24n�2 � 1 State the two steps necessary to use this
principle to prove that a given statement is 
true for all (See discussion on page 1005.)

In Exercises 29–34, use the Extended Principle of
Mathematical Induction (Exercise 28) to prove the
given statement.

29. for every (Use 5 for q here.)

30. Let r be a fixed real number with Then
for every integer (Use 2

for q here.)

31. for all 

32. for all 

33. for all 

34. for all 

35. Let n be a positive integer. Suppose that there are
three pegs and on one of them n rings are stacked,
with each ring being smaller in diameter than the
one below it (see the figure). We want to transfer
the stack of rings to another peg according to
these rules: (i) Only one ring may be moved at a
time; (ii) a ring can be moved to any peg,
provided it is never placed on top of a smaller
ring; (iii) the final order of the rings on the new
peg must be the same as the original order on the
first peg.

n � 42n 6 n!

n � 43n 7 2n � 10n

n � 52n 7 n2

n � 2n2 7 n

n � 2.11 � r2n 7 1 � nr
r 7 1.

n � 5.2n � 4 7 n

n � q.

a. What is the smallest possible number of moves
when 

b. Make a conjecture as to the smallest possible
number of moves required for any n. Prove
your conjecture by induction.

36. The basic formula for compound interest
was discussed in Chapter 5.

Prove by induction that the formula is valid
whenever x is a positive integer. [Note: P and r are
assumed to be constant.]

37. Use induction to prove DeMoivre’s Theorem: For
any complex number and
any positive integer n,

zn � rn 3cos 1nu2 � i  sin 1nu2 4 .

z � r 1cos  u � i  sin  u2

T1x2 � P11 � r2x

n � 4?n � 3?n � 2?
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GEOMETRY REVIEW

G.1 Geometry Concepts

An angle consists of two half-lines that begin at the same point P, as in
Figure G.1-1. The point P is called the vertex of the angle and the half-
lines the sides of the angle.

An angle may be labeled by a Greek letter, such as angle in Figure 
G.1-1a, or by listing three points (a point on one side, the vertex, a point
on the other side), such as angle QPM in Figure G.1-1b.

In order to measure the size of an angle, we must assign a number to each
angle. Here is the classical method for doing this:

1. Construct a circle whose center is the vertex of the angle.
2. Divide the circumference of the circle into 360 equal parts (called

degrees) by marking 360 points on the circumference, beginning
with the point where one side of the angle intersects the circle. Label
these points and so on.

3. The label of the point where the second side of the angle intersects
the circle is the degree measure of the angle.

For example, Figure G.1-2 on the next page shows an angle of measure
25 degrees (in symbols, and an angle of measure 135°.b25°2 u

3°,2°,1°,0°,

u

a.

θ
P

b.
P

Q

M

Figure G.1-1
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An acute angle is an angle whose measure is strictly between and 
such as angle in Figure G.1-2. A right angle is an angle that measures

An obtuse angle is an angle whose measure is strictly between 
and such as angle in Figure G.1-2.

A triangle has three sides (straight line segments) and three angles,
formed at the points where the various sides meet. When angles are meas-
ured in degrees,

the sum of the measures of all three angles of a triangle is
always

For instance, see Figure G.1-3.

180�.

b180°,
90°90°.

u

90°,0°

A right triangle is a triangle, one of whose angles is a right angle, such
as the first two triangles shown in Figure G.1-3. The side of a right trian-
gle that lies opposite the right angle is called the hypotenuse. In each of
the right triangles in Figure G.1-3, side AC is the hypotenuse.

If the sides of a right triangle have lengths a and b and the
hypotenuse has length c, then

c2 � a2 � b2.

Pythagorean
Theorem 

θ
β

30˚
20˚

80˚90˚
100˚

110˚

12
0˚

13
0˚

14
0˚

70˚ 60˚ 50˚ 40˚ 30˚ 20˚ 10˚
0˚10˚

0˚

Figure G.1-2

30°

60°

90° 90°

45°

45° 143° 20°

17°
71°

60°

49°

A A

BB C C

Figure G.1-3

a

b

c
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Example 1

Consider the right triangle with sides of lengths 5 and 12, as shown in
Figure G.1-4.

If two angles of a triangle are equal, then the two sides
opposite these angles have the same length.

Theorem I

Example 2

Suppose the hypotenuse of the right triangle shown in Figure G.1-5 has
length 1 and that angles B and C measure each.45°

Then by Theorem I, sides AB and AC have the same length. If x is the
length of side AB, then by the Pythagorean Theorem:

 x �
B

1
2 �

1
12

�
12
2 .

 x2 �
1
2

 2x2 � 1
 x2 � x2 � 12

According to the Pythagorean Theorem the length c of the hypotenuse
satisfies the equation: Since 
we see that c must be 13.

■

169 � 132,c2 � 52 � 122 � 25 � 144 � 169.

5

12

c

Figure G.1-4

45°

45°

1
x

A C

B

Figure G.1-5



(We ignore the other solution of this equation, namely, since x

represents a length here and thus must be nonnegative.) Therefore, the 

sides of a triangle with hypotenuse 1 are each of length 

■

12
2 .90°�45°�45°

x � �
A

1
2,
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In a right triangle that has an angle of the length of the
side opposite the angle is one-half the length of the
hypotenuse.

30�
30�,

Theorem II

30°

2

xA

C

B

Figure G.1-6

30°

2
3

xB

A

C

Figure G.1-7

By Theorem II the side opposite the angle, namely, side AC, has length
1. If x denotes the length of side AB, then by the Pythagorean Theorem:

■

Example 4

The right triangle shown in Figure G.1-7 has a angle at C, and side 

AC has length 13
2 .

30°

 x � 13.
 x2 � 3

 12 � x2 � 22

30°

Example 3

Suppose that in the right triangle shown in Figure G.1-6 angle B is 
and the length of hypotenuse BC is 2.

30°



Let x denote the length of the hypotenuse BC. By Theorem II, side AB has 

length By the Pythagorean Theorem:

Therefore, the triangle has hypotenuse of length 1 and sides of lengths 

and 

■

Two triangles, as in Figure G.1-8, are said to be similar if their corre-
sponding angles are equal (that is, and 
Thus, similar triangles have the same shape but not necessarily the same
size.

�C � �F 2.�A � �D; �B � �E;

13
2 .1

2

 x � 1.
 x2 � 1

 34 �
3
4 x2

 x
2

4 �
3
4 � x2

 a1
2 xb2

� a13
2 b

2

� x2

1
2 x.

Section G.1 Geometry Concepts 1015

A B

C

D E

F

Figure G.1-8



The equivalence of the equalities in the conclusion of the theorem is eas-
ily verified. For example, since

we have

.

Dividing both sides of this equation by be yields:

The other equivalences are proved similarly.

Example 5

Suppose the triangles in Figure G.1-9 are similar and that the sides have
the lengths indicated.

 a
b

�
d
e

.

 ae
be

�
db
be

ae � db

a
d

�
b
e
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Theorem III

Then

These equalities are equivalent to:

a
b

�
d
e

,  b
c

�
e
f

,  a
c

�
d
f

.

a
d

�
b
e

�
c
f

.

Suppose triangle ABC with sides a, b, c is similar to triangle
DEF with sides d, e, f (that is, ).�C � �F�B � �E;�A � �D;

b

a CB

A

c

e

d FE

D

f

B
1

3 C

A

E 10 F

sr

D

8

Figure G.1-9



Then by Theorem III,

In other words,

so that

Similarly, by Theorem III,

so that

Therefore the sides of triangle DEF are of lengths 10, and 

■

10
3 18.10

3 ,

 r �
10
3 .

 3r � 10

 1r �
3
10

length AB
length DE

�
length BC
length EF

 s � a10
3 b18.

 3s � 1018

18
s

�
3
10

length AC
length DF

�
length BC
length EF
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This appendix describes calculator features used throughout the book.
The first section focuses on graphing functions and sequences; the sec-
ond section presents procedures for creating lists, statistics, statistical
plots, and regression equations. Students who are unfamiliar with a
graphing calculator should complete the entire appendix; all students may
use it as a reference to specific features seen in the text.

1018 Technology Appendix

Technology

T.1 Graphs and Tables

Graphing calculators have a MODE or SET UP feature that allows you to
set different modes for number format, type of angle measure, graph type,
and drawing mode. Select the following modes by using the procedures
explained in detail below for TI-84 Plus/TI-83 and Casio 9850GB-Plus.

Number format: Float or Standard

Angle measure: Degree

Graph type: Function or Rect

Drawing mode: Connected or Connect

Press MODE, then use the up/down arrow keys to move from one row
to another and the left/right arrow keys to move to a desired selection.
When the cursor is on a desired selection, press ENTER to choose that
option. After all selections have been made, press 2nd QUIT to return to
the home screen.

From the MAIN MENU, select RUN EXE. Then press SHIFT SET UP. Use
the up/down arrow key to select the different mode types. Use the F1
through F6 buttons to select the desired setting for each mode.

TI-84/TI-83

Casio 9850



Solutions and Graphs

The graph of an equation in two variables is the set of points in the plane
whose coordinates are solutions of the equation. Thus, the graph is a geo-
metric picture of the solutions.

The graph of consists of all points where x is a real num-
ber. A table of values for this function is shown below along with the
graphical representation of the points. See Figure T1-1a. The points sug-
gest that the graph looks like Figure T1-1b, which is obtained by
connecting the plotted points and extending the graph.

1x, x22,y � x2
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Using Technology to Graph Functions

Technology improves graphing speed and accuracy by plotting a large
number of points quickly. A graphing calculator graphs in the same way
you would graph by hand, but it uses many more points.

Viewing Windows
The first step in graphing with technology is to choose a preliminary view-
ing window, which is the portion of the coordinate plane that will appear
on the screen. Using an inappropriate viewing window may display no
portion of a graph or may misrepresent its important characteristics.

The viewing window for the graph in Figure T1-2a is the rectangular
region indicated by the dashed blue lines. It includes all points 
whose coordinates satisfy and To display 
this viewing window on a calculator, press the WINDOW (or SHIFT
V-Window) key, and enter the appropriate numbers, as shown in Figure
T1-2b for the TI-84/TI-83. Other calculators are similar. The settings

and put the tick marks 1 unit apart on the respective
axes. This is usually the best setting for small viewing windows but not
for large ones.

Yscl � 1Xscl � 1

�3 � y � 6.�4 � x � 5
1x, y2

Figure T1-1a Figure T1-1b

x

4
2.25
1
0.25

0 0
0.25

1 1
1.5 2.25
2 4

0.5

�0.5
�1
�1.5
�2

y � x2



Resolution Xres sets the pixel resolution for function graphs. When
Xres is 1, functions are evaluated and graphed at each pixel (point) along
the x-axis. At 10, functions are evaluated and graphed at every 10th pixel
along the x-axis. Some calculators do not have a Xres setting, and on those
that do, it should normally be set at 1.

Graphing Functions
The following example outlines the procedure for graphing an equation.

Example 1 Using Technology to Graph a Function

Use technology to graph the relation 

Solution

Step 1

Choose a preliminary viewing window.
If it is unknown where the graph lies in the plane, start with a viewing
window with and . This window setting is
called the standard window on most calculators. The window may be
adjusted to fit the functions after graphing.

To display the viewing window editor on a calculator, press WINDOW
(or SHIFT V-Window) and enter the appropriate numbers, as shown in
Figure T1-3a.

Xscl and Yscl determine where the tick marks will be displayed on the
axes. Setting both to 1 is usually best for small viewing windows but not
for large ones.

Step 2

Solve for the output variable, if necessary.
Calculators can only graph functions in a form where the output variable
is expressed as a function of the input variable. In this example, assume
that the output variable is v and solve the given equation for v:

Rearrange terms.

Divide by .�2 v � u3 � 4u � 2
 �2v � �2u3 � 8u � 4

 2u3 � 8u � 2v � 4 � 0

�10 � y � 10�10 � x � 10

2u3 � 8u � 2v � 4 � 0.
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Because the calculator graphs functions of the form , replace v
with y and replace u with x. The function can be represented as the fol-
lowing.

Step 3

Enter the function by selecting the following.

TI-84/TI-83 Y�

Casio 9850 GRAPH from the MAIN MENU

Key in the function, as shown in Figure T1-3b.

Display the graph by pressing GRAPH (or DRAW). The graph of the func-
tion is shown in Figure T1-3c.

Step 4

If necessary, adjust the viewing window for a better view.
Notice that the point where the graph crosses the y-axis is not clear in the
standard window. Changing the viewing window and displaying the
graph again shows that the graph crosses the y-axis at 2. Figure T1-3d
shows the graph after TRACE—which is discussed below—was pressed
and the arrow keys were used to move the cursor to the y-intercept.

■

Graphing Relations

Some relations must be written as two separate functions before they can
be graphed. The method used to graph the function in Example 1 can be
used to graph any equation that can be solved for y.

Example 2 Graphing a Relation

Graph the relation given by the equation .

Solution

Solve the equation for y:

The graph is shown in Figure T1-4, where represents 
the upper portion of the graph and represents the
lower portion.

■

Other Graphing Calculator Features

Trace

The trace feature allows you to display the coordinates of points on a
graph of a function by using the left/right arrow keys, as illustrated in

y � �23x2 � 4x � 3
y � 23x2 � 4x � 3

 y � ±23x2 � 4x � 3
 y2 � 3x2 � 4x � 3

 4y2 � 12x2 � 16x � 12

12x2 � 4y2 � 16x � 12 � 0

12x2 � 4y2 � 16x � 12 � 0

y � x3 � 4x � 2

y � f 1x2
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Figure T1-3b

Figure T1-3c

�10

�10 10

10

Figure T1-3d

6

−6

−3 3

Figure T1-4

�10

�10 10

10



Figure T1-3d. The TRACE feature is located on the different calculators
as follows.

TI-84/TI-83 Trace is on the keyboard.
Casio 9850 Trace is the 2nd function above F1.

Zoom
Using the ZOOM feature of a graphing calculator will change the view-
ing window. ZOOM IN may be used to obtain better approximations for
the coordinates of a point, while ZOOM OUT may be used to view a larger
portion of the graph.

TI-84/TI-83 ZOOM is on the keyboard.
Casio 9850 ZOOM is the 2nd function above F2.

To use the ZOOM feature, select Zoom In (or IN) from the ZOOM menu,
move the cursor to the desired point, and press ENTER. The coordinates
of the cursor’s position are shown at the bottom of the screen. Repeatedly
using Zoom In will give better approximations of the coordinates of 
points.

The scaling factors used to Zoom In or Zoom Out may be adjusted on
most calculators. To set the ZOOM factors, look for Set Factors or FACT
in the Zoom menu or in the MEMORY submenu of ZOOM of TI-84/TI-83.

Maximums and Minimums
There are several ways to approximate the coordinates of a high point or
a low point: using the TRACE feature as discussed in Example 1, using
the ZOOM feature, and using the maximum finder. The maximum/
minimum finder automatically finds the highest/lowest point with the
calculator’s greatest degree of accuracy. On some calculators, left and right
bounds and an initial guess must be indicated. On other calculators, the
cursor must be placed near the maximum point. The maximum finder is
referenced by the term in the second column of the chart following this
paragraph; it can be found in the menu referred to in the third column.
The minimum finder works in a similar way. Minimum finders are found
in the same menu.
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Technology 
Tip

When you get a blank
screen, press TRACE

and use the left/right
arrow keys. The coordi-
nates of the points on the
graph will be displayed at
the bottom of the screen,
even though they are not
in the current window.
Use these coordinates as a
guide for selecting a view-
ing window in which the
graph does appear.

Model Reference Menu(s)

TI-84/TI-83 maximum CALC (2nd TRACE)

Casio 9850 MAX G-Solv



Square Windows
Another useful screen is one in which one-unit segments on the x-axis are
the same one-unit segments on the y-axis. This type of window is called
a square window. Because calculator screens are wider than they are high,
the y-axis in a square window must be shorter than the x-axis. On many
calculators, such as the TI-84/TI-83, the ratio of height to width is about 

, so an x-axis with 20 units will have on its y-axis about units

when square. Therefore, a square window with could have
, or , on a screen that has a height-to-width

ratio. Check your calculator’s height-to-width ratio by looking at the
scales after producing a square window. A square window should be used
to display circles and perpendicular lines.

2 : 30 � y � 13�6 � y � 7
�10 � x � 10

2
3 1202 � 132

3
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Graphing Exploration

In a standard viewing window, graph the relation

which was given in Example 2. Use TRACE, ZOOM, and the max-
imum and minimum finders to find the coordinates of the maximum
and minimum points of the relation. Use the up/down arrow keys
to switch between the functions that represent the relation. Com-
pare the values you get from each feature and determine which is
most accurate, which is fastest, and which is easiest to use.

The relative maximum point’s exact coordinates are 

and the relative minimum point’s exact coordinates are a�2
3, 
A

5
3 b.

a�2
3, �
A

5
3 b,

12x2 � 4y2 � 16x � 12 � 0,

Technology 
Tip

For a decimal window
that is also square, use 

ZDecimal in the TI-84/TI-83
ZOOM menu and INIT in
the Casio 9850 V-Window
menu.

Technology 
Tip

To use a square viewing
window, use ZSquare, 

or SQR in the ZOOM
menu. This will adjust the
x scale while keeping the y
scale fixed.

Graphing Exploration

The lines and are perpendicular because the
product of their slopes is . Graph both in the standard viewing
window, and then graph them in a square window. Describe the
different appearances of the lines in both window types.

�1
y � �2x � 2y � 0.5x

Decimal Window
When using the TRACE feature, a calculator typically displays points as
2.34042519, for example, rather than as 2.3 or 2.34. A screen in which the
points represent values with one or two decimal places is called a deci-
mal window. A decimal window is appropriate when accuracy to one or
two decimal places is desired.



Choosing a viewing window carefully can make the trace feature much
more convenient, as the following Exploration demonstrates.
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Graphing Exploration

• Graph , which relates the temperature x in 

degrees Fahrenheit and the temperature y in degrees Celsius.
• Use a viewing window with and ,

where k is one less than the number of pixels, or points, on your
calculator screen divided by 10. On a TI-84/TI-83, for example, 

. (See Technology Tip at left.) 

• Use the TRACE feature to determine the Celsius temperatures
corresponding to 20°F and 77°F.

• Set the window to , where k is the 

same as above. This is a decimal window with (32, 0) at its center. 

• Graph the equation again, and use TRACE to determine the
Celsius equivalent of 33.8°F.

32 �
k

20 � x � 32 �
k

20

k �
95 � 1

10 � 9.4

0 � x � k�40 � y � 40

y �
5
9 1x � 322

Technology 
Tip

The screen widths, in
pixels, of commonly
used calculators:

TI-84/TI-83 and Casio
9800: 95

TI-86, Sharp 9600, Casio
9850: 127

HP-38: 131

TI-89: 159

TI-92: 239

Function Tables

Table of Function Values
The table feature of a calculator is a convenient way to display points
and evaluate functions. By setting the initial input value and the incre-
ment value, a table of values may be displayed for functions stored in the
memory, as shown in Figure T1-5a. If more than one function is in the
function memory, the output values for each are stored in separate
columns of a table. To access the table setup screen, select the following.

TI-84/TI-83 TBLSET on the keyboard
Casio 9850 RANG in the TABLE menu

The increment is labeled Tbl on TI-84/TI-83 and Pitch on Casio 9850. 

Figure T1-5b shows a table of values for the function ,
which is stored as Y1.

Select the following to view the table of values.
TI-84/TI-83 TABLE on the keyboard
Casio 9850 Press TABL.

Graphs On and Off
An equation stays in the equation memory until you delete it. If there are
several equations in memory and you want to graph only some of them,
turn those equations “on’’ and the others “off.’’ On most calculators an
equation is “on’’ if its equal sign is shaded and “off’’ if its equal sign is
clear.

y � x3 � 4x � 2

¢

Figure T1-5b

Figure T1-5a
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1. Unless directed otherwise, use a calculator for graphing.

2. Complete graphs are required unless a viewing
window is specified or the context of a problem
indicates that a partial graph is acceptable.

3. If the directions say “obtain the graph,” “find the
graph,” or “graph the equation,” you need not actually
draw the graph on paper. For review purposes,
however, it may be helpful to record the viewing
window used.

4. The directions “sketch the graph’’ mean to draw the
graph on paper, indicating the scale on each axis. This
may involve simply copying the display that is on the
calculator screen, or it may require graphing if the
calculator display is misleading.

Graphing
Conventions

Calculator Exploration

1. Tick Marks
a. Set so that adjacent tick marks on the x-axis are

one unit apart. Find the largest range of x values such that
the tick marks on the x-axis are clearly distinguishable and
appear to be equally spaced.

b. Do part a with y in place of x.
2. Viewing Window Look in the ZOOM menu to find out how

many built-in viewing windows your calculator has. Take a
look at each one.

3. Maximum/Minimum Finders Use your minimum finder to
approximate the x-coordinates of the lowest point on the graph
of in the window with and

.

The correct answer is .

How good is your approximation?
4. Square Windows Find a square viewing window on your cal-

culator that has .
5. Dot Graphing Mode To see the points plotted by a calculator

without the connecting segments, set your calculator to DOT
mode, then graph in the standard window.
Try some other equations as well.

y � 0.5x3 � 2x2 � 1

�4 � x � 4

x �
A

2
3 � 0.81649658

�3 � y � 8
0 � x � 5y � x3 � 2x � 5

Xscl � 1



Sequence Graphing

Many calculators can produce a table of values and graph functions that are
defined by recursive and nonrecursive sequences. In a recursive sequence,
the nth term is defined in relation to a previous term or terms, such as

or . In a nonrecursive
sequence, the nth term is a function of the variable n, such as 

To enter, display a table of values for, and graph a sequence, select the fol-
lowing. In general, first set the mode to sequence and enter the sequence rule. 

• Set the window parameters, set the drawing mode (dot or
connected), and graph the sequence.

• Choose the table settings, and display the table.

TI-84/TI-83 MODE SEQ

Y� access the sequence editor screen
nMin the minimum n value evaluated
u(n) the rule of the sequence
u(nMin) the value of the sequence at the mini-

mum n value (recursive sequence only)
WINDOW

nMin the smallest n value evaluated; 
must be an integer

nMax the largest n value evaluated
PlotStart first term plotted
PlotStep incremental n value (graphing only);

designates which points are plotted;
does not affect sequence evaluation

Xmin, Xmax, Xscl, Ymin, Ymax, Yscl same as
function graphing values

GRAPH displays the graph of sequences
stored in memory

TBLSET table settings
TblStart smallest n value

Tbl increment
TABLE displays a table of values of sequences

stored in memory

Casio 9850 RECUR TYPE
a general term of the sequence { }
a linear recursion between two terms
a linear recursion between three terms

RANG displays table range settings
Start starting value of n
End ending value of n
a , b value of first term
(the value of n increments by 1)

TABL displays a table of values
G-PLT displays a graph of the data in the table
Press EXIT to return to the table and EXIT again to
return to the sequence editor.

11

n�2

n�1

unn

¢

u1n2 � 2n � 5.
u1n2 � 3u1n � 22 � u1n � 12 � 4u1n2 � u1n � 12 � 6
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In the TI-84/
TI-83, nMax, PlotStart, and
PlotStep must be integers
greater than 1.

NOTE

In the TI-84/
TI-83, both Indpnt
(independent) and 
Depend (dependent) 
values may be set by the
user or the calculator.

Sharp 9600 Input can be set
by the user or the calculator.

Auto: Calculator enters 
values.

Ask: User enters values.

NOTE
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Words printed in
all caps refer to buttons to
be pressed or menu choices
to be selected. For example,

STAT EDIT
directs you to press the
STAT button and then to
select EDIT from the
options shown.

NOTE

T.2 Lists, Statistics, Plots, and Regression

Most calculators allow you to store one or more lists that can be used with
statistical operations and graphs. Although the procedures needed to cre-
ate the statistical values seen in this book are shown below, refer to your
calculator’s manual for a complete guide. 

This section outlines the procedures to create the following items:

• statistical lists for 1-variable and 2-variable data
• statistics for 1-variable and 2-variable data
• histograms and box plots for 1-variable data
• scatter plots of 2-variable data 
• regression equations of 2-variable data

Refer to Sections 1.5, 4.3.A, 5.7, and 13.1 for examples that involve lists
and regression.

Lists

Call up the list editor to enter data into lists by using the commands
below. 

TI-84/TI-83 STAT EDIT
Lists are L1, L2, . . ., L6.

Casio 9850 STAT
Lists are List 1, List 2, . . ., List 6.

Press ENTER (or EXE) after each entry in a list to proceed to the next
position. Use the left/right arrow keys to move among lists and the
up/down arrow keys to move within a list.

One-Variable Statistics

Data for 1-variable statistics can be entered into the list editor in two ways:

• Each value is entered into a single list.
• Each value is entered into one list and its frequency into the cor-

responding position of a second list to create a frequency table.

The symbols commonly used to represent the statistics for 1-variable data
are as follows:

n sample number
mean

Sx, standard deviation from the sample
, population standard deviation from

the sample
sum of the data
sum of squares of the data

minX smallest value of the data
Q1 value of the first quartile
Med median of the data
Q3 value of the third quartile
maxX largest value of the data

©x2
©x

xsnsx
xsn�1

 x



To compute 1-variable statistics, use the following procedures.

TI-84/TI-83 STAT CALC 1: 1-Var Stats

• If the data is contained in one list, enter the list name by pressing
the list name shown above the number keys 1 through 6. 

• If the data was entered as a frequency table, enter the list name of
the data, press [ , ] (comma), and enter the name of the list that
contains the frequency.

Casio 9850 STAT EXE CALC SET

• If the data is contained in one list: 
1. Set XList to the list that contains the data by pressing the key

below the appropriate list name.
2. Use the down arrow key to highlight 1Var Freq and set 1Var

Freq to 1 by pressing F1. 
• If the data is contained in a frequency table.

1. Set 1Var XList to the list that contains the data by pressing the
key below the appropriate list name.

2. Set 1Var Freq to the list that contains the frequency of the data. 

Press EXIT to return to the list editor. 
Press 1VAR to display the statistics.

Histograms and Box Plots (1-Variable Graphs)

A histogram is a bar graph that displays 1-variable data values on the 
x-axis and represents each corresponding frequency as the height of the
box above the x-axis. A box plot and a modified box plot display the val-
ues Q1 to Q3 as a box with a vertical line at the median. A box plot displays
the values of xMin to Q1 and of Q3 to xMax as whiskers at either end 
of the box, and a modified box plot displays outliers (values at least 
1.5 * (Q3–Q1) below Q1 and above Q3) as points beyond the whiskers.

To create a graph of 1-variable data, enter the data into a single list or into
a frequency table, and use the procedures to create a histogram or a box
plot.

TI-84/TI-83

• STAT PLOT Plot1

• Highlight On and press ENTER.

• Highlight the desired graph type by using the arrow keys, and
press ENTER.

• Use the down arrow key to select Xlist. Enter the name of the list
that contains the data by using the keys L1 through L6, which are
the 2nd functions above the number keys 1 through 6.

• Move the cursor to Freq and enter 1 if the data is contained 
in a single list, or enter the name of the list that contains the 
frequency.
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Directions for
Casio 9850 begin from the
main menu screen.

NOTE



• If a modified box plot is selected, select the type of symbol that
will denote outliers.

• Set the window values for xMin and xMax, and if creating a 
histogram, set the yMin and yMax values. Box plots ignore yMin
and yMax values.

• GRAPH

Casio 9850 STAT EXE

• GRPH  SET

• Select the StatGraph area desired by choosing GPH1, GPH2, or
GPH3.

• Use the down arrow key to highlight Graph Type. Press � to 
display the graph type options. Choose Hist, Box (MedBox), or
Box (MeanBox). MedBox shows the distribution of the data items
that are grouped within Q1, Med, and Q3. MeanBox shows the
distribution of the data around the mean when there is a large
number of data items, and a vertical line is drawn at the mean.

• Select XList and enter the name of the list that contains the data.
• Select Frequency and enter 1 if the data is in one list or the name

of the list that contains the frequency of the data.
• Choose the graph color.
• Press EXIT.
• Press GPH1 (GRPH2 or GRPH3) to display the StatGraph area.

Press EXIT to return to the previous screen.

Two-Variable Statistics and Graphs

Two-variable statistics for both the x-variable and the y-variable include
all the statistics listed for 1-variable statistics; that is, the mean of the 
y-variable data is denoted as , the minimum value of the y-variable data
is denoted by minY or yMin, and so forth. Additionally, xy, the sum of
the product of corresponding data pairs, is also given.

To compute 2-variable statistics, use the following procedure after enter-
ing the data pairs into two lists.

TI-84/TI-83 STAT CALC 2–Var Stats

• Enter the list names that contain the data pairs separated by a
comma, and press ENTER. The first named list is the x-list, and
the second named list is the y-list.

Casio 9850 STAT EXE CALC SET

• Use the down arrow key to select 2Var XList, and enter the name
of the list that contains the x-data. Similarly, enter the name of the
list that contains the y-data. 2Var Freq specifies the list where
paired-variable frequency values are located. Enter 1 if the data
pairs are entered separately in the XList, and set 2Var Freq to 1 if
the data pairs are entered separately in the XList and the Ylist.

• EXIT  2VAR

g
y
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Scatter Plots

Scatter plots graph the data points from Xlist and Ylist as coordinate pairs.
The general procedure for graphing 2-variable data contained in two lists
is as follows.

• Define the statistical plot.
• Define the viewing window.
• Display the graph.

TI-84/TI-83

• STAT PLOT, select the desired stat plot editor, highlight 
On, and press ENTER.

• Select the icon that represents the type of graph desired and 
press ENTER.

• Enter the names of the lists that contain the x-data and the y-data.
Choose the graph type and Mark symbol. 
Option GS.D. represents a scatter plot.

• GRAPH

Casio 9850 STAT EXE GPH SET

• Select the graph number: GPH1, GPH2, or GPH3.
• Highlight Graph Type and choose Scat.
• Enter the names of the lists that contain the x-data and the 

y-data, enter the frequency of the data pairs, choose the mark
type and the graph color. EXIT

• V-Window, enter the viewing window values, EXIT

• GPH, select the graph number that contains the desired settings

Regression Equations
Most graphing calculators can compute the following types of regression
equations.

Regression Type Model Reference
linear LinReg or LinearReg
quadratic QuadReg
cubic CubicReg
quartic QuartReg
logarithmic LnReg or LogReg
exponential ExpReg
power PwrReg or PowerReg

logistic Logistic or LogisticReg

sinusoidal SinRegy � a sin1bx � c2 � d

y �
c

1 � ae�bx

y � axn
y � aebx
y � a ln x
y � ax4 � bx3 � cx2 � dx � e
y � ax3 � bx2 � cx � d
y � ax2 � bx � c
y � ax � b
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The procedure to compute regression equations follows. Enter the data
into two lists.

TI-84/TI-83 STAT CALC

Select the regression model by using the up/down
arrow keys. Enter the names of the lists separated
by a comma by using the L1 through L6 keys,
which are the 2nd functions for the numerals 1
through 6. The default is L1, L2.

Casio 9850 While viewing the lists, press CALC  REG. 
Select the regression model by pressing the corre-
sponding F key. Additional models are accessed by
pressing F6.

Displaying a Regression Equation’s Graph

Set the bounds of the display window by selecting the following.

TI-84/TI-83 WINDOW

Casio 9850 V-Window

TI-84/TI-83 There are two methods for entering a regression equation
into the Y� editor for display: automatic and manual. Note that each time
a regression equation is found, the contents of RegEQ are overwritten
with the new regression equation.

• Automatic The calculator can automatically place the regression
equation into the Y� editor as Y3 when computing a regression
equation. The following entry places the linear regression equa-
tion for the lists L1 and L2 into Y3 in the Y� editor.
LinReg L1,L2,Y3

• Manual Whenever a regression model is found, the calculator
places the regression equation into the variable RegEQ (or
RegEqn), which can be entered into the Y� editor. 
Press VARS Statistics EQ RegEQ from the Y� editor screen. 
A regression equation is displayed using the procedure to graph
any type of equation.

Casio 9850 

• While viewing the data lists, press GRPH.
• Select GPH1, GPH2, or GPH3 to view the desired graph type.

(Press SET to change the options.)
• Choose the type of regression model desired (X represents linear

regression.)
COPY lets you store the displayed regression equation as a

function in the Y� editor. Use the up/down arrow keys
to select the desired Y variable.

DRAW graphs the displayed regression equation
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Regression Coefficients

When some regression models are created, values of , the correlation
coefficient, and (or ), the coefficient of determination, are computed
and stored as values. Values of and are computed for the following
regression models: linear, logarithmic, power, and exponential. The value
of is computed for the following regression models: quadratic, cubic,
and quartic. No correlation coefficient or coefficient of determination is
given for logistic and sinusoidal regression models.

TI-84/TI-83 The variables , , and are displayed when a
regression equation is computed by executing the
DiagnosticOn instruction, which is found in the
CATALOG menu. When DiagnosticOff is set, the 
values for , , and are not displayed. 

Casio 9850 Neither form of a coefficient of determination is
computed on a Casio.

Scatter Plots of Residuals

Residuals, also called relative error, are stored as a list of values in a vari-
able named Resid or RelErr on some calculators. Scatter plots of the
residuals can be graphed but may not be visible in the same viewing win-
dow as the data. Adjust the window to view the scatter plot of the
residuals.

TI-84/TI-83 From a STAT PLOT menu set the following:
ON

Type Scatter Plot

XList Ln (the list that contains the input data)
Ylist RESID (which is found in LIST NAMES)
Mark as desired

GRAPH

Casio 9850 Residuals are not automatically computed when a
regression equation is found.

R2r2r

R2r2r

R2

r2r
R2r2

r
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Fraction Conversion
(Built-in on TI-82/83/84/85/86)

Description: Enter a repeating decimal; the program converts it into a
fraction. The denominator is displayed on the last line and the numera-
tor on the line above.

Casio 9850
Fix 7 Rnd [MATH NUM menu]

[MATH NUM menu]

Lbl 1 Norm [DISP menu]
(Int N)
D

TI-82/83/84 Quadratic Formula 
(Built-in on other calculators)

Description: Enter the coefficients of the quadratic equation
the program finds all real solutions.

:ClrHome [Optional] :Goto 1
:Disp [Optional] :Disp 
:Prompt A :Disp 
:Prompt B :Stop
:Prompt C :Lbl 1

:Disp “NO REAL ROOTS”
:If S 6 0
:1B2 � 4AC2S S

1�B � 1S2/2A

1�B � 1S2/2A”AX2 � BX � C � 0”

ax2 � bx � c � 0;

N � D
D � 1 S D

1Ans � .52S N0 S D
1Frac Ans2 � 0 1 Goto 1”N � ”? S N
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T.3 Programs

The programs listed here are of two types: programs to give older calcu-
lators some of the features that are built-in on newer ones and programs
to do specific tasks discussed in this book (such as synthetic division).
Each program is preceded by a Description, which describes, in general
terms, how the program operates and what it does. Some programs
require that certain things be done before the program is run (such as
entering a function in the function memory); these requirements are listed
as Preliminaries. Occasionally, italic remarks appear in brackets after a pro-
gram step; they are not part of the program, but are intended to provide
assistance when you are entering the program into your calculator. A
remark such as “[MATH NUM menu]” means that the symbols or com-
mands needed for that step of the program are in the NUM submenu of
the MATH menu.



Synthetic Division
(Built-in on TI-89/92)

Preliminaries: Enter the coefficients of the dividend (in order of
decreasing powers of x, putting in zeros for missing coefficients) as list

(or List 1). If the coefficients are 1, 2, 3, for example, key in {1, 2, 3,}
and store it in The symbols { } are on the keyboard or in the LIST menu.
The list name is on the keyboard of TI-82/83 and Sharp 9600. On 
TI-85/86 and HP-38, type in L1. On Casio 9850, use “List” in the LIST
submenu of the OPTN menu to type in List 1.

Description: Write the divisor in the form and enter a. The pro-
gram displays the degree of the quotient the coefficients of (in
order of decreasing powers of x), and the remainder. If the program pauses
before it has displayed all these items, you can use the arrow keys to scroll
through the display; then press ENTER (or OK) to continue.

TI-82/83/84/85/86
:ClrHome [ClLCD on TI-85/86] :round(L2(N),9) R [MATH NUM menu]
:Disp “DIVISOR IS ”
:Prompt A :Disp “DEGREE OF QUOTIENT”

[See Preliminaries for how to enter list names] :Disp dim 
on TI-85/86] [LIST OPS menu] :Disp “COEFFICIENTS”

:For (K, 2, N) :Pause L2

:Disp “REMAINDER”
:End :Disp R

Casio 9850
“DIVISOR IS ” Rnd [OPTN MATH NUM menu]
“

[See Preliminaries for how to enter list names] Norm [SETUP DISP menu]
dim [OPTN LIST menu] Seq(List 2 [X], X, 1, 1) List 2

[OPTN LIST menu]
Lbl 1 “DEGREE OF QUOTIENT”

dim List 
“COEFFICIENTS”
List 2

Fix 9 [SETUP DISP menu] “REMAINDER”
List 2 [N] R

K � N 1 Goto 1
K � 1 S K

2 � 11List 1 3K 4 � A � List 2 3K � 1 4 2 S List 2 3K 4
2 S K

SN � 1,List 1 S N
List 1 S List 2

Ans S RA � ”? S A

X � A

:1L11K2 � A � L21K � 12 2S L21K2
:dim L1 S N 3dimL L1

L2 � 1:L1 S L2

:1N � 12S dim L2X � A
S

Q1x2Q1x2,x � a

L1

L1.
L1

F1x2
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absolute value (of a complex number)
(p. 638)

absolute value of a number For any real number c,
if , then and if , then (alge-
braic definition). is the distance from c to 0 on the
number line (geometric definition). (p. 107, 108)

absolute-value inequalities For a positive number
k and any real number r, is equivalent to

and is equivalent to or 
(p. 129)

acute angle an angle with a degree measure of less
than (p. 414)

addition and subtraction identities trigonometric
identities involving a function of the sum or difference
of two angle measures (p. 582) 

adjacency matrix a matrix used to represent the
connections between vertices in a directed network 
(p. 809)

adjacent side (of a right triangle) abbreviated adj,
the side of a given acute angle in a right triangle that is
not the hypotenuse (p. 415)

ambiguous case When the measures of two sides of
a triangle and the angle opposite one of them are
known, there may be one, two, or no triangles that sat-
isfy the given measures. (p. 627)

amplitude The amplitude of a sinusoidal function is
one-half of the difference between the maximum and
minimum function values and is always positive. 
(p. 497) See also sinusoidal function.

analytic geometry the study of geometric properties
of objects using a coordinate system (p. 691)

angle a figure formed by two rays and a common
endpoint (p. 413)

90°

r � k.r � �k0 r 0 � k�k � r � k
0 r 0 � k

0 c 0 0 c 0 � �cc 6 00 c 0 � cc � 0

0 a � bi 0 � 2a2 � b2

angle of depression the angle formed by a horizon-
tal line and a line below it (p. 427)

angle of elevation the angle formed by a horizontal
line and a line above it (p. 426)

angle of inclination If L is a nonhorizontal straight
line in a coordinate plane, then the angle of inclination
of L is the angle formed by the part of L above the 
x-axis and the x-axis in the positive direction. (p. 589)

Angle of Inclination Theorem If L is a nonvertical
line with angle of inclination then tan slope of L.
(p. 589)

Angle Theorem If is the angle between nonzero
vectors u and v, then and 

(p. 672)

angular speed a measure of speed of a point rotat-
ing at a constant rate around the center of a circle,
given as the angle through which the point rotates over
time (p. 440)

approach infinity Output values of a function that
get larger and larger without bound as input values
increase are said to approach infinity. (p. 201)

arc an unbroken part of a circle (p. 434)

arc length the length of an arc, which is equal to the
radius times the radian measure of the central angle of
the arc (p. 435, 439)

arccosine function the inverse cosine function,
denoted by (p. 533)

arcsine function the inverse sine function, denoted
by (p. 530)

arctangent function the inverse tangent function,
denoted by (p. 535)

area of a triangle formula The area of any triangle 

ABC in standard notation is (p. 632)1
2 ab sin C.

g 1x2 � arctan x

g 1x2 � arcsin x

g 1x2 � arccos x

cos u �
u � v
�u� �v�

.

u � v � �u� �v� cos u
u

u �u,

A
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argument the angle in a trigonometric expression
(p. 639)

arithmetic progression See arithmetic sequence.

arithmetic sequence a sequence in which the differ-
ence between each term and the preceding term is
always constant (p. 22)

asymptotes of a hyperbola two lines intersecting at
the center of a hyperbola which the hyperbola
approaches but never touches (p. 701)

augmented matrix a matrix in which each row rep-
resents an equation of a system and contains the coeffi-
cients of the variables in the equation (p. 795)

average See mean.

average rate of change For any function f, the aver-
age rate of change of with respect to x as x

changes from a to b is the value 

(p. 216)

axes (singular: axis) the number lines in a coordi-
nate system (p. 5)

axis of a parabola the line through the focus of a
parabola perpendicular to the directrix of the parabola
(p. 709)

bar graph a visual display of qualitative data in
which categories are displayed on the horizontal axis
and frequencies or relative frequencies on the vertical
axis (p. 845)

Basic Properties of Logarithms is defined
only for and 
for all real k; and for all (p. 364, 372)

bell curve See normal curve.

Bernoulli experiment See binomial experiment.

Big-Little Concept If c is a number far from 0, then 

is a number close to 0. Conversely, if c is a number 

close to 0, then is a number far from 0. (p. 280)

binomial distribution the probability distribution
for a binomial experiment (p. 888)

binomial experiment A probability experiment that
can be described in terms of just two outcomes is a
binomial experiment, also known as a Bernoulli experi-
ment. It must meet the following conditions: the experi-
ment consists of n trials whose outcomes are either

1
c

1
c

x 7 0.blogb x � x
logb bk � klogb b � 1;logb 1 � 0x 7 0;

logb x

f 1b2 � f 1a2
b � a

.

change in f 1x2
change in x

�

f 1x2

u successes or failures, and the trials are identical and
independent with a constant probability of success, p,
and a constant probability of failure, (p. 885)

bounds test a test used to determine the lower and
upper bounds for the real zeros of a polynomial func-
tion (p. 256)

Cartesian coordinate system a two-dimensional
coordinate system that corresponds ordered pairs of
real numbers with locations in a coordinate plane (p. 5)

center of a hyperbola the midpoint of the segment
that has the foci of the hyperbola as endpoints (p. 701)

center of an ellipse the midpoint of the segment
that has the foci of the ellipse as endpoints (p. 692)

central angle an angle whose vertex is at the center
of a circle (p. 434)

central tendency a value that is used to represent
the center of an entire data set (p. 853)

change in x the horizontal distance moved from one
point to another point in a coordinate plane; some-
times denoted and read “delta x” (p. 31)

change in y the vertical distance moved from one
point to another point in a coordinate plane; some-
times denoted and read “delta y” (p. 31)

Change-of-Base Formula For any positive number 

x, and (p. 374)

closed interval an interval of numbers in which
both endpoints of the interval are included in the set;
denoted with two brackets (p. 118)

coefficient the numerical factor of a term in a poly-
nomial (p. 239)

coefficient of determination a statistical measure,
often denoted by that is the proportion of variation
in y that can be attributed to a linear relationship
between x and y in a data set (p. 47)

Cofunction Identities trigonometric identities that
relate the sine, secant, and tangent functions to the
cosine, cosecant, and cotangent functions, respectively
(p. 586)

combination an arrangement of objects in which
order is not important; a collection of objects (p. 880)

common difference the constant number, usually
denoted by d, that is the difference between each term
and the preceding term in an arithmetic sequence 
(p. 22)

r2,

logb x �
ln x
ln b

.logb x �
log x
log b

¢ y,

¢ x,

q � 1 � p.
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common logarithm (of x) the value of 
at the number x, denoted log x (p. 356)

common logarithmic function the inverse of the
exponential function denoted 
(p. 356)

common ratio the constant value, denoted by r,
given by the quotient of consecutive terms in a geo-
metric sequence (p. 58)

complement of an event the set of all outcomes that
are not contained in the event (p. 866)

complete graph a graph that shows all of its impor-
tant features, including all peaks and valleys, points
where it touches an axis, and suggests the general shape
of the portions of the graph that are not in view (p. 82)

completely factored (over the set of real numbers)
a polynomial written as the product of irreducible fac-
tors with real coefficients (p. 253)

completing the square a process used to change an
expression of the form into a perfect square by
adding a suitable constant (p. 92)

complex number system the number system that
consists of real and nonreal numbers (p. 293) 

complex numbers numbers of the form 
where a is a real number and bi is an imaginary num-
ber (p. 294)

complex plane a coordinate plane with the horizon-
tal axis labeled for real numbers and the vertical axis
labeled for imaginary numbers (p. 301, 638)

components (of a vector) the numbers a and b in
the vector where u is a vector with initial
point at the origin and terminal point at (a, b) (p. 655)

composite functions If f and g are functions, then
the composite function of f and g is 
read “g circle f” or “f followed by g.” (p. 193)

composition of functions a way of combining func-
tions in which the output of one function is used as the
input of another function (p. 193)

compound inequality an inequality that compares
more than two quantities and contains more than one
inequality symbol (p. 118)

compound interest This interest on an investment is
compounded, or becomes part of the investment, at a
particular interest rate per time period. If P dollars is
invested at annual interest rate r per time period
(expressed as a decimal), then the amount A after t
time periods is (p. 345)

concave down a description of the way a curve
bends if for any two points in a given interval that lie
on the curve, the segment that connects them is below
the curve (p. 154)

A � P11 � r2t.

1g � f 2 1x2 � g 1 f 1x2 2,

u � Ha, bI,

a � bi,

x2 � bx

g 1x2 � log xf 1x2 � 10x,

g 1x2 � log x concave up a description of the way a curve bends if
for any two points in a given interval that lie on the
curve, the segment that connects them is above the
curve (p. 154)

concavity a description of the way that a curve
bends, such as concave up or concave down (p. 154)

conic section a curve that is formed by the intersec-
tion of a plane and a double-napped right circular cone
(p. 691); Let L be a fixed line, called a directrix, P a
fixed point not on L, and e a positive constant. The set
of all points X in the plane such that 

is a 

conic section with P as one of its foci. (p. 747)

conjugate The conjugate of the complex number
is the number and the conjugate of 

is (p. 296, 309)

conjugate pairs complex numbers and 
(p. 296)

Conjugate Zero Theorem For every polynomial
function f, if the complex number z is a zero of f, then
its conjugate, is also a zero of f. (p. 309)

consistent system a system of equations with at
least one solution (p. 781)

constant function A function is said to be constant
on an interval if its graph is a horizontal line over the
interval; that is, if its output values are always constant
as the input values are increasing. (p. 152)

constant polynomial a polynomial that consists of
only a constant term (p. 240)

constant term the coefficient in a polynomial that
is written in the form 
(p. 239)

constraints restrictions, represented by inequalities,
that exist in linear programming (p. 829)

continuous compounding This compound interest
is compounded infinitely many times during a time
period. If P dollars is invested at annual interest rate r
and compounded continuously, then the amount A
after t years is (p. 348)

continuous function a function whose graph is an
unbroken curve with no jumps, gaps, or holes 
(p. 261, 939)

convergent series a geometric series in which the
terms of the sequence of partial sums get
closer and closer to a particular real number S in such
a way that the partial sum is arbitrarily close to S
when k is large enough; a geometric series with com-
mon ratio r such that (p. 77)

coordinate plane See Cartesian coordinate system.

0 r 0 6 1

Sk

S3, pS2,S1,

A � Pert.

anxn � an�1x
n�1 � p � a1x � a0

a0

z,

a � bia � bi

a � bi.
a � bia � bi,a � bi

distance between X and the fixed point
distance between X and the fixed line

�
XP
XL

� e
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coordinate system a system of locating points in a
plane or in space by using ordered pairs or ordered
triples, respectively, of real numbers (p. 5)

corner point any point of a feasible region where at
least two of the graphs of the constraints intersect 
(p. 829)

correlation coefficient a statistical measure, often
denoted by r, of how well the least squares regression
line fits the data points that it models (p. 47)

cosecant ratio For a given acute angle in a right
triangle, the cosecant of is written as csc and is
equal to the reciprocal of the sine ratio of the given
angle. (p. 416)

cosine ratio For a given acute angle in a right tri-
angle, the cosine of is written as cos and is equal to
the ratio of the adjacent side length to the length of the
hypotenuse. (p. 416)

cotangent ratio For a given acute angle in a right
triangle, the cotangent of is written as cot and is
equal to the reciprocal of the tangent ratio of the given
angle. (p. 416)

coterminal angles angles formed by different rota-
tions that have the same initial and terminal sides 
(p. 434)

cubic function a third-degree polynomial function
(p. 240)

cycle (of a periodic function) a portion of the
graph of a periodic function in which the function goes
through one period (p. 493) 

data information gathered in a statistical experiment
(p. 843)

decreasing function A function is said to be
decreasing on an interval if its graph always falls as
you move from left to right over the interval; that is, its
output values are always decreasing as the input val-
ues are increasing. (p. 152)

degenerate conic section a point, line, or intersect-
ing lines formed by the intersection of a plane and a
double-napped right circular cone (p. 691)

degree (measure) a unit of angle measure that 

equals of a circle, denoted with the degree symbol 

(p. 414)

degree (of a polynomial) the exponent of the high-
est power of the variable that appears with a nonzero
coefficient in a polynomial (p. 240)

1°2
1

360

uu

u

uu

u

uu

u

delta See change in x or change in y.

DeMoivre’s Theorem For any complex number,
and for any positive integer n,

(p. 644)

denominator the expression in a fraction that lies
below the fraction bar (p. 4)

deviation (of a data value) the difference of a data
value from the mean of the data set (p. 857)

difference function For any functions and 
their difference function is the new function

(p. 191)

difference quotient the quantity for 

a function f (p. 219)

differential calculus a method of calculating the
changes in one variable produced by changes in a
related variable (p. 138)

dimensions of a matrix used to indicate the num-
ber of rows and columns in a matrix (Example: an

matrix has m rows and n columns) (p. 804)

directed network a finite set of connected points in
which permissible directions of travel between the
points are indicated (p. 809)

direction (of a vector) the angle that the directed
line segment representing a vector makes with the
positive x-axis (p. 662)

directrix of a parabola the line in the formation of a
parabola such that its distance from any point on the
parabola is equal to the distance from that point to the
focus of the parabola (p. 709)

discontinuous function a function that has one or
more jumps, gaps, or holes (p. 937)

discriminant the expression in the quadratic
formula, used to determine the number of real solu-
tions of a quadratic equation (p. 93)

distance (between real numbers) The distance on
the number line between real numbers c and d is

(p. 108)

distance difference the constant difference between
the distances from each focus of a hyperbola to a point
on the hyperbola (p. 700)

distribution an arrangement of numerical data in
order (usually ascending) (p. 846)

divergent series a geometric series that is not con-
vergent; a geometric series with common ratio r such
that (p. 77)0 r 0 � 1

0 c � d 0 .

ax2 � bx � c � 0

b2 � 4ac

Ha, bI

m � n

f 1x � h2 � f 1x2
h

1 f � g2 1x2 � f 1x2 � g 1x2.
g 1x2,f 1x2

zn � rn 1cos n u � i sin n u2.
z � r 1cos u � i sin u2,
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Division Algorithm If a polynomial is divided
by a nonzero polynomial then there is a quotient
polynomial and a remainder polynomial such
that where either or

has a degree less than the degree of the divisor,
(p. 243)

DMS form a form of degree measure expression
which includes degrees, minutes, and seconds (p. 414)

domain the set of first numbers in the ordered pairs
of a relation (p. 6, 142)

domain convention Unless information to the con-
trary is given, the domain of a function f includes
every real number input for which the function rule
produces a real number output. (p. 145)

dot product a real number produced by multiplying
corresponding components of two vectors and adding
the products (p. 670)

Double-Angle Identities trigonometric identities
involving a function of an angle multiplied by 2 
(p. 593)

eccentricity (of an ellipse or hyperbola) the ratio 

where for 

all ellipses and for all hyperbolas (p. 745)

elementary row operations operations used on an
augmented matrix that produce an augmented matrix
of an equivalent system (p. 796)

eliminating the parameter expressing a curve that
is given by parametric equations as part of the graph
of an equation in x and y (p. 757)

ellipse For any points P and Q in the plane and any
number k greater than the distance from P to Q, an
ellipse, with foci P and Q, is the set of all points (x, y)
such that the sum of the distance from (x, y) to P and
the distance from (x, y) to Q is k. (p. 692) a conic section
with eccentricity between 0 and 1, not inclusive (p. 747)

empirical rule a rule that describes the areas under
the normal curve over intervals of one, two, and three
standard deviations on either side of the mean in terms
of percentages of the number of data values (p. 892)

end behavior the shape of the graph of a function at
the far left and far right of the coordinate plane when

is large (p. 262, 287)

endpoints (of an interval) the numbers c and d in a
set of numbers that can be expressed as an interval
from c to d (p. 118)

0 x 0

e 7 1

0 6 e 6 1e �
distance between the foci

distance between the vertices
,

h1x2.
r 1x2

r 1x2 � 0f 1x2 � h1x2 � q1x2 � r 1x2,
r 1x2q1x2

h1x2,
f 1x2 equal matrices two or more matrices that have the

same dimensions and equal corresponding entries 
(p. 804)

equivalent equations equations that have the same
solutions (p. 81)

equivalent inequalities inequalities that have the
same solutions (p. 119)

equivalent systems systems of equations with the
same solutions (p. 795)

equivalent vectors vectors, such as u and v, that
have the same magnitude and direction, denoted

(p. 654)

Euler’s Formula the identity 
(p. 688)

even function a function f for which for
all x in its domain, its graph symmetric with respect to
the y-axis (p. 188, 482)

event any outcome or collection of outcomes in the
sample space of an experiment (p. 865)

eventually fixed point the number c for which the
orbit of c for a given function eventually produces con-
stant output values (p. 202)

eventually periodic point the number c for which
the orbit of c for a given function eventually produces
repeating output values (p. 202)

expected value of a random variable the average
value of the outcome values for a random variable 
(p. 869)

experiment in probability, any process that generates
one or more observable outcomes (p. 864)

explicit form of a geometric sequence In a geo-
metric sequence with common ratio r, 
for all (p. 60)

explicit form of an arithmetic sequence In an
arithmetic sequence with common difference d,

for all (p. 23)

exponential decay decay that can be represented by
a function of the form where is the
quantity at time x, P is the initial quantity when 
and is the factor by which the quantity
decreases when x increases by 1 (p. 351)

exponential function (with base a) a function
whose rule is where a is any positive real
number, and whose domain is all real numbers (p. 336)

exponential growth growth that can be represented
by a function of the form where is the
quantity at time x, P is the initial quantity when 
and is the factor by which the quantity increases
when x increases by 1 (p. 349)

a 7 1
x � 0,

f 1x2f 1x2 � Pax,

f 1x2 � ax,

0 6 a 6 1
x � 0,

f 1x2f 1x2 � Pax,

n � 2.un � u1 � 1n � 12 d
5un6

n � 1.
un � rn�1u15un6

f 1�x2 � f 1x2

eix � cos x � i sin x

u � v
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exponential model an exponential function used to
represent the trend in a data set (p. 389)

extraneous roots See extraneous solutions.

extraneous solutions solutions of a derived equa-
tion that are not solutions of the original equation 
(p. 110)

Factor Theorem A polynomial has a linear fac-
tor if and only if (p. 245)

factorial The notation n! is read “n factorial” and
describes the product of all the integers from 1 
through n. (p. 520, 880)

feasible region the region of the coordinate plane
that is the intersection of the graphs of the constraints
in linear programming (p. 829)

Fibonacci sequence the sequence discovered 
by Leonardo Fibonacci in the thirteenth century 
in which and for is the 
sum of the two preceding terms; 
(p. 21)

finite differences the differences between each 
y-value and the preceding one in a table of values 
(p. 43)

first octant the octant of a three-dimensional coordi-
nate system in which all coordinates are positive 
(p. 790)

first quartile See quartiles.

five-number summary (of a data set) the follow-
ing list of values: minimum, first quartile, second quar-
tile, third quartile, and maximum (p. 861)

fixed point (of an orbit) the number c for which the
orbit of c for a given function produces constant output
values (p. 202)

focal axis of a hyperbola the line through the foci
of a hyperbola (p. 701)

foci (singular, focus) of a hyperbola the points in
the formation of hyperbola such that the difference of
the distances from each focus to a point on the hyper-
bola is constant (p. 701)

foci (singular, focus) of an ellipse the points in the
formation of an ellipse such that the sum of the dis-
tances from each focus to a point on the ellipse is con-
stant (p. 692)

focus of a parabola the point in the formation of a
parabola such that its distance from any point on the

an � an�1 � an�2

ann � 3,a2 � 1,a1 � 1,

5an6

f 1a2 � 0.1x � a2
f 1x2

parabola is equal to the distance from that point to the
directrix (p. 709)

Formula for Roots of Unity For each positive 
integer n, the n distinct nth roots of unity are 

for 1, 2, and 

(p. 648)

fractional equation an equation formed by a frac-
tional expression equal to 0 (p. 114)

fractional expression the quotient where 

and are algebraic expressions and (p. 114)

frequency (of a sound wave) the reciprocal of the
period of the sinusoidal function that represents a
sound wave (p. 558)

function a special type of relation in which each
member of the domain corresponds to one and only
one member of the range (p. 7) A function consists of a
set of inputs called the domain, a rule by which each
input determines one and only one output, and a set of
outputs called the range. (p. 142)

function notation There is a customary method of
denoting a function in abbreviated form. If f denotes a
function and a denotes a number in the domain, then
f(a) denotes the output of the function f produced by
input a. (p. 9)

function rule a set of operations that defines a func-
tion (p. 7)

Fundamental Counting Principle In a set of 
k experiments, if the first experiment has 
outcomes, the second has outcomes, and 
the kth has outcomes, then the total number 
of outcomes for all k experiments is 
(p. 879)

Fundamental Theorem of Algebra Every noncon-
stant polynomial has a zero in the complex number
system. (p. 307)

Fundamental Theorem of Linear Programming
The maximum or minimum of the objective function (if
it exists) always occurs at one or more of the corner
points of the feasible region. (p. 829)

Gauss-Jordan elimination the method of using ele-
mentary row operations on an augmented matrix to
produce a matrix in reduced row-echelon form that
represents an equivalent system (p. 797)

n1 � n2 � p � nk.
nk

p ,n2

n1

g 1x2 � 0g 1x2
f 1x2f 1x2

g 1x2 ,

n � 1.p ,k � 0,cos 2ku
n � i sin 2ku

n
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general form (of a line) a linear equation in the
form where A and B are not both
equal to zero (p. 39)

geometric progression See geometric sequence.

geometric sequence a sequence in which terms are
formed by multiplying a preceding term by a nonzero
constant (p. 58)

graph a visual display of a set of points (p. 30)

graph of an equation the set of points whose coor-
dinates are solutions of the equation (p. 30)

graphical zero finder the calculation performed by
a graphics calculator in which the x-intercepts of the
graph of a function are identified; labeled ROOT,
ZERO, or X-INCPT in the TI-83 and Sharp 9600 CALC
menu, the Casio 9850 G-SOLVE menu, the MATH sub-
menu of TI-86/89 GRAPH menu, and the FCN sub-
menu of the HP-38 PLOT menu (p. 84)

greatest integer function a piecewise-defined func-
tion denoted as that converts a real number
x into the largest integer that is less than or equal to x
(p. 147)

Half-Angle Identities trigonometric identities
involving a function of an angle divided by 2 (p. 596)

half-open interval an interval of numbers in which
one endpoint of the interval is included in the set and
the other endpoint of the interval is not included;
denoted with one bracket and one parenthesis, respec-
tively (p. 118)

Heron’s Formula The area of any triangle ABC in
standard notation is where 

(p. 633)

Hertz the unit of measure for the frequency of a sound
wave, where one Hertz is one cycle per second (p. 559)

histogram a display of quantitative data in which
the data is divided into classes of equal size and dis-
played along the horizontal axis and frequencies or rel-
ative frequencies on the vertical axis (p. 848)

hole in a graph A point is omitted in the graph of a
function and is not contained by an asymptote. For any 

rational function and number d that pro-

duces both a zero numerator and a zero denominator,
if the multiplicity of d as a zero of the related function
g is greater than or equal to the multiplicity of d as a
zero of the related function h, then the graph of f has a
hole at (p. 283)x � d.

f 1x2 �
g 1x2
h1x2

s �
1
2 1a � b � c2.

1s1s � a2 1s � b2 1s � c2,

f 1x2 � 3x 4

Ax � By � C � 0,
horizontal asymptote a horizontal line that the
graph of a function approaches but never touches or
crosses as gets large (p. 284, 952)

horizontal compression For any positive number
the graph of is the graph of f com-

pressed horizontally, toward the y-axis, by a factor

of (p. 179)

horizontal line a line that has a slope of zero and an
equation of the form where b is the y-intercept
(p. 37)

horizontal shifts For any positive number c, the
graph of is the graph of f shifted c units to
the left, and the graph of is the graph of f
shifted c units to the right. (p. 175)

horizontal stretch For any positive number 
the graph of is the graph of f stretched hori-

zontally, away from the y-axis, by a factor of (p. 179)

horizontal line test A function f is one-to-one if and
only if no horizontal line intersects the graph of f more
than once. (p. 209)

hyperbola For any points P and Q in the plane and
any positive number k, a hyperbola with foci P and Q
is the set of all points (x, y) such that the absolute value
of the difference of the distance from (x, y) to P and the
distance from (x, y) to Q is k. (p. 700) a conic section
with eccentricity greater than 1 (p. 700)

hypotenuse abbreviated hyp, the side of a right tri-
angle that is across from the right angle (p. 415)

identities involving 
(p. 459)

identity an equation that is true for all values of the
variable for which every term of the equation is
defined (p. 454)

identity matrix The matrix, denoted has 1s
on the diagonal from the top left to the bottom right
and 0s in all other entries. For any matrix A,

(p. 815)

imaginary axis the vertical axis in the complex
plane where each imaginary number corre-
sponds to the point (0, b) (p. 638)

imaginary numbers a number of the form bi, where
b is a real number and i is the imaginary unit (p. 294)
The number . (p. 294, 297)

inconsistent system a system of equations with no
solutions (p. 781)

i � 1�1

0 � bi

AIn � InA � A.
n � n

In,n � n

tan1p � t2 � �tan tsin1p � t2 � sin t,
cos1p � t2 � �cos t,P � t

1
c .

y � f 1cx2
c 6 1,

y � f 1x � c2
y � f 1x � c2

y � b,

1
c .

y � f 1cx2c 7 1,

0 x 0
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increasing function A function is said to be increas-
ing on an interval if its graph always rises as you move
from left to right over the interval, that is, if its output
values are always increasing as the input values are
increasing. (p. 152)

independent events two events such that the occur-
rence or non-occurrence of one event has no effect on
the probability of the other event (p. 867)

infinite geometric series the infinite series
where is a geometric sequence

with common ratio r (p. 77)

infinite limit a limit of infinity as x approaches some
constant c; corresponds to a vertical asymptote (p. 949)

infinite sequence a sequence with an infinite num-
ber of terms (p. 13)

infinite series the sum of terms of a sequence that
continues without end, or an infinite sequence; an
expression of the form in which is 

a real number; also denoted by (p. 76)

inflection point a point where the graph of a func-
tion changes concavity (p. 154, 266)

initial point (of a vector) the point P in a vector
that extends from point P to point Q (p. 653)

initial side the starting position of a ray that is ro-
tated around its vertex (p. 433)

input (of a relation) the values denoted by the first
numbers in the ordered pairs of a relation (p. 7)

instantaneous rate of change the rate of change of
a function at a particular point (p. 234)

integers the set of numbers that consists of whole
numbers and their opposites: 0, 1, 2,
3, (p. 3)

integral calculus a method of calculating quantities
such as distance, area, and volume (p. 138)

intercepts (of a rational function) If the graph of a
rational function, f, has a y-intercept, it occurs at f(0),
and the x-intercepts occur at the numbers that are
zeros of the numerator and not zeros of the denomina-
tor. (p. 279)

intercepts (of polynomial functions) The graph of
a polynomial function of degree n has one y-intercept,
which is equal to the constant term, and at most n
x-intercepts. (p. 264)

interest a fee paid for the use of borrowed money;
calculated as a percentage of the principal (p. 100) 

Intermediate Value Theorem If the function f is
continuous on the closed interval [a, b] and k is any
number between and then there exists at leastf 1b2,f 1a2

p
�1,�2,�3,p ,

a
q

n�1
an

ana1 � a2 � a3 � p ,

5an6a1 � a2 � a3 � p ,

one number c between a and b such that 
(p. 944)

interquartile range a measure of variability resis-
tant to outliers; the difference between the first and
third quartiles (p. 860)

intersection method a method of solving an equa-
tion of the form by graphing and

on the same screen of a graphics calculator
and finding the x-coordinate of each point of intersec-
tion (p. 82)

interval (of numbers) the set of all numbers lying
between two fixed numbers (p. 118)

interval notation There is a customary method of
denoting an interval of numbers. For real numbers c
and d with [c, d] denotes all real numbers x such
that (c, d) denotes all real numbers x such
that [c, d) denotes all real numbers x such
that and (c, d] denotes all real numbers x
such that (p. 118)

interval of convergence the set of values of x for
which an infinite series converges to a function (p. 520)

inverse cosine function the inverse of the cosine
function with a domain restricted to denoted
by (p. 533)

inverse function an inverse relation that is a func-
tion (p. 205)

inverse of a matrix For an matrix A, the
inverse of A is an matrix B, also denoted 
such that and or equivalently,

and (p. 816)

inverse relation the result of exchanging the input
and output values of a function or relation (p. 205)

inverse sine function the inverse of the sine func-

tion with a domain restricted to denoted by 

(p. 530)

inverse tangent function the inverse of the tangent 

function with a domain restricted to denoted 

by (p. 535)

invertible matrix an matrix for which there
exists an inverse matrix (p. 815)

irrational number the set of real numbers that can-
not be expressed as a fraction of integers (p. 4)

irreducible (polynomial) a polynomial that cannot
be written as the product of polynomials of lesser
degree (p. 253)

iterations (of a function) the repeated composi-
tions of a function with itself (p. 199)

n � n

g 1x2 � tan�1 x

S�p2 , p2 T ,
g 1x2 � sin�1 x

S�p2 , p2 T ,

A�1A � In.AA�1 � In

BA � In,AB � In

A�1,n � n
n � n

g 1x2 � cos�1 x
3�1, 1 4 ,

c 6 x � d.
c � x 6 d;
c 6 x 6 d;
c � x � d;

c 6 d:

y2 � g 1x2
y1 � f 1x2f 1x2 � g 1x2

f 1c2 � k.
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kth partial sum the sum of the first k terms of a
sequence where k is a positive integer (p. 26)

Law of Cosines For any triangle ABC in 
standard notation, 

and 
(p. 617)

Law of Sines For any triangle ABC in standard nota-

tion, (p. 625)

Laws of Exponents For any nonnegative real num-
bers c and d and any rational numbers r and s, 

and (p. 330)

leading coefficient the nonzero coefficient of the
highest power of the variable in a polynomial (p. 240)

least-squares regression line the one and only one
line for which the sum of the squares of the residuals
for a set of data is as small as possible (p. 47)

length (of a vector) the distance from point P to
point Q in a vector that extends from point P to point
Q, denoted (p. 653)

limit a number (or infinity) that a function value
approaches but never reaches as the domain values of
that function approach a particular value or infinity 
(p. 909, 931)

limit at infinity a real number limit as x gets large
or small without bound; corresponds to a horizontal
asymptote (p. 951)

limit of a constant If d is a constant, then 
(p. 918)

limit of a constant at infinity If c is a constant,
then and (p. 953)

limit of a polynomial function If is a polyno-
mial function and c is any real number, then

(p. 920)

limit of a rational function If is a rational
function and c is any real number such that is
defined, then (p. 921)

limit of the identity function For every real num-
ber c, (p. 918)

xSc
lim x � c.

xSc
lim f 1x2 � f 1c2.

f 1c2
f 1x2

xSc
lim f 1x2 � f 1c2.

f 1x2
xS�q
lim c � c.

xSq
lim c � c

xSc
lim d � d.

�PQ
!
�

c�r �
1
cr  1c � 02.a c

d
br

�
cr

dr  1d � 02,
1cd2r � crdr,1cr2s � crs,cr

cs � cr�s 1c � 02,crcs � cr�s,

a
sin A

�
b

sin B �
c

sin C
.

c2 � a2 � b2 � 2ab cos C.b2 � a2 � c2 � 2ac cos B,
a2 � b2 � c2 � 2bc cos A,

5un6,

Limit Theorem If f and g are functions that have lim-
its as x approaches c and for all then

(p. 922, 954)

linear combination The vector is said to
be a linear combination of i and j, where and

are unit vectors. (p. 662)

linear function a first-degree polynomial function
(p. 240)

linear programming a process that involves finding
the maximum or minimum output of a linear function,
called the objective function, subject to certain restric-
tions called constraints (p. 829)

linear regression the computational process for
finding the least-squares regression line for a set of
data (p. 47)

linear speed a measure of speed of a point rotating
at a constant rate around the center of a circle, given as
the distance that the point travels over time (p. 440)

linear system a system of equations in which all
equations are linear (p. 779)

local extremum (plural: extrema) either a local
maximum or a local minimum (p. 266)

local maximum (plural: local maxima) A function
is said to have a local maximum of at if the
graph of f has a peak at the point that is,

for all x near c. (p. 153)

local minimum (plural: local minima) A function
is said to have a local minimum of at if the
graph of f has a valley at the point that is,

for all x near d. (p. 153)

logarithm to the base b (of x) the value of
at the number x, denoted (p. 371)

logarithmic function to the base b the inverse of
the exponential function denoted

, where b is a fixed positive number and
(p. 371)

logarithmic model a logarithmic function used to
represent the trend in a data set (p. 389)

logarithmic scale a scale of numbers, such as the
Richter scale, that is determined by a logarithmic func-
tion to measure logarithmic growth, which is very
gradual and slow (p. 368)

logistic model a logistic function of the form 

where a, b, and k are constant, used to 

represent the trend in a data set (p. 389)

lower bound (for the real zeros of a polynomial
function) the number r such that all the real zeros of
a polynomial function are between r and s, where
r and s are real numbers and (p. 255)r 6 s

f 1x2

y �
a

1 � be�kx ,

b 7 1
g 1x2 � logb x

f 1x2 � bx,

logb xg 1x2 � logb x

f 1x2 7 f 1d2
1d, f 1d2 2;

x � df 1d2

f 1x2 6 f 1c2
1c, f 1c2 2;

x � cf 1c2

j � H0, 1I
i � H1, 0I

v � ai � bj
xSc
lim g 1x2.

xSc
lim f 1x2 �

x � c,f 1x2 � g 1x2
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magnitude (of a vector) The length of a vector 
is (p. 653)

major axis of an ellipse the segment connecting the
vertices of an ellipse (p. 692)

Mandelbrot Set the set of complex numbers c such
that the orbit of 0 under the function 
does not approach infinity (p. 304)

mathematical model a mathematical description or
structure, such as an equation or graph, which illus-
trates a relationship between real-world quantities and
which is often used to predict the likely value of an
unknown quantity (p. 43)

matrix an array of numbers often used to represent a
system of equations (p. 795)

matrix addition addition of corresponding entries of
matrices that have the same dimensions (p. 804)

matrix equation a matrix equation in the form
that represents a system of equations, where A

contains the coefficients of the equations in the system,
X contains the variables of the system, and B contains
the constants of the equations (p. 814)

matrix multiplication a method of multiplying two
compatible matrices to produce a product matrix 
(p. 806)

matrix subtraction subtraction of corresponding
entries of matrices that have the same dimensions 
(p. 804)

mean a measure of central tendency—also known as
the average, denoted by and read “x bar”—that is cal-
culated by adding the data values and then dividing
the sum by the number of data values (p. 853)

mean of a random variable See expected value of a
random variable.

median a measure of central tendency that is, or
indicates, the middle of a data set when the data val-
ues are arranged in ascending order (p. 855)

minor axis of an ellipse the segment through the
center of the ellipse, perpendicular to the major axis,
and with points of the ellipse as endpoints (p. 692)

minute a unit of degree measure equal to of a 

degree (p. 414)

mode a measure of central tendency that is given by
the data value that occurs most frequently in a data set
(p. 855)

modulus See absolute value of a complex number.

1
60

x

AX � B

f 1x2 � z2 � c

�v� � 2a2 � b2.v � Ha, bI

Multiplication Principle See Fundamental Counting
Principle.

multiplicity (of a zero) If is a factor that
occurs m times in the complete factorization of a poly-
nomial, then a is called a zero with multiplicity m of
the related polynomial function. (p. 265)

mutually exclusive events two events in a sample
space that do not have outcomes in common (p. 866)

natural logarithm (of x) the value of at
the number x, denoted ln x (p. 358)

natural logarithmic function the inverse of the nat-
ural exponential function denoted 
(p. 358)

natural numbers The set of numbers that consists of
counting numbers: 1, 2, 3, (p. 3)

Negative Angle Identities
(p. 459)

negative correlation the relationship between two
real-world quantities when the slope of the least-
squares regression line that represents the relationship
is negative, that is, as one quantity increases, the other
quantity decreases (p. 52)

no correlation the relationship between two real-
world quantities when the correlation coefficient, r, for
a least-squares regression line that represents the rela-
tionship is close to zero; no apparent trend in the data
(p. 52)

nonlinear system a system of equations in which at
least one equation is nonlinear (p. 779)

nonnegative integers the set of whole numbers: 0,
1, 2, 3, (p. 3)

nonsingular matrix See invertible matrix.

norm (of a vector) See magnitude.

normal curve the graph of a probability density
function that corresponds to a normal distribution:
bell-shaped and symmetric about the mean, with the 
x-axis as a horizontal asymptote (p. 889)

normal distribution a distribution of data that varies
about the mean in such a way that the graph of its
probability density function is a normal curve (p. 889)

nth root of a complex number The nth root of
is any of the n solutions of the equation

(p. 645)

nth roots For any real number c and any positive
integer n, the nth root of c is denoted by either or2

n
c

zn � a � bi.
a � bi

p

tan 1�t2 � �tan tsin 1�t2 � �sin t,
cos 1�t2 � cos t,

p

g 1x2 � ln xf 1x2 � ex,

g 1x2 � ln x

x � a
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and is defined to be the solution of when n is
odd or the nonnegative solution of when n is
even and nonnegative. (p. 328)

numerator the expression in a fraction that lies
above the fraction bar (p. 4)

numerical derivative A calculator term for the
instantaneous rate of change at a given input value;
denoted nDeriv, nDer, d/dx, dY/dX, or (p. 237)

objective function a linear function of which a mini-
mum or maximum is obtained in linear programming
(p. 829)

oblique asymptote See slant asymptote.

oblique triangle a triangle that does not contain a
right angle (p. 617)

octant one of eight regions into which a three-
dimensional coordinate system is divided by the inter-
section of the three coordinate planes (p. 790)

odd function a function f for which 
for all x in its domain, its graph symmetric with
respect to the origin (p. 189, 483)

one-stage path (of a network) a direct path from
one vertex to another in a directed network (p. 809)

one-to-one function a function f in which
only when a function whose inverse

relation is a function (p. 208)

open interval an interval of numbers in which nei-
ther endpoint of the interval is included in the set;
denoted with two parentheses (p. 118)

opposite side (of a right triangle) abbreviated
opp, the side of a right triangle that is across from a
given acute angle of the triangle (p. 415)

orbit (of a number) the sequence of output values
produced by iterating a given function with that num-
ber; the orbit of a number c for a given function is c,

(p. 200)

ordered pair A pair of real numbers in parentheses,
separated by a comma, is used to locate or represent a
point in a coordinate plane. The first number repre-
sents the horizontal distance from the origin and the
second number represents the vertical distance from
the x-axis. (p. 5)

ordered set of numbers a set of numbers such that
for any two numbers a and b in the set, exactly one of
the following statements is true: or 
(p. 118)

a 7 ba � b,a 6 b,

f 41c2, pf 31c2,f 21c2,f 1c2,

a � b;f 1a2 � f 1b2

f 1�x2 � �f 1x2

0.

xn � c
xn � cc

1
n orientation (of a parametric curve) the direction

that a parametric curve is traced out (p. 757)

origin the point of intersection of the axes in a coor-
dinate system (p. 5)

origin symmetry A graph is symmetric with respect
to the origin if whenever is on the graph, then

is also on it. (p. 187)

orthogonal vectors perpendicular vectors; vectors u
and v such that (p. 673)

outlier a data value that shows a strong deviation
from the general trend of the distribution (p. 847)

output (of a relation) the values denoted by the
second numbers in the ordered pairs of a relation (p. 7)

parabola the shape of the graph of a quadratic func-
tion (p. 165) For any line L in the plane and any point P
not on line L, a parabola with focus P and directrix L is
the set of points such that the distance from X to P is
equal to the distance from X to line L. (p. 709) a conic
section with eccentricity equal to 1 (p. 709)

parabolic asymptote a parabolic curve that the
graph of a function approaches as gets large (p. 286)

parallel lines In a plane, these lines have the same
slope. All vertical lines are also parallel. (p. 38)

parallel vectors vectors that are scalar multiples of
each other (p. 671)

parameter the third variable used as input for the
two functions that form a pair of parametric equations 
(p. 157, 785)

parameterization a pair of parametric equations
that describe a given curve (p. 755)

parametric equations a pair of continuous func-
tions that define the x- and y-coordinates of points in a
coordinate plane in terms of a third variable, the
parameter (p. 157)

parametric graphing graphing parametric equa-
tions (p. 157)

parent function a function with a certain shape that
has the simplest algebraic rule for that shape (p. 172)

partial fraction decomposition See partial fractions.

partial fractions When a fraction is decomposed
(broken down) and written as the sum of fractions, the
terms of the sum are called partial fractions, and the
sum is called the partial fraction decomposition of the
original fraction. (p. 838)

0 x 0

u � v � 0

1�x, �y2
1x, y2
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partial sums of a geometric sequence For each
positive integer k, the kth partial sum of a geometric
sequence with common ratio is 

(p. 61)

partial sums of an arithmetic sequence For each
positive integer k, the kth partial sum of an arithmetic
sequence with common difference d is 

or (p. 27)

period (of a function) the smallest value of k in a
function f for which there exists some constant k such
that for every number t in the domain of
f (p. 457, 498) See also sinusoidal function.

periodic function a nonconstant function that
repeats its values at regular intervals; a function f for
which there exists some constant k such that

for every number t in the domain of f
(p. 457)

periodic orbit an orbit for a given function that pro-
duces repeating output values (p. 202)

periodic point (of an orbit) the number c for which
the orbit of c for a given function produces repeating
output values (p. 202)

periodicity identities
(p. 458)

permutation an arrangement of objects in a specific
order (p. 880)

perpendicular lines In a plane, two lines are per-
pendicular when their slopes are negative reciprocals
(having a product of ). Vertical lines and horizontal
lines are perpendicular to each other. (p. 38)

phase shift a number representing the horizontal
translation of a sinusoidal graph (p. 502) See also sinu-
soidal function.

pie chart a visual display of qualitative data in
which categories are displayed in sectors of a circle,
where the central angle of each sector is the product of
the relative frequency of that category and (p. 845)

piecewise-defined function a function whose rule
includes several formulas, each of which is applied to
certain values of the domain, as specified in the defini-
tion of the function (p. 146)

plane curve the set of all points (x, y) such that
and and that f and g are continuous

functions of t on an interval I (p. 755)

point-slope form a linear equation in the form
where m represents the slope and

is a point on the line (p. 36)1x1, y12
y � y1 � m1x � x12,

y � g 1t2x � f 1t2

360°

�1

tan t � tan1t ± p2cos t � cos1t ± 2p2,
sin t � sin1t ± 2p2,

f 1t2 � f 1t � k2

f 1t2 � f 1t � k2

a
k

n�1
un �

k
2 1u1 � uk2.a

k

n�1
un � ku1 �

k1k � 12
2 d

5un6

a
k

n�1
un � u1a1 � rk

1 � r
b.

r � 15un6
polar axis the horizontal ray extending to the right
from the pole in a polar coordinate system (p. 734)

polar coordinates coordinates of a point in the
polar coordinate system, where r gives the distance from
the point to the pole, and is the measure of the angle
with the polar axis as its initial side and the segment
from the pole to the point as its terminal side (p. 734)

polar form of a complex number For the complex
number the polar form is 
where and (p. 639)

pole the origin of a polar coordinate system (p. 734)

polynomial an algebraic expression that can be 
written in the form 

where n is a nonnegative inte-
ger, x is a variable, and each of is a con-
stant (p. 239)

polynomial equation (of degree n) an equation
that can be written in the form 

where n is a nonnegative integer, x is a
variable, and each of is a constant (p. 94)

polynomial form of a quadratic function a quad-
ratic function in the form where a,
b, and c are real numbers and (p. 164)

polynomial function a function whose rule is given
by a polynomial (p. 240)

polynomial model a polynomial function used to
represent the trend in a data set (p. 273)

population a group of individuals or objects studied
in a statistical experiment (p. 843)

positive correlation the relationship between two
real-world quantities when the slope of the least-
squares regression line that represents the relationship
is positive, that is, as one quantity increases, the other
quantity increases (p. 52)

positive integers the set of natural numbers: 1, 2,
3, (p. 3)

Power Law of Logarithms For all positive b and v,
and all k, and (p. 366, 373)

power model a power function of the form 
where a and r are constant, used to represent the trend
in a data set (p. 389)

Power Principal If both sides of an equation are
raised to the same positive integer power, then every
solution of the original equation is a solution of the
derived equation. However, the derived equation may
have solutions that are not solutions of the original
equation. (p. 112)

power-reducing identities trigonometric identities
that relate second-degree expressions to first-degree
expressions (p. 595) 

y � axr,

logb1vk2 � k1logb v2.b � 1,

p

a � 0
f 1x2 � ax2 � bx � c,

ana1, p ,a0,
a1x � a0 � 0,

anxn � an�1x
n�1 � p �

ana1, p ,a0,
a3x

3 � a2x
2 � a1x � a0,

anxn � an�1x
n�1 � p �

b � r sin u.a � r cos u,r � 0 a � bi 0 , r1cos u � i sin u2,a � bi,

u

1r, u2
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prime number an integer greater than 1 whose only
factors are itself and 1 (p. 20)

principal an amount of money that is deposited or
borrowed (p. 100)

probability (of an event) a number from 0 to 1 (or
0% to 100%) that indicates how likely an event is to
occur; calculated by dividing the number of elements
in the event by the number of elements in the sample
space (p. 865)

probability density function A function with the
property that the area under the graph corresponds to
a probability distribution. (p. 871)

probability distribution a table that describes the
rule of a function P(E) that gives the probability of an
event, where the domain of the function is the sample
space and the range of the function is the closed inter-
val [0, 1] (p. 865)

probability of a binomial experiment P(r successes
in n trials) where p is the probability of
success, and is the probability of failure. 
(p. 886)

probability of a complement If an event E has
probability p, then the complement of the event has
probability (p. 866)

product function For any functions and 
their product function is the new function

(p. 192)

Product Law of Logarithms For all positive b, v,
and w, and (p. 365,
373)

product-to-sum trigonometric identities involving
the product of two functions (p. 599)

projection vector A vector called the projection
of u on v, determined by constructing a segment from
the terminal point of a vector u perpendicular to
another vector v at a point Q on the vector, where
point O is the initial point of both vectors, denoted

u. (p. 674)

Pythagorean identities the identity
and the identities derived from it 

(p. 456)

Pythagorean Theorem In a right triangle with legs a
and b and hypotenuse c, (p. 421)

quadrants the four regions into which a coordinate
plane is divided by its axes, usually indicated by
Roman numerals I, II, III, and IV (p. 5)

a2 � b2 � c2.

sin2 t � cos2 t � 1

projv

OQ
!
,

logb1vw2 � logb v � logb w.b � 1,

1 fg2 1x2 � f 1x2 � g 1x2.
g 1x2,f 1x2

1 � p.

q � 1 � p
� nCrp

rqn�r,

quadratic equation an equation that can be written
in the form where a, b, and c are real
constants and (p. 88)

quadratic formula The solutions of a quadratic 

equation are 

(p. 92)

quadratic function a function whose rule is a sec-
ond-degree polynomial (p. 163, 240)

qualitative data data that is categorical in nature, such
as “liberal,” “moderate,” and “conservative” (p. 843)

quantitative data numerical data (p. 843)

quartic function a fourth-degree polynomial func-
tion (p. 240)

quartiles These values divide a data set into fourths.
The median, or second quartile divides the data into
a lower half and an upper half; the first quartile is the
median of the lower half; and the third quartile is
the median of the upper half. (p. 860)

quotient function For any functions and 
their quotient function is the new function 

(p. 192)

quotient identities and 

(p. 455)

Quotient Law of Logarithms For all positive b, v, 

and w, and (p. 366, 

373)

radian measure The radian measure of an angle in
standard position is the length of the arc along the unit
circle from the point (1, 0) on the initial side to the
point P where the terminal side intersects the unit 
circle. (p. 436)

radical equations equations that contain roots (such
as square roots, cube roots, etc.) of expressions that
contain variables (p. 111)

radioactive decay decay in the amount of a radioac-
tive substance that can be modeled by the function

where P is the initial amount of the sub-
stance, corresponds to when the decay began,
and h is the half-life of the substance (p. 352)

radiocarbon dating a process of determining the
age of an organic object by using the amount of 
carbon-14 remaining in the object (p. 352)

x � 0
f 1x2 � P10.52xh,

logba v
wb � logb v � logb w.b � 1,

cot t �
cos t
sin ttan t �

sin t
cos t

a f
gb1x2 �

f 1x2
g 1x2 .

g 1x2,f 1x2

Q3

Q1

Q2,

x �
�b ± 2b2 � 4ac

2a .ax2 � bx � c � 0

a � 0
ax2 � bx � c � 0,
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random sample a sample in which all members of the
population and all groups of members of a given size
have an equal chance of being in the sample (p. 843)

random variable a function that assigns a number to
each element in the sample space of an experiment 
(p. 869)

range (of a data set) the difference between the max-
imum and minimum data values in a data set (p. 859)

range (of a function) the set of second numbers in
the ordered pairs of a relation (p. 6, 142, 447)

rational exponent A rational exponent is a rational
number with a nonzero denominator; for any positive 

real number c and rational number with positive 

denominator, or 
(p. 330)

rational function a function whose rule is the quo-
tient of two polynomials, defined only for input values
that produce a nonzero denominator (p. 278)

rational number the set of real numbers that can be
expressed as a fraction of an integer numerator and an
integer denominator, where the denominator is not
equal to zero (p. 4)

Rational Zero Test If a rational number written in 

lowest terms, is a zero of the polynomial function
where the coefficients

are integers with and then r is a
factor of the constant term, and s is a factor of the
leading coefficient, (p. 251)

rational zeros zeros of a function that are rational
numbers (p. 250)

rationalizing (a denominator) writing equivalent
fractions with no radicals in the denominator (p. 332)

real axis the horizontal axis in the complex plane
where each real number corresponds to the
point (a, 0) (p. 638)

real numbers the set of numbers that consists of
rational numbers and irrational numbers (p. 3)

real solutions solutions of an equation that are real
numbers (p. 88)

real zeros solutions of an equation of the form
that are real numbers (p. 245)

reciprocal identities identities that relate trigono-
metric functions and their reciprocals (p. 455)

rectangular coordinate system See Cartesian coordi-
nate system.

recursive form of a geometric sequence In a geo-
metric sequence for some nonzero con-un � run�15un6,

f 1x2 � 0

a � 0i

an.
a0,

a0 � 0,an � 0a1an, p ,
f 1x2 � anxn � p � a1x � a0,

r
s ,

c
t
k � 2

k
ct � A2k c B t.c

t
k � 1ct21k � 1c1

k 2t
t
k

stant r and all (p. 59)

recursive form of a sequence a method of defining
a sequence when given the first term and the proce-
dure for determining each term by using the preceding
term (p. 15)

recursive form of an arithmetic sequence In an
arithmetic sequence for some con-
stant d and all (p. 22)

reduced row-echelon form This form of an aug-
mented matrix satisfies the following conditions: all
rows consisting entirely of zeros (if any) are at the bot-
tom; the first nonzero entry in each nonzero row is a 1
(called leading 1); any column containing a leading 1
has zeros in all other entries; and each leading 1
appears to the right of leading 1s in any preceding row.
(p. 797)

reference angle the positive acute angle formed by
the terminal side of in standard position and the 
x-axis (p. 449)

reflections The graph of is the graph of f
reflected across the x-axis, and the graph of 
is the graph of f reflected across the y-axis. (p. 177)

relation a correspondence between two sets; a set of
ordered pairs (p. 6)

Remainder Theorem If a polynomial is divided
by then the remainder is (p. 244)

residual a measure of the error between an actual
data value and the corresponding value given by a
model; where (x, r) is a data point and (x, y) is a
point contained by the model (p. 44)

Richter scale a logarithmic scale used to measure
the magnitude of an earthquake (p. 368)

right angle an angle with a degree measure of 
(p. 414)

roots solutions of an equation of the form 
and equal to the zeros of f (p. 83)

roots of unity the n distinct nth roots of 1 (the solu-
tions of ) (p. 648)

rotation equations equations that relate a point in
a coordinate plane to the corresponding point in the
plane after a rotation (p. 729)

rule of the function See function rule.

sample a subset of the population studied in a statis-
tical experiment, whose information is used to draw
conclusions about the population (p. 843)

zn � 1

f 1x2 � 0

90°

r � y,

f 1c2.1x � c2,
f 1x2

y � f1�x2
y � �f 1x2

u

n � 2.
un � un�1 � d5un6,

n � 2.
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sample space the set of all possible outcomes in an
experiment (p. 864)

scalar a real number, often denoted by k, used in
scalar multiplication (p. 655)

scalar multiplication (with vectors) an operation
in which a scalar k is multiplied by a vector v to pro-
duce another vector, denoted by kv (p. 655)

scalar multiplication with matrices multiplication
of each entry in a matrix by a real number (p. 805)

scatter plot a graphical display of statistical data
plotted as points on a coordinate plane to show the
relationship between two quantities (p. 5)

Schwartz Inequality For any vectors u and v,
(p. 673)

secant line (of a function) the straight line deter-
mined by two points on the graph of a function; the
slope of the secant line joining points and

on the graph of a function, equal to the average
rate of change of the function from a to b (p. 218)

secant ratio For a given acute angle in a right tri-
angle, the secant of is written as sec and is equal to
the reciprocal of the cosine ratio of the given angle. 
(p. 416)

second a unit of degree measure equal 

to of a minute, or of a degree (p. 414)

second quartile See quartiles.

second-degree equation See quadratic equation.

self-similar the property possessed by fractals that
every subdivision of the fractal has a structure similar
to the structure of the whole (p. 305)

sequence an ordered list of numbers (p. 13)

sequence notation a customary method of denoting
a sequence or terms of a sequence in abbreviated form:

(p. 14)

series the sum of the terms of a sequence (p. 76)

sides (of an angle) the two rays, segments, or lines
that form an angle (p. 413)

Sigma notation See summation notation.

simple harmonic motion motion that can be
described by a function of the form 

or (p. 549)

simple interest interest that is generally used when
a loan or a bank balance is less than 1 year; calculated
by where I is the simple interest, P is the prin-
cipal, r is the annual interest, and t is time in years 
(p. 100)

I � Prt,

f 1x2 � a cos1bt � c2 � da sin1bt � c2 � d
f 1x2 �

unu3, p ,u2,u1,

1
3600

1
60

uu

u

1b, f 1b2 2
1a, f 1a2 2

0 u � v 0 � �u� �v�.

sine ratio For a given acute angle in a right trian-
gle, the sine of is written as sin and is equal to the
ratio of the opposite side length to the length of the
hypotenuse. (p. 416)

sinusoid the wave shape of the graph of a sine or
cosine function (p. 510, 548)

sinusoidal function A function whose graph is the
shape of a sinusoid and can be expressed in the form

or 

where is the amplitude, is the period, is the 

phase shift, and d is the vertical shift. (p. 548)

skewed distribution a type of distribution in which
the right or left side of its display indicate frequencies
that are much greater than those of the other side 
(p. 846)

slant asymptote a nonvertical and nonhorizontal
line that the graph of a function approaches as gets
large (p. 286)

slope of a line The value of the ratio 

where and are points contained by the
line and (p. 32)

slope-intercept form a linear equation in the form
where m represents the slope and b repre-

sents the y-intercept (p. 33)

solution of a system of equations a set of values
that satisfy all the equations in the system (p. 780)

solution of an equation the value(s) of the vari-
able(s) that make the equation true (p. 30)

solution to an inequality (in two variables) the
region in the coordinate plane consisting of all points
whose coordinates satisfy the inequality (p. 827)

solving a triangle finding the lengths of all three sides
and the measures of all three angles in a triangle when
only some of these measures are known (p. 424)

sound waves periodic air pressure waves created by
vibrations (p. 558)

special angles angles of degree measure or
(p. 418)

square root of squares For every real number c,
(p. 109)

square system a system of equations that has the
same number of equations as variables (p. 814)

standard deviation a measure of variability that
describes the average distance of data values from the
mean, given by the square root of the variance (p. 857)

standard equation of a hyperbola For any point 
(h, k) in the plane and positive real numbers a and b, 

2c2 � 0 c 0 .
60°

45°,30°,

y � mx � b,

x1 � x2.
1x2, y221x1, y12

¢y
¢x

�
y2 � y1
x2 � x1

,

0 x 0

�
c
b

2p
b

0 a 0
f 1x2 � a cos1bt � c2 � d,f 1x2 � a sin1bt � c2 � d

uu

u
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or 

(p. 701, 720)

standard equation of a parabola For any point
in the plane and nonzero real number p,

or (p. 710,
720)

standard equation of an ellipse For any point 
in the plane and real numbers a and b with 

or 

(p. 693, 720)

standard form (of a line) used to display the equa-
tion of a line without fractions, a linear equation in the
form where A and B are not both equal
to zero (p. 39)

standard normal curve a normal curve with a mean
of 0 and a standard deviation of 1 (p. 890)

standard notation (of triangles) a method of label-
ing triangles in which each vertex is labeled with a
capital letter to denote the angle at that vertex, and the
length of the side opposite that vertex is denoted by
the same letter in lower case (p. 617)

standard position (of an angle) an angle in the
coordinate plane with its vertex at the origin and its
initial side on the positive x-axis (p. 434)

standard viewing window the window or screen of
a graphics calculator that displays and

listed in the ZOOM menu of most
graphics calculators (p. 84)

standardize (data) to adjust the scale of data that is
normally distributed in order to match the standard
normal curve (p. 893)

stem plot a display of quantitative data in a tabular
format consisting of the initial digit(s) of the data val-
ues, called stems, on the left and the remaining digits of
the data values, called leaves, on the right; commonly
used to display small data sets (p. 847)

step function a function, such as the greatest-integer
function, whose graph consists of horizontal line seg-
ments resembling steps (p. 157)

sum function For any functions and their
sum function is the new function 

(p. 191)

sum of an infinite geometric series The sum 

where is a con-

vergent geometric series with common ratio r such that
(p. 77)0 r 0 6 1.

a1 � ra1 � r2a1 � r3a1 � pS �
a1

1 � r
,

f 1x2 � g 1x2.
1 f � g2 1x2 �

g 1x2,f 1x2

�10 � y � 10,
�10 � x � 10

Ax � By � C,

1x � h22
b2 �

1y � k22
a2 � 1.

1x � h22
a2 �

1y � k22
b2 � 1

a 7 b 7 0,
1h, k2

1y � k22 � 4 p1x � h2.1x � h22 � 4 p1y � k2
1h, k2

1x � h22
b2 �

1y � k22
a2 � 1.

1x � h22
a2 �

1y � k22
b2 � 1

sum-to-product trigonometric identities involving
or (p. 599)

summation notation a customary method of denot-
ing the sum of terms by using the Greek letter Sigma 

( ) as follows: (p. 25)

supplementary angle identity For any acute angle
(p. 628)

symmetric distribution a type of distribution in
which the right and left sides of its display indicate fre-
quencies that are mirror images of each other (p. 846)

synthetic division an abbreviated notation for per-
forming polynomial division when the divisor is a
first-degree polynomial (p. 241)

system of equations a set of two or more equations
in two or more variables (p. 779)

tangent line (of a function) a line that touches the
graph of a function at exactly one point; the slope of
the tangent line to a curve at a point, equal to the
instantaneous rate of change of the function at that
point (p. 235)

tangent ratio For a given acute angle in a right tri-
angle, the tangent of is written as tan and is equal
to the ratio of the opposite side length to the adjacent
side length. (p. 416)

term (of a sequence) a number in a sequence (p. 13)

terminal point (of a vector) the point Q in a vector
that extends from point P to point Q (p. 653)

terminal side the final position of a ray that is ro-
tated around its vertex (p. 433)

third quartile See quartiles.

transformation form of a quadratic function a
quadratic function in the form 
where a, h, and k are real numbers and (p. 164)

Triangle Sum Theorem The sum of the measures of
the angles in a triangle is (p. 421)

trigonometric form of a complex number See
polar form of a complex number.

trigonometric functions of a real variable a func-
tion whose rule is a trigonometric ratio in the coordinate
plane with domain values in radian measure (p. 445)

trigonometric ratios (in a triangle) the six possible
combinations of side length ratios of a right triangle 
(p. 415)

180°.

a � 0
f1x2 � a1x � h22 � k,

uu

u

sin u � sin1180° � u2.u,

a
m

k�1
ck � c1 � c2 � c3 � p � cm©

cos x ± cos ysin x ± sin y
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trigonometric ratios (in the coordinate plane) the
six trigonometric ratios defined in terms of a triangle
determined by the coordinates of a point on the termi-
nal side of an angle in standard position and the origin
(p. 444)

two-stage path (of a network) a path in a directed
network from one vertex to another with exactly one
intermediate vertex (p. 810)

uniform distribution a type of distribution in which
all of the data values have approximately the same fre-
quency; its display is level (p. 846)

unit circle the circle of radius 1 centered at the origin
of the coordinate plane (p. 435)

unit vector a vector with a length of 1 (p. 661)

upper bound (for the real zeros of a polynomial
function) the number s such that all the real zeros of
a polynomial function f(x) are between r and s, where r
and s are real numbers and (p. 255)

variability the spread of a data set (p. 857)

variance a measure of variability given by the aver-
age of squared deviations (p. 858)

vector a quantity that involves both magnitude and
direction; represented geometrically by a directed line
segment or arrow and denoted by using its endpoints,
such as or by a boldface lowercase letter, such as u
(p. 653)

vector addition If and then
(p. 657)

vector subtraction If and then
(p. 658)

vertex (of an angle) the common endpoint of the
two rays, segments, or lines that form an angle 
(p. 413)

vertex of a parabola the intersection of the axis of a
parabola and the parabola; the midpoint of the seg-
ment from the focus of the parabola to the directrix 
(p. 709)

vertical asymptotes a vertical line that the graph of
a function approaches but never touches or crosses
because it is not defined there (p. 284, 950)

u � v � Ha � c, b � dI.
v � Hc, dI,u � Ha, bI

u � v � Ha � c, b � dI.
v � Hc, dI,u � Ha, bI

PQ
!
,

r 6 s

vertical compression For any positive number
the graph of is the graph of f

compressed vertically, toward the x-axis, by a factor 
of c. (p. 179)

vertical line a line that has an undefined slope and
an equation of the form where c is a constant
real number (p. 37)

vertical shifts For any positive number c, the graph
of is the graph of f shifted upward c units,
and the graph of is the graph of f shifted
downward c units. (p. 174) See also sinusoidal function.

vertical stretch For any positive number the
graph of is the graph of f stretched verti-
cally, away from the x-axis, by a factor of c. (p. 179)

vertical line test A graph in a coordinate plane rep-
resents a function if and only if no vertical line inter-
sects the graph more than once. (p. 151)

vertices of a hyperbola the points where the line
through the foci intercepts the hyperbola (p. 701)

vertices of a network the points that are connected
in a network (p. 809)

vertices of an ellipse the points where the line
through the foci intercepts the ellipse (p. 692)

whole numbers the set of numbers that consists of
natural numbers and zero: 0, 1, 2, (p. 3)

work The work W done by a constant force F as its
point of application moves along the vector d is

(p. 678)

x-axis often the name of the horizontal axis of a coor-
dinate plane with the positive direction to the right
and the negative direction to the left (p. 5)

x-axis symmetry A graph is symmetric with respect
to the x-axis if whenever is on the graph, then

is also on it. (p. 185)

x-coordinate usually the first real number in an
ordered pair (p. 5)

x-intercept the x-coordinate of a point where a graph
crosses the x-axis; the x-intercepts of the graph of f, equal
to the zeros of f and the solutions of (p. 83)

x-intercept form of a quadratic function a quad-
ratic function in the form where
a, x, s, and t are real numbers and (p. 164)a � 0

f 1x2 � a1x � s2 1x � t2,

f 1x2 � 0

1x, �y2
1x, y2

W � F � d.

p

y � c � f 1x2
c 7 1,

y � f 1x2 � c
y � f 1x2 � c

x � c,

y � c � f 1x2c 6 1,
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x-intercept method a method of solving an equa-
tion of the form by graphing and
finding the x-intercepts (p. 84)

y-axis often the name of the vertical axis of a coordi-
nate plane with the positive direction up and the nega-
tive direction down (p. 5)

y-axis symmetry A graph is symmetric with respect
to the y-axis if whenever is on the graph, then

is also on it. (p. 184)

y-coordinate usually the second real number in an
ordered pair (p. 5)

1�x, y2
1x, y2

y � f 1x2f 1x2 � 0

z-axis the vertical axis in a three-dimensional coordi-
nate system with positive direction upward (p. 790)

zero polynomial the constant polynomial 0 (p. 240)

Zero Product Property If a product of real numbers
is zero, then at least one of the factors is zero; if 
then or (p. 89)

zeros of a function inputs of the function that pro-
duce an output of zero (p. 83)

z-value a value that gives the number of standard
deviations that a data value in a normal distribution is
located above the mean (p. 894)

b � 0.a � 0
ab � 0,
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Chapter 1

Section 1.1, page 10

1.

3. 5.

7.

9. a. About $0.94 in 1987 and $1.19 in 1995.
b. About 26.6%
c. In the first third of 1985 and from 1989 onward.

11. a. Quadrant IV b. Quadrants III or IV

13. a.

(–2, 3)

(–5, –4)

(4, –1)

(3, 2)

x

y

100

300

200

500

10987654321

x

y

400

0

P14, 22P1�6, 32
I13, �12H13, 12;G12, 02;F10, 02;E10, 22;

D1�1.5, �32;C1�2.5, 02;B1�1.5, 32;A1�3, 32;

b.

c. They are mirror images of each other, with the
x-axis being the mirror. In other words, they lie
on the same vertical line, on opposite sides of
the x-axis, the same distance from the axis.

15. Yes. Each input produces only one output.

17. No. The value produces two outputs.

19. (500, 0); (1509, 0); (3754, 35.08); (6783, 119.15);
(12500, 405); (55342, 2547.10)

21. Each input (income) yields only one output (tax).

23. Postage is a function of weight since each weight
determines one and only one postage amount. But
weight is not a function of postage since a given
postage amount may apply to several different
weights. For instance, all letters under 1 oz use
just one first-class stamp.

25. Domain: all real numbers between and 3,
inclusive; range: all real numbers between and
3, inclusive

27. 2 is output of ; 0 of ; and of 

29. is output of 3 of 0; 2 of 1; of 2.5; and 0
of 

31. 1 is output of of of 0; 1 

(approximately) of ; and 1.5 of 1.

33. a. b. c.
d. 0.5 e. 1 f. �1

�23�2, 3 43�3, 4 4
1
2

�1�1;�3�2;

�1.5.
�1�2;�1

�
5
2.�35

2
1
2

�4
�3

�5

(–5, 4)

(–2, –3)
(3, –2)

(4, 1)
x

y
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Section 1.2, page 19

1.

3.

5. and 

7. and 

9.

11.

13. u6 � 104.858 cmun � 0.8un�1;u0 � 400;

 u5 � �2 � 3 � 2 � 3
 u4 � 1 � 2 � 3 � 2
 u3 � 3
 u2 � �2
 u1 � 1

 u5 � 2 � 53 � 3 � 109
 u4 � 2 � 25 � 3 � 53
 u3 � 2 � 11 � 3 � 25
 u2 � 2 � 4 � 3 � 11
 u1 � 4

30

0

0 10

un � un�1 � 5u1 � 6

10

−10

0 10

un � un�1 � 2u1 � �6

20

0 10

20

0 10

15. For 2 rays: for 3 rays: for 4 rays:
for 

17. , for ; 
seats

19. , for ;

21. , for ;
students

23. , for ;
; .

25. a. The items listed are the first ten primes. Every
other number less than 29 can be factored into a
product of smaller integers.

b. 59, 61, 67, 71

27. 4, 9, 25, 49, 121 29. 3, 7, 13, 19, 23

31. 1, 1, 2, 3, 5, 8, 13, 21, 34, 55

33.

Section 1.3, page 29

1.

15

0
0 10

13; un � 2n � 3

n � 10: 515522 � 41�1210 � 15,129 � 1232
n � 9: 513422 � 41�129 � 5776 � 762
n � 8: 512122 � 41�128 � 2209 � 472
n � 7: 511322 � 41�127 � 841 � 292
n � 6: 51822 � 41�126 � 324 � 182
n � 5: 51522 � 41�125 � 121 � 112
n � 4: 51322 � 41�124 � 49 � 72
n � 3: 51222 � 41�123 � 16 � 42
n � 2: 51122 � 41�122 � 9 � 32
n � 1: 51122 � 41�121 � 1 � 12

u35 � 40,250u20 � 41,216
n � 1un � 0.9un�1 � 4000u0 � 50,000

u8 � 26,901
n � 1un � 0.75un�1 � 6500,u0 � 35,000

u10 � $53,725.43
n � 1un � 1.06un�1u0 � 30,000

u30 � 702 � n � 35un � un�1 � 2u1 � 12

u25 � 300

325

0 25

n � 3un � un�1 � n � 1u4 � 6;
u3 � 3;u2 � 1;
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3.

5.

7. 45 9. 224

11.

13. 87 15. 17. 30

19.
arithmetic with 

21.

arithmetic with 

23.
arithmetic with 

25.

27.

29.

31. 710 33. 35. 2550 37. 20,100

39. $77,500 in tenth year; $437,500 over ten years

41. 428 43. 23.25, 22.5, 21.75, 21, 20.25, 19.5, 18.75

156 
2
3

u5 � 0; un � �
15
2 �

3n
2

u5 � 25; un � 7n � 10

u5 � 14; un � 2n � 4

d � 2
un � un�1 � 1c � 2n2 � 3c � 21n � 12 4 � 2;

d �
3
2

un � un�1 �
5 � 3n

2 �
5 � 31n � 12

2 �
3
2 ;

d � �2
un � un�1 � 13 � 2n2 � 33 � 21n � 12 4 � �2;

�
21
4

15

5

0 10

8; un � �
n
2 �

21
2

6

2
0 10

5; un �
n
4 �

15
4

Section 1.4, page 40

1. a. C b. B c. B d. D

3. Slope, 2; y-intercept, 

5. Slope, y-intercept, 

7. Slope, 9. Slope, 4 11. 13.

15.

17. 19. 21.

23. 25. Perpendicular

27. Parallel 29. Parallel 31. Perpendicular

33. Yes. The slopes are and Two sides 

perpendicular result in a right triangle.

35. 37. 39.

41. 43.

45.

or

47. The common difference is .

or

49.

or
The slope is and the y-intercept is 

51. Both have slope and different y-intercepts.

53. a.
b.

55. $375,000; $60,000

57. a.
b.

59. a. b.
c. d. x � 5000p1x2 � 22x � 110,000

r1x2 � 72xc1x2 � 50x � 110,000

x � 7, y � 185 pounds 16 ft2
x � �5, y � 125 pounds 15 ft2;
y � 5x � 150

x � 24; y � $20,063 120052
x � 9; y � $13,328 119902
y � 449x � 9287

�
A
B

b � �10.m � 8
y � 8x � 10 un � 8n � 10

 � �2 � 1n � 128
 un � u1 � 1n � 12d

y � �6x � 13 un � �6n � 13
 � 7 � 1n � 12 1�62

 un � u1 � 1n � 12d
�6

y � 4x � 6 un � 4n � 6
 � �2 � 1n � 124

 un � u1 � 1n � 12d
k � �

11
3y � �x � 2

y � x � 5y �
3
2 xy � 3x � 7

�
5
2.2

5,9
8,

y � �
7
3 x �

34
9

y � �x � 5y � �x � 8y � x � 2

(1, 0)

P(1, C)

L

(0, 0)

x

y

Slope of L = = C
C − 0
1 − 0

t �
12
5t � 225

2

b � �
11
7�

3
7;

b � 5
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61. a. b. $11, $9.50, $9 per hat

63. a. b.

Section 1.5, page 53

1. a.

b.
Model B still has least error.

3. a.
b.
c. Line described in b predicts a higher number of

workers.

5. negative correlation

7. very little correlation

9. a. 0.09, 0.17, 1.22, 3.13, 5.14, 8.26
b. not linear; 

11. a. 4.6, 8.3, 14.3, 23.5, 37.2, 56.9, 84.3, 121.4, 170.7,
234.2

b. not linear; 

13. a. 446.9, 405.2, 515.8, 785.3, 298, 413
b. linear; positive correlation

7100

0

0 10

1000

0

0 110

35

0

0 60

y � 1.0564054x � 21.077892
Slope � 1.0564054

Sum of squares � 3

y �
3
4 x �

5
4

x � 30x � 10

y � 8.50x � 50,000 15. No High School Diploma

High School Graduate

Some College

College Graduate

17. a.
b.
c. The income of the rich is increasing faster than

the income of the poor is decreasing.
d. The income gap will increase.

y � 0.4078x � 16.8494
y � �0.0292x � 4.0149

1000

0

0 12

y3 � 34.86x � 543

1000

0

0 12

y1 � 20.74x � 392

1000

0

0 12

y4 � 15.17x � 354

1000

0

0 12

y2 � 12.31x � 238
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19. a.
b. The amount of federal money in loans is

increasing and the amount in grants and work-
study is decreasing.

Loan data
Grant/work-study data

c. �1983

21. a.

b.
c. The model gives a negative median time for

approval in 2009, and it will not be useful for
data extrapolation.

23. a.
b. for 1992, a terrific prediction.
c. This model may not remain valid for any future

dates. The rate of improvement seems to be
slowing down.

d.
e. The data appears to be linear because the

residuals do not form a pattern.

Section 1.6, page 63

1. Arithmetic 3. Geometric

5. Arithmetic 7. Geometric

9.

11. u6 �
1

256 ; un �
1

4n�2

u6 � 160; un � 2n�1 � 5

2

�2

0 100

r � �0.9797

�14.72
y � �0.08586x � 22.62286

y � �1.27x � 23.8318

40

0

−1 17

�

100

0

0 20

y � �4x � 82
13.

15. 17. 381

19. geometric with 

21. geometric with 

23.

25. 27.

29. 254 31. 33.

35. a. Since for all n, the ratio r is 

the sequence is geometric.
b. $217.47

37. 23.75 ft

39. cents

41. $1898.44

43.

45. The sequence is and So for any k, the
kth term is and the sum of the preceding
terms is the th partial sum of the sequence, 

47. 37 payments

Chapter 1 Review, page 67

1. is an irrational number.

3. is an irrational number.

5. 0 is a whole number.

7. is a natural number.

9. 5 is a natural number.

11. Answers may vary; for example, and are real
numbers that are not rational.

13. This is not a function; the input 2 has more than
one output.

15. This is a function; for each input there is exactly
one output.

17. all real numbers greater than or equal to 2 and not
equal to 3

12p

1121

e � 2.718

13

a
k�1

n�1
2n�1 �

1 � 2k�1

1 � 2 � 2k�1 � 1.

1k � 12
2k�1,

r � 2.52n�16
log 1rn�12 � log u1 � 1n � 12 log rlog u1 �

un � u1r
n�1. log un � log1u1r

n�12 �

� $21,474,836.471231 � 12a
31

n�1
 2n�1 �

1 � 231

1 � 2 �

1.7111.191n2 11.1912
1.7111.191n2 � 1.191,

un�1
un

�
1.7111.191n�12
1.7111.191n2 �

665
8�

4921
19,683

u5 � �
8

25 ; un � �
2n�2

5n�3u5 �
1

16 ; un �
1

4n�3

u5 � 1; un �
1�12n�164

4n�2 �
1�12n�1

4n�5

r � 5
un

un�1
�

5n�2

51n�12�2 � 5;

r � �
1
2

un
un�1

�

a�1
2b

n

a�1
2b

n�1 � �
1
2 ;

315
32

u6 � �
5

16 ; un �
1�12n�1 � 5

2n�2
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19.

21. a.
b.
c. radius: 150 meters; area: 70,685.83 square

meters
d. 12.73 hr

23. 25. and 

27. 29. 3 31. false

33. false 35. $1862.96. 37. 12.5 cm

39. a.
b. 1.618033989 . . .

41. 43.

45. 47. 78

49.

51. a. 1 b.

53.

55. a. y-intercept is b.

57. 59.

61. true 63. false

65. true 67. (d) 69. (e) 71.

73. a. b.

75. c; 77. d; 

79. a.

b. Nonlinear
c.

The finite differences show that the data is not
linear.

98.92 � 69.17 � 29.75
69.17 � 48.55 � 20.6248.55 � 34.89 � 13.66
34.89 � 25.23 � 9.6625.23 � 20.79 � 4.44
20.79 � 20.10 � 0.6920.10 � 19.58 � 0.52

0
20 70

100

m � 20m � 75

x � 40, y � 72.9 yrs.y � 0.25x � 62.9

5
3

m � 5x � 5y � �29

y �
5
3 x �

4
3a0, 43b;

y � 3x � 7

4
5

0
0 7

8

un � 6n � 11

un � 9 � 6n�244�82,�28,�10,�4,

�1.618

�4 � x � 5

4 � x � 5x � 0x � �3

g1t2 � 2500pt
f 1t2 � 502t

r � 4 81. a.

b. Managerial, (negative slope, y-intercept at
11.74); Female, (positive slope, y-intercept at
7.34); Male, (negative slope, y-intercept at
15.48)

83. a.
b. $11.77, $14.33; Both answers are close to actual

amounts.
c. $15.79

85. 87.

89. 91.

93. Second method is better.

315
32�55

un � 384a1
2b

n�1

un � 2 � 3n�1

y � 0.3654x � 10.6741

y3

y1

y2

0
Males

−10 10

17

0
Females

−10 10

8

0
Managerial

−10 10

13
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Chapter 1 can do calculus, page 79

1. 1 2. Diverges 3.

4. 5. 6.

7. 8. Diverges 9.

10. 11. 12.

13. 14. 15.

16. Because there are infinitely many terms that are
getting larger and larger, the sum cannot converge
to a finite number.

17. The sum approaches 

Chapter 2

Section 2.1, page 87

1. 3 3. 3 5. 2

7. 9. 1.164

11. 1.237 13. 1.192

15. 1.603 17. 0.507, 1.329

19. 0.254, 1.861

21. 23.

25. 27.

29. 31. 1.151

33. 35. 37.

39. 41. 2004 43. 1999

Section 2.2, page 95

1. 3.

5. 7.

9. 11.

13.

15. x � ±140 � ±6.325x2 � 40;

x � ±3x2 � 9;

x �
1
4 or �4

3u � 1 or �4
3

t � �2 or �1
4y �

1
2 or �3

x � �2 or 7x � 3 or 5

x � 13

x �
1

12x �
2
3x � 7.033

x � �0.651,x � 2.390

x � 2.207x � 0,x � 0.951

x � �1.752x � 2.102

x � �2.115,

x � �1.601,x � �1.379,

x � �1.750,x � 0,x � �1.475,

x � �1.453,x � �2.426

0

−1

0 30

�
1
3.

18,564
4995

10,702
4995

8428
99

597
110

37
99

2
9

1
24 � 212

�5.7058500
0.6 � 833 1

3
2
3

�
3
7

17.

19.

21.

23.

25.

27.

29. 31.

33. No real number solutions

35. 37.

39. 41. 2 43. 2 45. 1

47. 49.

51.

53. No real number solutions

55. No real number solutions

57. 59.

61. 63.

65. 67.

69. 71. 73.

Section 2.3, page 105

1. The two numbers: x and y; their sum is 15:
the difference of their squares is 5:

3.

5. Let x be the old salary. Then the raise is 8% of x.
Hence,

7. The circle has radius so its area is 

Let x be the amount bypr2 � p � 82 � 64p.

r �
16
2 � 8,

 x � 0.08x � 1600.
 x � 18% of x2 � 1600

 old salary � raise � $1600

x2 � y2 � 5.
x � y � 15;

k � 4k � 16k � 10 or �10

x � ± 1
15

y � ±2 or ± 1
12

x � ±17y � ±1 or ±16

x � 13.79x � 1.824 or 0.470

x � 5 or �3
2

x �
�1 ± 12

2x � �3 or �6

u �
�4 ± 16

5

x �
2 ± 13

2x �
1
2 ± 12

x � �3 ± 12x � 2 ± 13

w �
A1 � 15 B

2  or 
A1 � 15 B

2

x � 1 ± 113

w � ±
A

28
3 � ±3.055w2 �

28
3 ;�3w2 � 8 � �20;

x � ± 2
5x2 �

4
25 ;25x2 � 4 � 0;

s � ±16 � ±2.449s2 � 6;�5s2 � �30;

x � ±2x2 � 4;3x2 � 12;
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English Language Mathematical Language

Length of rectangle x

Width of rectangle y

Perimeter is 45

Area is 112.5 xy � 112.5

 2x � 2y � 45
 x � y � x � y � 45 or



which the radius is to be reduced. Then 
and the new area is which must be 

less than the original area, that is,
or equivalently,

9. $366.67 at 12% and $733.33 at 6%

11. 13. 65 mph

15. 34.75 and 48 17. Approximately 1.75 ft

19. Red Riding Hood, 54 mph; wolf, 48 mph

21. a. b.

23. a. Approximately 4.4 sec b. After 50 sec

25. 23 cm by 24 cm by 25 cm 27.

29. 31. 2.2 by 4.4 by 4 ft high

Section 2.4, page 116

1.

6

3.

Since or 10, dividing by 3, 

5.

Since or 9, dividing by 

7. or 

Since or 3, dividing by 

9. 11. 13.

15. 17.

19.

21. For any real number x, the distance between 
and cannot be a negative number. Therefore,

has no real number solution.

23. Let x Joan’s ideal body weight. The difference
between Joan’s actual weight and her ideal weight
is x � 120.

�

0 2x2 � 3x 0 � �12
�3x

2x2

x � 1 or 4 or 
5 � 133

2  or 
5 � 133

2

x � �5 or 1 or �3 or �1x �
3
2

x � 2x �
3
2x � �6 or 3

�1.x �
7
3,�3,�3x � �7

0 321−7 −6 −5 −4 −3 −2 −1

x

0�3x � 2 0 � 50�3x � 1�22 0 � 5

�
9
2.x �

1
2,�2,�2x � �1

6 987−1 0 1 2 3 4 5

x

0�2x � 4 0 � 5

31
3.w � �2,3w � �6

109876543210−6 −5 −4 −3 −2 −1

x

0 3w � 2 0 � 8

y � �2,

654321−2 −1 0

x

0 y � 2 0 � 4

x � 2.234

r � 4.658

�4.9 sec�6.3 sec

2 2
3 qt

p18 � x22 � 16p.
p18 � x22 � 64p � 48p,
48p

p18 � x22,
r � 8 � x Therefore, 

To the nearest pound, Joan’s ideal weight is either
114 pounds or 126 pounds.

25. If the true wind speed differs by 5 feet per second
from the measured speed, let x true wind speed
and 

The true wind speed is between 15 and 25 feet per
second.

27. (in practice) and

29. 31. 33.

35. or 2 37. 39.

41. or 43.

45. or 2.59 or 47.

49. 51. or 7 53. No solutions

55. or 1.40 57.

59. 61. 63.

65. 67.

69. a. b. 22.63 ft

Section 2.5, page 124

1. 3.

5.

7.

9.

11. [5, 8] 13. 15.

17. 19. 21.

23. 25. (2, 4) 27.

29. 31. 33.

35. 37.

39. 41. 1 � x � 3c 6 x 6 a � c

x 6 b � c
a35, q 2

S�1, 18bS� 7
17, qba�q, 47b

S�3, 52b11, q 2
a�q, �8

5 T1�2, q 2a�q, 32 T
3�8, q 21�3, 142

1−4 −2 0

1 32−3 −2 −1 0

2 4 6 8−2 0

c � 3x � 0

I �
x

1x2 � 1024232

b �
B

a2

A2 � 1
u �
B

x2

1 � K2

x � �1x � 1x �
3 ± 141

4

x � 7x � �0.457

x � 3x � 6

x � 1.658x � �1x � �1.17

x � ±0.73�4x �
1
2

x �
1
2x � 9x � �1

x � ±3x � �2x � 4

� 0.0497CL � �0.0097 � 0

 x � 15   or   x � 25
 x � 20 � �5   or   x � 20 � 5

 0 x � 20 0 � 5
�

 x � 126.3  x � 114.3
 0.95x � 120  1.05x � 120

 x � 120 � 0.05x or  x � 120 � �0.05x
0 x � 120 0 � 0.05x.
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43. or 

45. or 

47. or 

49. or 

51. or 

53. or 

55. 57. or 

59. or 

61. 63. or 

65. or 

67. or 

69. or 

71. 73. or 

75. Approximately 8.608 cents per kwh

77. More than $12,500 79. Between $4000 and $5400

81. and 

83. 85. 87.

Section 2.5.A, page 131

1. 3.

5. or 7. or 

9. or 11. or 

13. or or 

15.

17. or 

19. or 

21. or or 

23. or 

25. 27. or 

29. or 

31. or 

33. If then multiplying both sides by 5 

shows that But
5 0 x � 3 0 � 0 5 0 � 0 x � 3 0 � 0 51x � 32 0 �5 0 x � 3 0 6 E.

0 x � 3 0 6 E
5 ,

1.35 6 x 6 1.67�1.13 6 x 6 1.35

x �
14
3x � 2

x 7 1.56x 6 �0.89�1.43 6 x 6 1.24

2 6 x 6 8
30 6 x 6 2

3

x � 1�1 � x � 0x � �2

x 7 16x 6 �16

1 6 x 6 13�13 6 x 6 �1

�
1
7 6 x 6 3

x 7 6�5 6 x 6 �
4
3x 6 �5

x � �
5
4x � �

7
2x 7 �

43
40x 6 �

53
40

x � �
1
4x � �

11
20x 7 �1x 6 �2

7
6 6 x 6 11

6�
4
3 � x � 0

2 6 t 6 2.251 � t � 410 6 x 6 35

y � 20 � x1 6 x 6 19

x � 0.79x � �3.79x 7 �1.43

1
2 6 x 6 5x 6 �3

x 7 5.34�17 6 x 6 17

x � 5�3 6 x 6 1

x 7 �3x � �
9
2x 7 1

1 6 x 6 3�2 6 x 6 �1

x 7 2x 6 �
1
30.5 6 x 6 0.84

x � 3.51�2.26 � x � 0.76

1 6 x 6 2�2 6 x 6 �1

0 6 x 6 3x 6 �1

x � 1�1 � x � 0

x �
1 � 133

2x �
1 � 133

2

x �
�9 � 121

2x �
�9 � 121

2
Thus,

Chapter 2 Review, page 135

1. 3.

5. 7.

9. No real solutions 11.

13. 15. 2

17. gold, oz; silver, oz

19. 21. 9.6 ft 23. 4 ft

25. 25 27. 29.

31.

33.
Squaring both sides,

Both of these check in the original equation.

35.

Set the numerator equal to 0.

Neither solution causes the denominator to be 0.

37. 39. No solutions

41. a. b. 43.

45. and 

47. or 49. e

51. 53. or 

55. or 

57. or 

59. or 

61. or x � 0x � �
4
3

y � 13y � �17

x 7 1 � 113
6x 6 1 � 113

6

�3 6 x 6 213x 6 �213

x 7 �4x � �7S�4, �5
8b

0 � x � 1x � �1

a�1
3, qb1�q, �22

S 74, qb1�q, 5 41�8, q 2
x �

5 � 15
2

 x � 2, 4
 1x � 22 1x � 42 � 0

 x2 � 6x � 8 � 0

x2 � 6x � 8
x � 1 � 0

 x � 2, �1
 1x � 22 1x � 12 � 0

 x2 � x � 2 � 0

2x2 � x � 2 � 0

 x �
5
3  x � �1

 3x � 5  3x � �3
 3x � 1 � 4 or  3x � 1 � �4
0 3x � 1 0 � 4

x � �
1
2 or �11

21b � 122
22

9 hrs

8
11

3
11

x � 3 or �3 or 12 or �12

z �
�3 ± 2111

5

x � 1.6511x � �3.2843

x � 3.2678x � 2.7644

0 15x � 42 � 11 0 6 E.
0 5x � 15 0 � 0 15x � 42 � 11 0 .
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c.

d. The maximum area 6.25 appears to occur
when the base length is 2.5 yd.

Analytical and Graphical Method

Using the maximum finder on a graphing
calculator indicates that the maximum area of
6.25 occurs at approximately 2.5 yd.

2. Numerical Method
a. The base must be greater than 0 and less than 6

units. The nr in the table indicates that no
rectangle can be formed with a base of 6 or
more units because would not
exist if x 7 6.

y � 236 � x2

yd2

8

0
0 6

 A � �l2 � 5l
 w � 5 � l

 A � 5l � l2
 2w � 10 � 2l

 A � l15 � l2 2l � 2w � 10
 A � l � w

yd2

8

0
0 6
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length 1 yd 1.5 yd 2 yd 2.5 yd 3 yd 3.5 yd 4 yd 4.5 yd 5 yd 5.5 yd

height 4 yd 3.5 yd 3 yd 2.5 yd 2 yd 1.5 yd 1 yd 0.5 yd nr nr

area 4 5.25 6 6.25 6 5.25 4 2.25 — —yd2yd2yd2yd2yd2yd2yd2yd2

x 1 2 3 4 5 6

y 5.92 5.66 5.20 4.47 3.32 nr

area 5.92 11.32 15.6 17.88 16.6 —

b.

c.

d. A maximum area 17.88 square units appears to
occur when x is 4.

Analytical and Graphical Method

Using the maximum finder on a graphing
calculator indicates that the maximum area of 18
square units occurs when x is approximately 4.24.

3. Numerical Method
a. The base must be greater than 0 and less than 

4 units. The nr in the table indicates that no
rectangle with a base of 4 or more units
because if x � 4.y � 0

20

0
0 7

 A � x � 236 � x2
y � 236 � x2

 A � x � y

20

0

0 7

Chapter 2 can do calculus, page 139

1. Numerical Method
a. Each base must be greater than 0 and less than

10 yards. The nr in the chart indicates that no
rectangle can be formed with a base length of 
5 yards or more because the opposite bases of a
rectangle are the same length, and, since

there would be no wire left to
make the sides of a rectangle.

b.

5 � 5 � 10,



b.

c.

d. A maximum area of 2 square units appears to
occur at 

Analytical and Graphing Method

Using the maximum finder on a graphing
calculator indicates that the maximum area is 2
when x is approximately 2.

Chapter 3

Section 3.1, page 148

1. The set of inputs is the number of hours you work
in each pay period. The set of outputs is the
amounts of your paychecks. The function rule is
the amount of pay for each hour worked
multiplied by the number of hours worked.

3. The set of inputs is temperatures of gas. The set of
outputs is pressures of gas. The function rule is 

the formula 

5. y is a function of x.

7. y is not a function of x.

9. y is a function of x.

P �
k
T

.

3

0
0 4

 A �
4x � x2

2

 A � x �
14 � x2

2y �
14 � x2

2

 A � x � y

x � 2.

3

0
0 4

11. y is not a function of x. 13.

15.

17. 4 19. 21.

23.

25.

27. 8 29. 31.

33. 35. 1 37. 3

39. 41.

43. All real numbers 45. All real numbers

47. All nonnegative real numbers

49. All nonzero real numbers

51. All real numbers

53. All real numbers except and 3

55. [6, 12]

57. a. the greatest integer less than or
equal to 0 is 0.

b.
c.
d.
e. The domain of f is all real numbers.

59. a. b.
c. d.
e. The domain of f is all real 

61. a. b.
c. d.
e. The domain of f is all real numbers.

63. a. b.

65.

67. a.

b. The domain is 

69. a. Let t be the number of hours since he started

8.5

b. The domain is t such that 

71. Let of annual income and
of tax.

The domain is x � 0.

f 1x2 � u0
0.021x � 20002
80 � 0.051x � 60002

if x 6 2000
if 2000 � x � 6000
if x 7 6000

f 1x2 � amount
x � amount

0 � t � 4.
2.5 6 t � 48.5 � 31t � 2.52
2 6 t � 2.5

3
4 6 t � 22.25 � 5at �

3
4bd1t2 �

0 � t �
3
43t

x 7 0.

C1x2 � 5.75x �
45,000

x

V � 4x3

A �
1
4 ˛pd2A � pr2

f 15 � 2p2 � �5.566f 1�2.32 � �7.6
f 11.62 � �3.4f 102 � �5

numbers �20.
f 15 � 2p2 � �0.920f 1�2.32 � 0.69
f 11.62 � 5.76f 102 � 0

f 15 � 2p2 � 35 � 2p 4 � 3�1.283 4 � �2
f 1�2.32 � 3�2.3 4 � �3
f 11.62 � 31.6 4 � 1

f 102 � 30 4 ;

�2

1
2x � h � 2x

�2x � h � 1

t2 � 1

1s � 122 � 1 � s2 � 2s�1

12 � x22 �
1

2 � x � 2 � 6 � 4x � x2 �
1

2 � x

1a � k22 �
1

a � k
� 2

59
12

34
3

322 � 3 � 22 � 1 � 1.69

23 � 1 � 2.73
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f

x 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

y 1.75 1.5 1.25 1 0.75 0.5 0.25 nr

area 0.875 1.5 1.875 2.0 1.875 1.5 0.875 —



Section 3.2, page 160

1. 3. The domain is 

5. 7. The domain is 

9. This is not a function; for example, there are three
output values for an input value of 4.

11. This is not a function; for example, there are three
output values for an input value of 2.

13. This is a function.

15. Increasing on and decreasing on
and 

17. Constant on and decreasing on

19. Increasing on decreasing on
and 

21. Increasing on (0, 0.867) and decreasing
on and (0.867, 2.883)

23. Minimum at x � 0.57735; maximum at 
x � �0.57735

25. Minimum at maximum at 

27. Minimum at x � 0.7633; maximum at x � �0.7633

29. a.
b. To maximize area each side should be 25 in. long.

31. a.

b. Base is approximately 
height is same (that is, 9.5354 in.).

33.

This function is concave up over the interval 
and concave down over the interval 
Therefore, the point of inflection is at (0, 0).

35.

The function is concave up over the approximate
intervals and and concave
down over the approximate interval 1�0.6, 0.62.

10.6, q 21�q, �0.62

−2.5

−2.5

2.5

2.5

1�q, 02.
10, q 2

3.1

4.7−4.7

−3.1

9.5354 in. � 9.5354 in.;

SA1x2 � 2x2 �
3468

x

A1x2 � 50x � x2

x � 1x � �1;

1�q, 02
12.883, q 2;

10.5, q 21�q, �5.82
1�5.8, 0.52;

1�1, 12.
31, q 2;1�q, �1 4

10, 1.721�6, �2.52
11.7, 42;1�2.5, 02

3�7, 8 4 .g 112 � 2

3�6, 9 4 .f 1�52 � 7

Therefore, the points of inflection are
approximately at and 

37. a.

b. This function is increasing over the interval
and decreasing over the interval 

c. There is a local minimum at the point (1, 0).
d. This function is concave up over the interval

e. There is no point of inflection.

39. a.

b. This function is increasing over the intervals
and and decreasing over the

interval (0, 2).
c. There is a local maximum at the point (0, 2) and

a local minimum at the point 
d. This function is concave upward over the

interval and concave downward over the
interval .

e. There is a point of inflection at (1, 0).

41.

−1
−2
−3
−4

4
3
2
1

21

x

y

1�q, 12
11, q 2

12, �22.

12, q 21�q, 02

�10 10

�10

10

1�q, q 2.

1�q, 12.11, q 2

�10 10

�10

10

10.6, �0.62.1�0.6, �0.62
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43.

45. a.

b.

47. a.

b.

49. a.

b.

(10, 5)
(0, 5)

(5, 0)

x

y

f 1x2 � bx � 5 x � 5
5 � x x 6 5

2
(−4, 0) (4, 0)

(0, −2)

x

y

h1x2 � u
x
2 � 2 x � 0

�
x
2 � 2 x 6 0

2

2

x

y

f 1x2 � b x � 2 x � 0
�x � 2 x 6 0

4

2

6

1−5 −3

x

y 51.

53.

55. When x is positive and is
negative, so and 
Therefore, 

when 

57. Domain: all real numbers x such that or
range: all nonnegative real numbers

59. Domain: all real numbers; range: all real numbers

61. Many correct answers, including

2 4

2

4

6

−6

−4

−2

−1−2

x � 2;
x � �2

0 � x � 2.x � x � 2 � 2
0 x 0 � 0 x � 2 0 � x � 1x � 22 �

0 x � 2 0 � �1x � 22.0 x 0 � x
x � 20 � x � 2,

1

y = 2[x]

1
x

y

y = [-x]

x

y

1

1
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63. Entire graph: 

near the origin: 

65. Entire graph: 

near the origin: 

67.

�10 45

�5

20

�2 2

�4

2

�16 2

�62

60

�2 5

�10

10

�2 32

�10

75 69.

71.

Section 3.3, page 170

1. (5, 2), upward 3. (1, 2), downward

5. The parabola opens upward.

7. The parabola opens downward.

9. The x-intercepts are and The
parabola opens upward.

11. The x-intercepts are and The 

parabola opens upward.

13. Vertex is 

The x-intercepts are 
or 

5

20

�10 10

�4.414.x � �1.586,
x � �3 � 22x � �3 � 22,

y-intercept � 14.
1�3, �42.

x �
1
2 ˛.x �

3
4

x � �3.x � 2

y-intercept � 5

y-intercept � 3

y � tx � t4 � 3t2 � 5,

�10

10

�10 10

y � t4 � 3t3 � t2x � t,

�10 10

�10

10
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15. Vertex is 

there are no x-intercepts.

17. Vertex is (4, 14)

The x-intercepts are at approximately 0.258 and
7.742.

19. Vertex is 

The x-intercepts are and 3.

21. Vertex is 
y-intercept is 
The x-intercepts are 3 and 

23. g 1x2 � �2x2 � 14x � 20

�30

10

�10 10

�4.
�24.

1�0.5, �24.52.
�10

10

�10 10

�1
y-intercept � �3.

11, �42.
�5

15

�10 10

y-intercept � �2.

�10

10

�10 10

y-intercept � 5
1�1, 42. 25.

27.

29.

31.

33.

35. 37.

39. 41.

43. Minimum product is numbers are 2 and 

45. Two 50-ft sides and one 100-ft side

47. $3.50 49. 30 salespeople 51. 1 second; 22 ft

53. The maximum height of 35,156.25 feet is reached
46.875 seconds after the bullet is fired.

Section 3.4, page 182

1. 3. 5.

7. 9.

11.

13.

15.

g 1x2 � 3x 4 � 1, g 1x2 � 3x 4
�5

5

�5 5

h1x2 � 23 �x, h1x2 � 23 x

�10

10

�10 10

h1x2 � �
1
x , h1x2 �

1
x

�5

5

�5 5

h1x2 � x2h1x2 � 3x 4
g 1x2 �

1
xf 1x2 � 1f 1x2 � x3

�2�4;

a � �
1
2b � 0

b � �4, c � 8f 1x2 � �2x2 � 1

g 1x2 � 2 ax �
5
2b

2

�
49
2

f 1x2 � �31x � 122 � 2

f 1x2 � 213x � 12 1x � 12
h1x2 � �12x � 12 1x � 72
f 1x2 � �

1
2 ˛x2 � 4x � 13
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17.

19.

21.

23.

25. 27.

29. Shift the graph 4 units to the right and 1 unit
upward; reflect the graph across the x-axis, and
stretch it vertically by a factor of 3.

31. Reflect the graph across the y-axis, shift it 2 units
to the left, stretch vertically by a factor of 4, and
shift 3 units downward.

33. Compress the graph horizontally by a factor of , 
shift it units to the right, and shift 0.4 units
upward.

� 3.23

1
1.3

g 1x2 � 1.51�x � 322g 1x2 � �
1
2 0 x � 3 0

g 1x2 � �2x � 3

h1x2 �
1

3x ˛, h1x2 �
1
x

�5

5

�5 5

f 1x2 �
1
2, f 1x2 � 1

�5

5

�5 5

h1x2 � 0 x � 2 0 , h1x2 � 0 x 0
�10

10

�10 10

35.

37.

39.

41.

g 1x2 �
2
5 ˛ 15 � x23 �

3
5 ˛, g 1x2 � x3

�10

10

�10 10

f 1x2 �
�3

2 � x � 4, f 1x2 �
1
x

�10

10

�9.4 9.4

h1x2 � 31x � 12 � 5, y � x

�10

10

�10 10

g 1x2 �
1
4 23 x � 3 � 1, g 1x2 � 23 x

�3

3

�5 5
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43.

45.

47.

49.

h1x2 � f 1�2x2

x

y

x

y

x

y

x

y 51.

53.

55.

57.

g 1x2 � 21 � x2 � 4

−4.7 4.7

−1.1

5.1

g1x2 � f 1x � 32

x

y

x

y

g1x2 � f 1x � 22 � 3

x

y
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h 1x2 � �f 1x2

g 1x2 � f 1x2 � 3

g 1x2 � 3f 1x2

g 1x2 � 2 � f 1x2



59.

61.

63. a. Shifts upward by 28 units
b. The graph is stretched vertically by a factor of

1.00012.

Section 3.4.A, page 189

1. Symmetric with respect to the y-axis

3. The graph does not have symmetry with respect
to the x-axis, y-axis, or origin. However, it is
symmetric with respect to the point (0, 2).

5. Symmetric with respect to the origin.

7. Yes 9. Yes 11. Yes

13. No 15. Yes 17. Yes

19. Origin 21. Origin 23. y-axis 25. Odd

27. Even 29. Even 31. Even 33. Neither

35.

y �
23 x
x2

g 1x2 � 5
B

1 � a1
5 ˛ xb2

−9.4 9.4

−6.2

6.2

g 1x2 � 321 � x2

−4.7 4.7

−3.1

3.1 37.

39. Many correct graphs, including the one shown
here:

41. Suppose the graph is symmetric to the x-axis and
the y-axis. If (x, y) is on the graph, then is
on the graph by x-axis symmetry. Hence, 
is on the graph by y-axis symmetry. Therefore,

on the graph implies that is on the
graph, so the graph is symmetric with respect to
the origin. Next suppose that the graph is
symmetric to the y-axis and the origin. If is
on the graph, then is on the graph by y-
axis symmetry. Hence, is on
the graph by origin symmetry. Therefore, on
the graph implies that is on the graph, so
the graph is symmetric with respect to the x-axis.
The proof of the third case is similar to that of the
second case.

Section 3.5, page 196

1.

; domain for each is all
real numbers

3.

; 

domain for each is all real numbers except 0

5.

a f
gb1x2 �

�3x � 2
x3 ˛; a g

f
b1x2 �

x3

�3x � 2

1 fg2 1x2 � �3x4 � 2x3;

1
x � x2 � 2x � 5; 1g � f 2 1x2 � x2 � 2x � 5 �

1
x

1 f � g2 1x2 �
1
x � x2 � 2x � 5; 1 f � g2 1x2 �

1g � f 2 1x2 � x3 � 3x � 2
1 f � g2 1x2 � �x3 � 3x � 2;
1 f � g2 1x2 � x3 � 3x � 2;

1x, �y2
1x, y2

1�1�x2, �y2 � 1x, �y2
1�x, y2

1x, y2

1�x, �y21x, y2
1�x, �y2
1x, �y2

−1 1

(−5, f(−5)) (1, f(1))

(6, f(6))

(4, f(4))

(−7, f(−7))

(−3, f(−3))
(−2, f(−2))

3 5 7−3

−2

−4

1

3

−5−7
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7.

9. Domain of fg: all real numbers except domain

of all real numbers except 

11. Domain of fg: all real numbers;

domain of : all real numbers except 

13. 1; 4 15. 1 17. 30

19. domain of
and is all real numbers.

21. domain of 

and is 

23.

25.

27. and 

29. and

31. where 

33. where 

35. where 

37.

B1x2 �
1
x

A1x2 � 3x2 � 5x � 7,f 1x2 � 1B � A2 1x2,
B1x2 � x7

A1x2 � 7x3 � 10x � 17,h1x2 � 1B � A2 1x2,
A1x2 � x2 � 2, B1x2 � 13 xf 1x2 � 1B � A2 1x2,

1g � f 2 1x2 � g 113 x � 22 � 113 x � 2 � 223 � x
1 f � g2 1x2 � f 1x � 223 � 23 1x � 223 � 2 � x

1g � f 2 1x2 � g 19x � 22 �
19x � 22 � 2

9 � x

1 f � g2 1x2 � f ax � 2
9 b � 9ax � 2

9 b � 2 � x

1 ff 2 1x2 �
1
x2  ; 1 f � f 2 1x2 � x

1 ff 2 1x2 � x6; 1 f � f 2 1x2 � x9

10, q 2.g � f

f � g1g � f 2 1x2 �
1
1x

;1 f � g2 1x2 �
1
1x

;

g � ff � g
1g � f 2 1x2 � x2 � 3;1 f � g2 1x2 � 1x � 322;

�25;

 

3
4

 

f
g

�2
f
g :

�2;

B
x � 1

1x � 12 1x � 12 �
B

1
x � 1

ag
f
b1x2 �

g1x2
f 1x2 �

2x � 1
2x2 � 1

�
B

x � 1
x2 � 1

�

B

1x � 12 1x � 12
x � 1

� 2x � 1

a f
g b1x2 �

f 1x2
g1x2 �

2x2 � 1
2x � 1

�
B

x2 � 1
x � 1

�

21x2 � 12 1x � 12
1 fg2 1x2 � f 1x2g1x2 � 2x2 � 1 2x � 1 �

39.

41.

43.

45.

47. a. By the definition of absolute
value,

b. When the graph of is the same as
the graph of f. When the graph of f is
below the x-axis, but the graph of is the
reflection of f across the x-axis; therefore, the
graph will be above the x-axis.

49.

y1 � x3 � 3, y2 � f � g � f 1 0 x 0 2 � 0 x 0 3 � 3

�f
f 1x2 6 0,

g � ff 1x2 � 0

0 f 1x2 0 � b f 1x2 if f 1x2 � 0
�f 1x2 if f 1x2 6 0

1g � f 2 1x2 � 0 f 1x2 0
f 1x2 � x � 3, g � f � 0 f 1x2 0 � 0 x � 3 0

f 1x2 � 0.5x2 � 5, g � f � 0 f 1x2 0 � 0 0.5x2 � 5 0

−3

−10

10

5
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51.

53.

55. gives the unit price as

a function of n, the number of telephones produced.

57. 59.

61. One such function is 

Section 3.5.A, page 203

1. 2, 2.16, 2.3328, 2.5194, 2.7210, 2.9387, 3.1737, 3.4276

3. 0.2, 0.64, 0.9216, 0.2890, 0.8219, 0.5854, 0.9708,
0.1133

5. 0.5, 0.3223, 0.2647, 
0.2312, 

7. approaches infinity

9. converges to 0 11. converges to 0

13. The fixed points are 3 and 

15. The fixed points are 0, 1, and 

17. The fixed points are and 

19. Any real number greater than or equal to 0 is a
fixed point. Any negative number is an eventually
fixed point.

21. a. and terms of orbit: 0.5,
0.5, 0.5, . . . ; 0.5 is a fixed point. 
and terms of orbit: 1.5, 0.5, 0.5, . . . ;

is an eventually fixed point.
b. and terms of orbit: 1, 0, 1,

0, . . . ; 0 is a periodic point. and
terms of orbit: 0, 1, 0, 1, . . . ; 1 is a

periodic point.

Section 3.6, page 212

1.
y f(y)
4 1
2 2
3 3
6 4
1 5

x � 1;
f 1x2 � 0 x � 1 0x � 0;f 1x2 � 0 x � 1 0�0.5

x � �0.5;
f 1x2 � 0 x � 1 0x � 0.5;f 1x2 � 0 x � 1 0

2 � 28
2 ˛.

2 � 28
2

�1.

�2.

�0.2189
�0.2462,�0.2888,�0.375,

f 1x2 �
x � 1

x ˛.

s �
10t
317,157.28 cm3V �

256pt3

3 ;

1P � U2 1n2 �
15,600 � 19.5n

n

f � I � I � f � f

y1 � 2x � 1, y2 � f � g � f 1 0 x 0 2 � 20 x 0 � 1

3.

3 sample points on the inverse: 

5.

7.

9. 11.

13. 15.

17. 19.

21.

23. No 25. Yes 27. Yes 29. No

g 1x2 �
B

3 5x � 1
1 � x

x �
1

2y2 � 1
˛, y � ±

B
1 � x

2xg 1x2 �
1
x

g 1x2 �
x2 � 7

4 , 1x � 02g 1x2 �
B

3 5 � x
2

x � 5y2 � 4, y � ±
B

x � 4
5g 1x2 � �x

 y2 � t
 x2 � t4 � 3t2
 y1 � t4 � 3t2
 x1 � t

−10 10

−10

10

 y2 � t
 x2 � t3 � 3t2 � 2
 y1 � t3 � 3t2 � 2
 x1 � t

−10 10

−10

10

18, 62
10, 32,1�2, �22,

x

y

1
1
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31.

33.

35.

37. One restricted function is with (so
that inverse function 

39. One restricted function is with 
inverse function Another restricted
function is with inverse function

41. One restricted function is with 

inverse function 

43. One restricted function is with 

inverse function 

45. and

47.

and 1g � f 2 1x2 � g a 1
x � 1b �

1
11 � x2 � x

x

� x

1 f � g2 1x2 � f a1 � x
x b �

1

a1 � x
x b � 1

�

1x � 12 � 1 � x1g � f 2 1x2 � g 1 f 1x2 2 � g 1x � 12 �
1 f � g2 1x2 � f 1g 1x22 � f 1x � 12 � 1x � 12 � 1 � x

g 1x2 � �
B

1
x � 1 � �

B
1 � x

x .

x � 0;

f 1x2 �
1

x2 � 1

g 1x2 � 12x � 6.x � 0;

h1x2 �
x2 � 6

2

g 1x2 � 1�x.
x � 0;h1x2 � �x2

g 1x2 � �1�x.
x � 0;h1x2 � �x2

g 1x2 � x.h1x2 � x2;
x � 0h1x2 � 0 x 0

−5 5

−5

5

−10 10

−3

3

−5 5

−10

10

49. f and

51.

53. Let Since we can solve 

for x and obtain Hence, the rule of the 

inverse function g is and we have: 

and 

55. a.

b. The line has slope 1 and by (a), line PQ
has slope Since the product of their slopes
is the lines are perpendicular.

c.

Since the two lengths are the same, is the
perpendicular bisector of segment PQ.

Section 3.7, page 220

1. a. 14 ft/sec b. 54 ft/sec c. 112 ft/sec

d.

3. a. 0.709 gal/in. b. 2.036 gal/in.

5. a. 250 ties/mo b. 438 ties/mo
c. 500 ties/mo d. 563 ties/mo
e. ties/mo f. ties/mo
g. ties/mo h. ties/mo

7. a. b. c.

9. 11. 13. 1.5858 15. 1

17. 19. 21. 2pr � ph2t � h � 80002x � h

�1�2

�462.5�92.5�55.5

�375�1500
�750�188

93 1
3 ft/sec

y � x
 � 2a2 � b2 � 2c2 � 2ac � 2bc.
 � 2c2 � 2bc � b2 � c2 � 2ac � a2

 Length RQ � 21c � b22 � 1c � a22
 � 2a2 � b2 � 2c2 � 2ac � 2bc;
 � 2a2 � 2ac � c2 � b2 � 2bc � c2

 Length PR � 21a � c22 � 1b � c22
�1,

�1.
y � x

Slope �
a � b
b � a

�
�1b � a2

b � a
� �1.

g 1mx � b2 �
1mx � b2 � b

m � x.

1g � f 2 1x2 � g 1 f 1x2 2 �max � b
m b � b � x

1 f � g2 1x2 � f 1g 1x2 2 � f ax � b
m b �

g 1x2 �
x � b

m  ,

x �
y � b

m  .

m � 0,y � f 1x2 � mx � b.

7x
3x � 2

7
3x � 2

� x

2 c 2x � 1
3x � 2 d � 1

3 c 2x � 1
3x � 2 d � 2

�

212x � 12 � 13x � 22
3x � 2

312x � 12 � 213x � 22
3x � 2

�

1 f � f 2 1x2 � f 1 f 1x2 2 �
2f 1x2 � 1
3f 1x2 � 2

�

g 1x52 � 25 x5 � x
1g � f 2 1x2 �1 f � g2 1x2 � f A25 x B � A25 x B 5 � x

1 �
1

x � 1
1

x � 1

�

1x � 12 � 1
x � 1

1
x � 1

� x
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23. a. Average rate of change is which
means that water is leaving the tank at a rate 
of 7979.9 gal/min.

b. gal/min. c. gal/min.

25. a. b. c. d.
e. It’s the same.

27. a. C, 62.5 ft/sec; D, 75 ft/sec
b. Approximately to 
c. The average speed of car D from to 

sec is the slope of the secant line joining
the (approximate) points (4, 100) and (10, 600), 

namely, The average 

speed of car C is the slope of the secant line
joining the (approximate) points (4, 475) and 

(10, 800), namely, 

29. a. From day 0 until any day up to day 94, the
average growth rate is positive.

b. From day 0 to day 95
c. �27, meaning that the population is decreasing

at a rate of 27 chipmunks per day
d. 20, �10, and 0 chipmunks per day

Chapter 3 Review, page 226

1.

3.

5. All real numbers except for 3.

7. a. For 20 miles, it costs $150. For 30 miles, it costs
$202.50

b. 39 miles

9.

11. 13.

15. No local maxima; minimum at 
increasing on decreasing on 
This function is concave up for all values of x;
there are no points of inflection.

17. Maximum at minimum at 
x � �0.2630. Increasing on and
(�0.2630, �); decreasing on (�5.0704, �0.2630)
This function is concave up on the interval 

and concave down on the interval 

There is a point of inflection at 

19. a. The graph does not pass the vertical line test;
therefore, it does not represent a function of x.

x � �
8
3.

a�q, �8
3b.

a�8
3, qb

1�q, �5.07042
x � �5.0704;

1�q, �0.521�0.5, q 2;
x � �0.5;

�33�3, 3.5 4
f 102 � 0, f 1�12 � �1, f a1

2b � 1, f a� 

3
2b � �2

� 2

2ax
2b

3

� ax
2b � 1 �

x3

4 �
x
2 � 1

f 1x � h2 � 7 � 2x � 2hf 112 � 5
f 1b � 12 � 5 � 2bf 102 � 7
f 1t2 � 7 � 2tf 1�12 � 9
f 122 � 3f 1�22 � 11

800 � 475
10 � 4 � 54.17 ft/sec.

600 � 100
10 � 4 � 83.33 ft/sec.

t � 10
t � 4

t � 9.8 sect � 4

6p6.1p6.2p6.5p

�7980�7979.99

�7979.9, b. The graph represents a function of x because it
passes the vertical line test.

21.

23.

25.

Vertex is (4, 1).
The y-intercept is 17.
There are no x-intercepts.

27.

Vertex is The y-intercept is 
There are no x-intercepts.

�7.1�1, �62.

−15 10

−15

5

f 1x2 � �x2 � 2x � 7

−10 10

−10

20

g 1x2 � 1x � 422 � 1

−2

−4

−6

6

4

2

y

x

−2−4−6 4 6

(−3 ≤ t ≤ 3)x = t2 − 4
y = 2t + 1

2

1

y

x

−1 4
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29.

Vertex is 
The y-intercept is 
The x-intercepts are and 1.7.

31. (transformation form)

(x-intercept form)

33. parent function: 

35. parent function: 

37. parent function: 

−10 10

−10

10

f 1x2 � x2

−10 10

−10

10

g 1x2 � 0 x 0

−10 10

−10

10

f 1x2 � 1x

f 1x2 � 1x � 42 1x � 12 
f 1x2 � ax �

3
2b

2

�
25
4  

�2.4
�4.08.

1�0.35, �4.20252.

−10 10

−10

10 39. Compress the graph of g toward the x-axis by a
factor of 0.25, then shift the graph vertically 2
units upward.

41. Shift the graph of g horizontally 7 units to the
right; then stretch it away from the x-axis by a
factor of 3; then reflect it across the x-axis; finally,
shift the graph vertically 2 units upward.

43. e

45.

Note: the right endpoint of each segment is a part
of the graph; the left endpoint is not a part of the
graph.

47. x-axis, y-axis, origin

49. Even 51. Odd

53. a. b. c. 2

55. 57. 59.

61. For and the graphs of f and are
the same. For , the graph of 

is the graph of , a reflection of the graph 
of f across the x-axis.

63.

65. 2, 1, 0, 1, 0, 1, 0, 1

67.

69.

71.

73. x � 25 y3 � 1, f �11x2 � 23 x5 � 1

x � 2y � 1, f �11x2 �
x � 1

2

x � 1 � y2, y � ±21 � x

x

f

y Inverse

f 1x2 � x2, g 1x2 � 2x � 1

�fg � f
�2 6 x 6 3

g � fx � 3,x � �2

1
x3 � 382

27�4x

�1�1

36

0
0 125
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75. The graph of f passes the horizontal line test and
hence has an inverse function. It is easy to verify
either geometrically [by reflecting the graph of f
across the line ] or algebraically [by
calculating ] that f is its own inverse
function.

77.

79.

81. a. b.

83. 6 85. 3 87.

89. a. For example, from to 1
b. For example, from 1 to 2
c. For example, from 6 to 8
d. Both intervals are portions of the same line, so

their slopes are the same.

91. a. $290/ton b. $230/ton c. $212/ton

Chapter 3 can do calculus, page 237

1.
feet per second�44

s1t2 � �16t2 � 20t � 75

�3

2x � h

5
8�

1
3

 �
7x

x � 2 �
x � 2

7 � x

�

7x
x � 2

7
x � 2

�

213x � 12 � 11x � 22
x � 2

3x � 1 � 31x � 22
x � 2

1 f � g2 1x2 �

2a3x � 1
x � 2 b � 1

a3x � 1
x � 2 b � 3

�
7x

x � 3 �
x � 3

7 � x

7x
x � 3

7
x � 3

�

312x � 12 � 11x � 32
x � 3

2x � 1 � 21x � 32
x � 3

�

1g � f 2 1x2 �

3a2x � 1
x � 3 b � 1

a2x � 1
x � 3 b � 2

1 f � g2 1x2 � 410.25x � 1.52 � 6 � x � 6 � 6 � x
1g � f 2 1x2 � 0.2514x � 62 � 1.5 � x � 1.5 � 1.5 � x

y

−3

3

x

−3 3

1
xf(x) =

f 1 f 1x2 2
y � x
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2. 0.625 seconds The instantaneous velocity of the
ball is 0 when the ball reaches its maximum
height. Thus, the maximum height of the ball will
be 81.25 feet.

3. feet per second

4. 14 5. 6. 3 7. 2a

8. instantaneous rate of ; equation of
tangent line at 

9. instantaneous rate of 
When for each change of 1 unit in the
radius, the surface area of the sphere will increase
by approximately 25.132741 square units.

10. instantaneous rate of dollars per
phone When for every additional phone
sold, the profit increases by approximately $100.

Chapter 4

Section 4.1, page 248

1. Polynomial of degree 3; leading coefficient 1;
constant term 1

3. Polynomial of degree 3; leading coefficient 1;
constant term 

5. Polynomial of degree 2; leading coefficient 1;
constant term 

7. Not a polynomial

9. 2 3 0 9 5
6 2

3 1 7

quotient 
remainder 7

11. 2 5 0
3 33

2 3 25

quotient 
remainder 25

13. 7 5 0 6
35 245 1,694 11,830

5 35 242 1,690 11,836

quotient 
remainder 11,836

5x3 � 35x2 � 242x � 1690;

�4�3

2x3 � x2 � 3x � 11;

�11�1

�9�6
�8�2�3

3x3 � 2x2 � 4x � 1;

�4�2

�8�4
�8

�3

�1

x � 1000,
change � 100

r � 1,
change � 25.132741

100

−100

−2 8

y � �16t � 76t � 4:
change � �16

�0.111111

�96s1t2 � �16t2 � 300;



15. 2 1 4 2

2

1

quotient 
remainder 

17. Quotient remainder 12

19. Quotient remainder 

21. Quotient remainder 0

23. No 25. Yes 27. 0, 2

29. 31. 2 33. 6

35. 37. 170,802 39. 5,935,832

41. No 43. No 45. Yes

47.

49.

51.

53.

55. Many correct answers, including 

57. Many correct answers, including 

59.

61. 63.

65. If were a factor of then c would
be a solution of that is, c would
satisfy But and so that
is impossible. Hence, is not a factor.

67. a. Many possible answers, including: if and
then is not a factor of
since is not a solution of 

b. Since n is odd and hence is a
solution of Thus, 
is a factor of by the Factor Theorem.

69. 71.

Section 4.2, page 258

1. or 3. or 

5. 0, 1 or 7. or 2

9. 11. 2, or 3

13. 15.

17.

19. Lower upper 2 21. Lower upper 3

23. or 25. or 1
3x � 1, 12,�

1
2x � 1, 2,

�7;�5;

1x � 22 1x � 1221x2 � 32
x31x2 � 32 1x � 221x � 22 12x2 � 12
x � �5,x � 2

x � �31
2x � �4,

�5x � ±1�3x � ±1

d � �5k � 5

xn � cn
x � 1�c2 � x � cxn � cn � 0.

�c1�c2n � �cn
x3 � 1 � 0.�1x3 � 1

x � 1 � x � 1�12c � 1,
n � 3

x � c
c2 � 0,c4 � 0c4 � c2 � �1.

x4 � x2 � 1 � 0,
x4 � x2 � 1,x � c

k � 1k � 1

f 1x2 �
17

100 1x � 52 1x � 82x
f 1x2 � 1x � 12 1x � 2221x � p23
f 1x2 � 1x � 12 1x � 72 1x � 42

 � x5 � 5x4 � 5x3 � 5x2 � 6x
 f 1x2 � x1x � 12 1x � 12 1x � 22 1x � 32

 � x5 � 3x4 � 5x3 � 15x2 � 4x � 12
 f 1x2 � 1x � 22 1x � 12 1x � 12 1x � 22 1x � 32
1x � 32 1x � 32 12x � 122
1x � 42 12x � 72 13x � 52

�30

222, �1

5x2 � 5x � 5;

�7x � 7x2 � 2x � 6;

3x3 � 3x2 � 5x � 11;

�19
x3 � 4x2 � 4x � 6;

�19�6�4�4

�12�8�8

�7�6
27. 29. or or 

31. or 33. or 

35. or or 0.8019 or 50

37. a. The only possible rational zeros of
are or (why?). But is a

zero of f(x) and or Hence, is
irrational.

b. is a zero of whose only possible
rational zeros are or (why?). But

or 

39. a. 8.6378 people per 100,000
b. 1995 c. 1991

41. 2 by 2 in.

43. a. /day at the beginning; /day at the end
b. Day 2.0330 and day 10.7069
c. Day 5.0768 and day 9.6126
d. Day 7.6813

Section 4.3, page 269

1. Yes 3. Yes 5. No

7. Degree 3, yes; degree 4, no; degree 5, yes

9. No

11. Degree 3, no; degree 4, no; degree 5, yes

13. The graphs have the same shape in the window
with and but
don’t look identical.

15. is a zero of odd multiplicity, as are 1 and 3

17. and are zeros of odd multiplicity; 2 is a
zero of even multiplicity.

19. (e) 21. (f) 23. (c)

25. The graph in the standard viewing window does
not rise at the far right as does the graph of the
highest degree term so it is not complete.

27. The graph in the standard viewing window does
not rise at the far left and far right as does the
graph of the highest degree term so it is
not complete.

29. and 

31. and 

33. and 

35. Left half: and 
right half: and 

37. and 

39. Overall: and near 
y-axis: and 

41. a. The graph of a cubic polynomial (degree 3) has at
most local extrema. When is large,0 x 03 � 1 � 2

4.997 � y � 5.001�0.1 � x � 0.2
�20 � y � 20;�3 � x � 3

�15,000 � y � 5000�90 � x � 120

�20 � y � 30�2 � x � 3250,000;
�50,000 � y ��33 � x � �2

�35 � y � 20�3 � x � 4

�60 � y � 320�6 � x � 6

�20 � y � 40�9 � x � 3

0.005x4,

x3,

�1�2

�2

�1000 � y � 5000�40 � x � 40

6.6435°6°

±3.13 � ±1
±3±1

x2 � 323

12±2.12 � ±1
12±2±1f 1x2 � x2 � 2

�0.5550x � �2.2470

�1.8393x �
1
3±13x � �1, 5,

±13±12x �
1
2x � 2 or 

�5 ± 137
2
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the graph resembles the graph of that is, one
end shoots upward and the other end downward.
If the graph had only one local extremum, both
ends of the graph would go in the same direction
(both up or down). Thus, the graph of a cubic
polynomial has either two local extrema or none.

b. These are the only possible shapes for a graph
that has 0 or 2 local extrema, 1 point of inflection,
and resembles the graph of when is large.

43. a. Odd b. Positive c. d. 5

45. (d)

47.

49.

51.

−2

y

x

h(x) = 0.25x4 − 2x3 + 4x2

1 2 3

(4, 0)(0, 0)

(2, 4)

4 5−2 −1−3−4

2

4

−2

y

x

f(x) = x3 − 3x2 + 4

1 2 3

(2, 0)

(0, 4)

4−2

(−1, 0)

−3−4

2

4

�2, 0, 4, and 6

0 x 0ax3

ax3, 53.

55.

57. a. The solutions are zeros of
This

polynomial has degree 3 and hence has at most
3 zeros.

b. and 
c. Suppose f(x) has degree n. If the graph of f(x)

had a horizontal segment lying on the line 
for some constant k, then the equation 
would have infinitely many solutions (why?).
But the polynomial has degree n (why?)
and thus has at most n roots. Hence the equation

has at most n solutions, which means
the graph cannot have a horizontal segment.
f 1x2 � k

f 1x2 � k

f 1x2 � k
y � k

3.99 � y � 4.011 � x � 3

g1x2 � 4 � 0.01x3 � 0.06x2 � 0.12x � 0.08.

−2

y

x

f(x) = x5 − 3x3 + x + 1

1

(1.51, 0)

2 3

(0.34, 1.23)

(1.30, −0.58)

(−1.30, 2.58)

(−0.34, 0.77)

4−2 −1

(−1.69, 0)

−3−4

2

4
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y

x

h(x) = 8x4 + 22.8x3 − 50.6x2 − 
94.8x + 138.6

21

2

(1.5, 0)(1.4, 0)

1

3

(−2.88, −2.34)

(−0.71, 174.27)

(1.45, −0.37)

−2 −1−3

(−3, 0)
(−2.75, 0)

−4−5

50

75

125

100

150
175

y

−25

−50

−75

−100

−125

−150

−175

25

x

g(x) = 3x3 − 18.5x2 − 4.5x − 45

1 2 3

(6.72, 0)

(4.23, −167.99)

(−.12, −44.73)

4 5−2 −1−3−4−6 −5−7−8 6 7 8 9 10
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b.
20.88711289

c. Noon: 9 A.M.: 2 P.M.: 

9. a.

b. Quartic
c.

d. $42,545.95
e. According to this model, income will drop

steeply after 2002.

11. a.

b.

c. 1996: $19,606; The estimate is lower.

Section 4.4, page 290

1. All real numbers except 

3. All real numbers except and 

5. All real numbers except 1, and 

7. Vertical asymptotes and 

9. Hole at vertical asymptote 

11. Hole at x � 2; vertical asymptotes 

13. any window with 

15. any window with 

17. any window with 

19. Asymptote: window: and

21. Asymptote: window: and
�40 � y � 240

�15 � x � 6y � x2 � x;

�15 � y � 15
�14 � x � 14y � x;

�40 � x � 42y �
5
2;

�31 � x � 35y � �1;

�115 � x � 110y � 3;

x � �2

x � �1x � 0;

x � 6x � �1

12�12,

3 � 153 � 15

�
5
2

66.26642628x2 � 397.2751554x � 3965.686061
y � �0.084189248x4 � 0.528069153x3 �

0

0 22

24,000

630.033381x2 � 2131.441153x � 36466.9811
y � �1.595348011x4 � 58.04379735x3 �

0

�1 20

50,000

83°69°;80°;

14.65684316x �y � �0.5179820180x2 �59. a. The general shape of the graph should be as
shown here. The graph should cross the x-axis
at the points specified, and bounce off the axis
at 2.

b. On the TI-83, only 3 of the roots are shown. 2 is
skipped over entirely.

c. Again, is missed.
d. Try the windows 

Then try
For the third

part and lastly

Section 4.3.A, page 276

1. Cubic 3. Quadratic

5. a.

b. 1987: 4898.0 per 100,000; 1995: 4635.6 per 100,000
c. 3138.2
d. Answers may vary.

7. a.

0
5 20

100

51.88599279x � 4900.867065
y � �0.634335011x3 � 11.79490831x2 �

�100,000 � y � 100,0005 � x � 11,
�5000 � y � 50001 � x � 5,

�5000 � y � 60,000.�3 � x � 2,
�5,000,000 � y � 1,000,000.

�20 � x � �3,
x � 2



23.

vertical asymptote 
horizontal asymptote 

25.

vertical asymptote 
horizontal asymptote 

27.

vertical asymptote 
horizontal asymptote y � 3

x � 1

y

x

2−1

2

4

6

−2

y � 0
x � �2.5

y

x

2−3

2

−2

−2

y � 0
x � �5

y

x

2−2−4−6

2

−2

29.

vertical asymptote 
horizontal asymptote 

31.

vertical asymptotes 
horizontal asymptote 

33.

vertical asymptotes 
horizontal asymptote y � 0

x � �2, x � 1

y

x

1 2 3−1−3−5

2
3

1

−2

y � 0
x � �1, x � 0

y

x

1 2 3−1−2−3

2

4

6

−2

−4

−6

−8

−10

y � �1
x � 3

y

x

2 41−1

2

−2
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35.

vertical asymptotes 
horizontal asymptote 

37.

39.

y

x

−1

−2

−3

−4

y � 0
x � �5, x � 1

y

x

1 2 3−1−3

2

1

−2

43.

oblique asymptote 

45.

vertical asymptote 

oblique asymptote 

47.

vertical asymptote 
parabolic asymptote y � x2 � x � 1

x � 1

y

x

1 32

y = x2 + x + 1

−2

4

6

8

10

12

−2

−4

−6

1

y � 2x � 7

x �
5
2

y

x

1 32

y = 2x + 7

4−2−4

4

8

12

16

20

24

28

−4

−8

−12

y � x � 1

y

x

1 3

y = x + 1

4

3

1

−3

−2
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vertical asymptote 
horizontal asymptote y � �4

x � 0

vertical asymptote x � 2

y

x

1 3 5−2

−2

−4

2

4

vertical asymptotes 
horizontal asymptote 

41.

vertical asymptotes 
hole at 
horizontal asymptote y � 0

x � �3
x � �4, x � 5

y

x

2 4 6 8−2−4−6

2

4

−4

−2

y � 1
x � �1, x � 5



49.

vertical asymptote 
parabolic asymptote 

51. Overall: and hidden
area near origin: and 
hidden area near and

53. and there is a hole at

55. Overall: and there is a
hole at to see the vertical asymptote, use

and 

57. For vertical asymptotes and x-intercepts:
and to see graph get

close to the horizontal asymptote: 
and 

59. Overall: and hidden
area near and 

61. and 

63. and 

65. Overall: and hidden
area near the origin: and

67. b. Stretch the graph of f(x) away from the x-axis
by a factor of 2.

c. The graph of h(x) is the graph of f(x) shifted
vertically 4 units upward; the graph of k(x) is
the graph of f(x) shifted horizontally 3 units to
the right; the graph of t(x) is the graph of f(x)
shifted horizontally 2 units to the left.

d. Shift the graph of f(x) horizontally 3 units to
the right, stretch vertically by a factor of 2, then
shift vertically 4 units upward.

�0.02 � y � 0.02
�2.5 � x � 1

�20 � y � 20;�13 � x � 7

�12 � y � 8�4.7 � x � 4.7

�16 � y � 8�15.5 � x � 8.5

�0.02 � y � 0.013 � x � 15x � 4:
�2 � y � 2;�4.7 � x � 4.7

�2 � y � 3
�40 � x � 35

�8 � y � 8;�4.7 � x � 4.7

�3 � y � 3.0.65 � x � 0.75
x � �1;

�2 � y � 2;�4.7 � x � 4.7

x � 2.
�4 � y � 4;�9.4 � x � 9.4

�0.07 � y � 0.02
�15 � x � �3x � �5:

�0.5 � y � 0.5;�2 � x � 2
�8 � y � 4;�5 � x � 4.4

y � x2 � 2x � 4
x � 2

y

x

1 3 5

y = x2 + 2x + 4

−3−5 −1

6

12

18

24

30

36

−9

e.

f. Shift the graph of f(x) horizontally units (to
the left if to the right if ); stretch (or
shrink) the graph by a factor of (away from
the x-axis if toward the x-axis if

); also if reflect the graph in
the x-axis; then shift vertically units (upward
if downward if ).

g.

69. a.

b.

instantaneous rate of 

change 

c.

instantaneous rate of 

change 

d. They are the same.

71. a. b.

c. Graph (a) has a vertical asymptote at and
graph (b) has a vertical asymptote at 

73. a.

b.

75. a.

b. between 25 gallons and 100 gallons
c.

77. a.

b.

c. the average cost can never be below
$2.60.

79. a.

b. v � 50

v �
50u

u � 50

y � 2.60;

20

0
0 100,000

a1x2 �
c1x2

x �
40,000 � 2.60x

x

x � 50 gallons

c1x2 �
20 � x
50 � x

x � 16.85 in.

50
x

C 1x2 �
3

100 12x22 �
1.25
100 a4x �

1000
x2 b � 0.06x2 �

x � �2.
x � 2

y �
x � 1

�x � 2y �
x � 1
x � 2

�
1
9 � �0.1111 p

�
1

9.003 � �0.1111;

�
1

9.03 � �0.1107;�
1

9.3 � �0.1075;

�
1
4 � �0.25

�
1

4.002 � �0.2499;

�
1

4.02 � �0.2488;�
1

4.2 � �0.2381;

�1
x 1x � h2

q1x2 �
tx � 1r � ts2

x � s

t 6 0t 7 0;
0 t 0r 6 0,0 6 0 r 0 6 1

0 r 0 7 1,
0 r 0s 6 0s 7 0;
0 s 0

p1x2 �
4x � 10
x � 3
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c.

d. If the object is close, a small change in u leads
to a large change in v. However, when u is
large, a small change in u leads to nearly no
change in v, so that u may change substantially
while the object stays in focus.

Section 4.5, page 300

1. 3.

5. 7.

9. 11.

13. 15. 4 17. 19. i 21. i

23. 25. 27.

29. 31. 33.

35. 37. 6i

39. 41.

43. 11i 45.

47. 49.

51.

53. 55.

57. 59.

61. 63.

65.

67.

69. 71.

73. If with a, b real numbers, then
If is

real, then and hence, 
Therefore, Conversely, if then

which implies that Hence,
is real.

75. 1
z � Q a

a2 � b2R � Q �b
a2 � b2R i

z � a
b � 0.0 � z � z � 2bi,

z � z,z � z.
z � z � 2bi � 0.b � 0

z � a � biz � z � 1a � bi2 � 1a � bi2 � 2bi.
z � a � bi,

�1x � 1, �1, i, �i

x � 2, �1 � 13i, �1 � 13i

x �
3 ± 13

2

x �
1
4 ± 131

4 ix � �
1
2 ± 17

2 i

x �
1
3 ± 114

3 ix � �
3
4, y �

3
2

x � 2, y � �21
3 �

12
3 i

A2 � 522 B � A25 � 2210 B i
�41 � i2

3

A215 � 322 B i
�4i214i

�
113
170 �

41
170 i

7
10 �

11
10 i10

17 �
11
17 i�5

41 �
4
41 i

12
41 �

15
41 i�

1
3 i5

29 �
2

29 i

�i�21 � 20i

�10 � 11i1 � 13i

a12 � 13
2 b � 2i�

1
2 � 2i

�2 � 10i8 � 2i

100

50
0

35,000

Section 4.5.A, page 306

1. ; 
.

3.
; 

5.
; 

7. The seventh iteration is more than 2 units from
the origin.

9. The thirteenth iteration is more than 2 units from
the origin.

11. The eighth iteration is more than 2 units from the
origin.

13. i is the Mandelbrot set.

15. 1 is not in the Mandelbrot set.

17. The cycle approaches approximately
The number is in the

Mandelbrot set.

Section 4.6, page 313

1. g(x) is not a factor of f(x).

3. g(x) is not a factor of f(x).

5. g(x) is not a factor of f(x).

7. (multiplicity 54); (multiplicity 1)

9. (multiplicity 15); (multiplicity 14);
(multiplicity 13)

11. or 

13. or 

15. or or 

17. or or 

19. or i or or 

21. or or or 

23. Many correct answers, including

25. Many correct answers, including

27. f 1x2 � 2x1x � 42 1x � 32
f 1x2 � 1x � 12 1x � 2221x � p23
f 1x2 � 1x � 12 1x � 72 1x � 42
f1x2 � Ax � 25 B Ax � 15 B Ax � 22i B Ax � 12i B�12i;12i�15x � 15

f 1x2 � 1x � 12 1x � i2 1x � 12 1x � i2
�i;�1x � 1

f 1x2 � 1x � 22Ax � 1 � 13i B Ax � 1 � 13i B1 � 13i;1 � 13ix � �2

f 1x2 � 1x � 32ax �
3
2 �

313
2 ibax �

3
2 �

313
2 ib

�
3
2 �

313
2 i;�

3
2 �

313
2 ix � 3

f 1x2 � ax �
1
3 �

215
3 ib ax �

1
3 �

215
3 ib

�
1
3 �

215
3 i;x � �

1
3 �

215
3 i

f 1x2 � 1x � 1 � 2i 2 1x � 1 � 2i2
1 � 2i;x � 1 � 2i

x � p � 1
x � px � 0

x � �
4
5x � 0

�0.2 � 0.6i�0.275 � 0.387i.

d � 1.7663.f 3102 � �1.6899 � 0.514i
f 2102 � �0.01 � 0.7i;f 1102 � �1.2 � 0.5i;

d � 1.5207f 3102 � �0.25 � 1.5i
f 2102 � 0.5 � i;f 1102 � 0.5 � 0.5i;

d � 210.452122 � 02 � 0.4521
f 3102 � 0.4521f 1102 � 0.3; f 2102 � 0.39;
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29.

31.

33.

35.

37.

39.

41.

43.

45. Many correct answers, including

47. Many correct answers, including

49. 51.

53. 55.

57. a. Since 
Since and

Hence 
b. Since 

Since 
and 

Hence 

59. a. (definition of f(z))
(Exercise 57(a))

(Exercise 57(b))
( for r real)
(Exercise 57(b))
(definition of f )

b. Since we have 
Hence is a zero of f(x).

61. If f(z) is a polynomial with real coefficients, then
f(z) can be factored as where
each is a polynomial with real coefficients
and degree 1 or 2. The rules of polynomial
multiplication show that the degree of f(z) is the
sum: 

If all of the have
degree 2, then this last sum is an even number.
But f(z) has odd degree, so this can’t occur.
Therefore, at least one of the is a first-degree
polynomial and hence must have a real zero. This
zero is also a zero of f(z).

Chapter 4 Review, page 317

1. (a), (c), (e), (f ) 3. 0

5. 2 1 8 1 16
2 4 10 4

1 2 5 2 0

other factor: x5 � 3x4 � 2x3 � 5x2 � 7x � 2

�7�3

�14�6
�4�17�5

gi 1z2

gi1z2gk1z2.g31z2 � p � degree
g21z2 � degreedegree g11z2 � degree

gi1z2
g11z2g21z2g31z2 p  gk 1z2,

z
0 � 0 � f 1z2 � f 1z 2.f 1z2 � 0,

� f 1z 2
� az3 � bz2 � cz � d

r � r� az3 � bz2 � cz � d
� a z3 � b z2 � c z � d
� az3 � bz2 � cz � d

f 1z2 � az3 � bz2 � cz � d

zw � z � w.1ac � bd2 � 1ad � bc2i.
z � w � 1a � bi2 1c � di2 �w � c � di,

z � a � bizw � 1ac � bd2 � 1ad � bc2i.
zw � 1ac � bd2 � 1ad � bc2i,

z � w.z � w �1a � c2 � 1b � d2i.
1a � bi2 � 1c � di2 �z � w �w � c � di,

z � a � biz � w � 1a � c2 � 1b � d2i.
z � w � 1a � c2 � 1b � d2i,

2 � i2 � i,i, �i,1, 2i, �2i

i, �i, �1, �23, �1
2 �

13
2 i, �1

2 �
13
2 i

f 1x2 � x3 � 5x2 � 17 � 2i2x � 13 � 6i2
f 1x2 � x2 � 11 � i2x � 12 � i2
f 1x2 � �2x3 � 2x2 � 2x � 2

f 1x2 � 3x2 � 6x � 6

f 1x2 � 1x4 � 3x32 1x2 � 2x � 22
f 1x2 � 1x � 4221x2 � 6x � 102
f 1x2 � x2 � 2x � 5

f 1x2 � 1x � 32 1x2 � 2x � 22 1x2 � 2x � 52
f 1x2 � 1x � 22 1x2 � 4x � 52
f 1x2 � x2 � 4x � 5 7.

9.

11. 13.

15. a. There are no rational zeros
b. An irrational zero lies between and 

Another lies between and 0. A third is
between 1 and 2.

17. 3 19. d

21. When is divided by 
synthetically, the last row, 1 5 20, has
alternating signs. Therefore, is a lower bound
for the real zeros.

23. rational zeros: and 4; irrational zero: 

25. is a zero of multiplicity 2; 4 is a zero of
multiplicity 1; is a zero of multiplicity 1; 3 is a
zero of multiplicity 1

27. Answers may vary.

29. i, iv, and v are false.

31. Use and for the
overall graph and and 
for behavior around the origin.

33. Use and 

35. Use and There is an 
x-intercept at a local maximum at (0, 3), 

and a local minimum at 

37. Use and There are 
x-intercepts at and a local
minimum at 

39. a.

b.
$79,223 in 2007 and $127,317 in 2015

41. Use and There is a
vertical asymptote at and a horizontal
asymptote at y � �1.

x � 2
�3.1 � y � 3.1.�4.7 � x � 4.7

29,552.18;
1615.35x �62.06x2 �0.19x3 �y � 0.04x4 �

120,000

0
0 25

x � 0.909.
x � �0.618, 1.618

�5 � y � 5.�3 � x � 3

a4
3, 49

27b .

1�1, 02,
�5 � y � 5.�2 � x � 3

�20 � y � 20
�1 � x � 0.2,20 � y � 40;0.2 � x � 2

�10 � y � 5�2 � x � 2
�10,000 � y � 500�10 � x � 20

�3
�3

� �1.328�1

�1
�5�5
x � 1x4 � 4x3 � 15

�1
�2.�3

�1�2, 
4 ± 13

3

f 1x2 � 1x � 22 AAx � A3 � 213 BB Ax � A3 � 213 BB
x �

44
7
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43. Use and There is a
vertical asymptote at a hole at , and
the x-axis is the horizontal asymptote.

45. vertical asymptotes: parabolic
asymptote: 

47. Use and . vertical
asymptote horizontal asymptote 
x-intercepts at for hidden behavior

49. Use and For
hidden behavior use 

51. 53.

55. or or i or 

57. or or 

59.

61. Many correct answers, including

63. a fixed orbit of one point: 

65.

67.

69.

Chapter 4 can do calculus, page 325

1. a. b. and (2, 4) c. (3, 20)

2. a. (1, 0) b. or (1, 0) c.

3. a. approximately or

b. when side length is
approximately 6.324 cm and height is
approximately 3.163 cm.

4. a. approximately 4.427 inches by 4.427 inches.

b. The largest volume occurs when 

5. a. b.

6. a. Approximately 206 units are produced.
b. The minimum value of about 577 dollars per

unit occurs when about 269 units are produced.

7.

8. The maximum area of about 220.18 square feet
occurs when x is about 9.31 feet.

9. 4 sq. units

10. The point that is closest to (0, 1) has 

the exact value of but approximations

are okay.

a
B

7
2, 32 b ,

5 � x2 � 1.5.

r � 1.769, h �
58
pr 2 � 5.8996

r � 1.996; �37.566 in2r � 4.09977

x �
10
3 .

V � 126.49 cm3
8.560 cm � 1.365 cm

3.785 cm � 6.980 cm

1�3, �1621�2, 02
1�1, 421�1, 42

1x � i2 1x � i2 1x � i2 1x � i21x2 � 12 1x2 � 12;
1x � 12 1x � 22 1x � i2 1x � i2.1x � 12 1x � 22 1x2 � 12;
1x � 12 1x � 22 1x � 32.1x � 12 1x � 22 1x � 32;
a3

5, 45b .

f 1x2 � x4 � 2x3 � 2x2

i, �i, 2, �1

1 � 23i1 � 23ix � �2

�i�
A

2
3x �

A
2
3

x �
3 ± 131i

10x �
�3 ± 131i

2

�5 � y � 5.�7 � x � 7,
�1000 � y � 1000.�30 � x � 30

�0.5 � y � 0.5�15 � x � 10,
x � 3;x � �2,

y � 0;x � 1;
�10 � y � 10�4.7 � x � 4.7

y � x2 � 6x � 5
x � ±23;

x � �1x � 1,
�3.1 � y � 3.1.�4.7 � x � 4.7 Chapter 5

Section 5.1, page 334

1. 12 3. 2 5. 0.09

7. 0.2 9. 0.125 11. 81

13. 16 15. 17.

19. 21. 23.

25. 27. 29.

31. 33. 7 35.

37. 39. 1 41.

43. 45. 47.

49. 51. 53.

55. 57. 59.

61. 63. 65. 1

67. 69.

71. 73.

75. 77.

79. 81.

83.

85.

87.

89. a. The square (or any even power) of a real
number is never negative. Graphically these
equations lie strictly above or on the x-axis.

b. whereas 

91. ; ; 

93. When n is an odd positive integer, if 
Therefore, is an increasing

function and thus is one-to-one. Therefore,
has an inverse if n is an odd positive

integer. The inverse is 

95. about 97. 49 mph19° F

g1x2 � 2
n

x.
f 1x2 � xn

f 1x2 � xnan 6 bn.
a 6 b,

B
m c

d
�
2
m

c
2
m

d
2
m

cd � 2
m

c2
m

d2
n
1
m

c �
m
2

n
c

2
6 1�822 � 223 �8 � �2,

2x � h
11x � h22 � 1 � 1x2 � 1

1
1x � h � 1 � 1x � 1

Ax2
5 � 9 B Ax1

5 � 3 B Ax1
5 � 3 B

Ax1
2 � 3 B Ax1

2 � 1 BAx1
3 � 3 B Ax1

3 � 2 B
21x � 4

x � 4
313 � 3

4

312
4x � y � 1x � y232

x � yx
7
6 � x

11
6

1
x

1
5y

2
5

4t
27
10

a
3
161a2 � b22 13ax

2
9
2 a

12
5

34b4
a

1
2

49b
5
2

c
42
5 d

10
3

x
9
214x � 2y22d5

21c

4 a4

b
1525

22 � 825225

�
3
4

13
21�8

162310.4261114

125A23 12 B1
64

1086 Answers to Selected Exercises



99.

a. b.
c. d.

101. a. g is the graph of f moved 3 units left
b. h is the graph of f moved 2 units down
c. k is the graph of f moved 3 units left, then 2

units down.

Section 5.2, page 343

1. Shift the graph of h vertically 5 units downward.

3. Stretch the graph of h vertically by a factor of 3.

5. Shift the graph of h horizontally 2 units to the left,
then vertically 5 units downward.

7. Shift the graph of h vertically 4 units upward.

9. Compress the graph of h vertically by a factor of 

11. Reflect the graph of h across the y-axis, then shift
horizontally 2 units to the right.

13. Reflect the graph of h across the y-axis, stretch 

horizontally by a factor of then stretch 

vertically by a factor of 4.

15.

17.

10

0

−5 5

g1x2 � 3
x
2

−5 5

0

10

f 1x2 � a5
2b

�x

1
0.15 � 6 2

3,

1
4.

x
1
7 6 x

1
5 6 x

1
3x

1
3 6 x

1
5 6 x

1
7

x
1
7 6 x

1
5 6 x

1
3x

1
3 6 x

1
5 6 x

1
7

1.5

−3 3

−1.5

19.

21.

23. and

25. and

27. and

29. and

31. Neither 33. Odd

35. When x is large, so 

37. 39.

41. 43.

45. The x-axis is a horizontal asymptote; local
maximum at (1.443,0.531).

47. No asymptotes; local minimum at (3, 0.0078).

49. No asymptotes; no extrema.

51. a. About 520 in 15 days; about 1559 in 25 days
b. in 29.3 days

53. a. 1980: 74.06; 2000: 76.34
b. 1930

55. a. 100,000 now; 83,527 in 2 months; 58,275 in 
6 months

b. No. The graph continues to decrease toward
zero.

57. a. The current population is 10, and in 5 years it
will be about 149.

b. After about 9.55 years.

59. a. Not entirely
b. The graph of appears to coincide with the

graph of g(x) on most calculator screens; when
the maximum error is at most

0.01.
c. Not at the right side of the viewing window;

Section 5.3, page 353

1. Annually: $1469.33; quarterly: $1485.95; monthly:
$1489.85; weekly: $1491.37

3. $585.83 5. $610.40 7. $639.76

f121x2

�2.4 � x � 2.4,

f81x2

1ex�h � e�x�h2 � 1ex � e�x2
h

51x�h22 � 5x2

h

1e�1 � e12 � 1e�3 � e32
2 � 8.84�4

ex � e�x � ex � 0 � ex.e�x � 0,

0 � y � 10�5 � x � 20

0 � y � 1�4 � x � 4

�10 � y � 10�4 � x � 4

0 � y � 1�3 � x � 3

f 1x2 : B; g1x2 : C; h1x2 : A; k1x2 : D

10

−1

−2 14

g1x2 � 2x�5
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9. $563.75 11. $582.02

13. About $3325.29 15. About $3359.59

17. About $6351.16 19. About $568.59

21. Fund C 23. $385.18

25. About $1,162,003.14 27. $4000

29. About 5.00% 31. About 5.92%

33. a. About 9 years; about 9 years; about 9 years
b. Doubling time is not dependent on the amount

invested, but on the rate at which it is invested.

35. About 9.9 years

37. a. About 12.6%
b. 12.6%; about 12.7%; about 12.7%

39. a. or
b. 3 c. No; yes

41. a. b. 115.38 million

43. a.
b. $7966 c. In the sixth year

45. About 256; about 654

47. a. 6.705 b. 11.036 c. 16.242

49. a. b. $0.86; $0.74
c. About 75 years

51. a.
b. About 11.892 mg; about 3.299 mg
c. About 325 days

53. About 5566 years old

Section 5.4, page 361

1. 4 3. 5.

7. 9. 11.

13. 15.

17. 19.

21. 23.

25. 27. 15 29. 31. 931

33. 35. 37. 39.

41. They are exactly the same.

43. Stretch the graph of g away from the x-axis by a
factor of 2. domain: all positive reals; range: all
reals

45. Shift the graph of g horizontally 4 units to the
right. domain: all range: all reals

47. Shift the graph of g horizontally 3 units to the left,
then shift it vertically 4 units downward. domain:
all range: all realsreals 7 �3;

reals 7 4;

1�q, 021�1, q 2x2x � y

1
2243

ln w �
2
rln 5.5527 �

12
7

ln 25.79 � 3.25log 3 � 0.4771

log 0.01 � �2ez�w � x2 � 2y

e�4.6052 � 0.01e1.0986 � 3102.8751 � 750

103 � 1000�2.5

f 1t2 � 20 A0.5
t

140 B
f 1x2 � 10.972x

E1x2 � 555011.03682x
g1x2 � 100.411.0142x

f 1x2 � 1813x�12f 1x2 � 613x2

49.

51.

53. and (vertical
asymptote at )

55. and

57. and

59. 0.5493 61.

63. a. b.

65. a. About: 17.67, 11.90, 9.01, 6.12, 4.19, 3.22, 2.25
b. The rule of thumb is that the number of years it

takes for your money to double at interest rate
r% is 72 divided by r.

67. a. 77 b. 66; 59

69. a. 9.9 days b. About 6986

71. gives an approximation with a maximum
error of 0.00001 when 

Section 5.5, page 369

1. 103 3. About 5. About 0.9030

7. About 9. About 

11. 13.

15. 17. 19.

21. 23. 25.

27. a. For all 
b. According to the fourth property of natural

logarithms on page 364, for every x 7 0.eln x � x

x 7 0

2
3 u �

1
6 v1

2 u � 2v2u � 5v

log 120xy23 ln 1e � 12ln 1x�72
log 1x � 32ln 1x2y32

�0.2219�0.1461

�3.63

�0.7 � x � 0.7.
n � 30

h � 2.2
ln 13 � h2 � ln 3

h

�0.2386

�6 � y � 30 � x � 20

�3 � y � 3�10 � x � 10

x � 1
�6 � y � 60 � x � 9.4

y

x

2 3

h(x) = −2 log x

1 5 64 8 97

−1

−2

1

2

y

x

2 3

f(x) = log(x − 3)

1 5 64 8 97

−1

−2

1

2
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29. False; the right side is not defined when 
but the left side is.

31. True by the Power Law

33. False; the graph of the left side differs from the
graph of the right side.

35. Answers may vary: and 

thus 

37. 39. 41. 2

43. Approximately 2.54 45. 20 decibels

47. Approximately 66 decibels 49. 100 times

51. a. �1.2553 b. �3.9518 c.

Section 5.5.A, page 376

1. 3.

5. 7.

9. 11.

13. 15. 17.

19. 21. 23.

25. 27. 6

29.

31.

33.

35.

37. 39.

41. 5 43. 3 45. 4 47.

49. 51. 53.

55. 57. 59.

61. 3.3219 63. 0.8271 65. 1.1115 67. 1.6199

ln 1e2 � 2e � 12log21x2ln a 1x � 122
x � 2 b

log4a 1
49c2blog215c2log 1x2 � 3x2

log 
x2y3

z6

b � 20b � 3

1
2

2x2 � y224310z�w � x2 � 2y

2�2 �
1
453 � 125102.8751 � 750

104 � 10,000log3a1
9b � �2

log7 5,764,801 � 8log r � 7k

log 23 10 �
1
3log 0.01 � �2

log x �
ln x

ln 10

A � 3, B � 2b � e

log 3
log 2

� log a3
2blog a3

2b � 0.1761

log 3
log 2

� 1.585

x 6 0, 69. Horizontal shift of units to the right, then 

compress horizontally by a factor of 

Domain: all real numbers

Range: all real numbers

71. Compress the graph vertically by a factor of 

then a horizontal translation of 1 unit to the right,
then a vertical translation of 7 units upward.
Domain: all real numbers
Range: all real numbers

73. True 75. True 77. False 79.

81. 83.

85.

hence 

87. only when so the statement
is false.

89.

Section 5.6, page 386

1. 3. 5. or 

7. or 9.

11.

13.

15.

17. 19.

21. 23. or 1

25. or x � ln 3 � 1.099x � ln 2 � 0.693

x � 0x �

2 lna 5
2.1b

ln 3
� 1.579

x �
1�ln 3.52

1.4 � �0.895x �
1ln 52

2 � 0.805

x �
ln 2 � ln 3

3 ln 2 � ln 3
� �0.1276

x �
ln 3 � 5 ln 5
ln 5 � 2 ln 3

� �1.825

x �
ln 3

ln 1.5
� 2.7095

x �
ln 5
ln 3

� 1.465�
1
2x � �2

�3x �
1
2x �

1
9x � 4

y

x

2

h(x) = x log x2

6

Hole at (0, 0)

(0.3679, −0.3195)

(−0.3679, 0.3195)

4−6 −2−4
−2

−4

2

4

6

x � 0.123,f 1x2 � g1x2
x � b32v.logbAb3 � 2v B ;

logbx �
1
2 logbv � 3 � logb2v � logbb

3 �

log10u � 2 log100ulogbu �
logau
logab

397398

7 1

1
3,

7 4
3

1
3.

4
3
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x 0 1 2 4

Not defined 0 0.5 1f 1x2 � log4x

x 1 216

0 3�1�2h1x2 � log6x

1
6

1
36

x 0 49

Not defined 1 4�2f 1x2 � 2 log7x

271
7

x 1 29

3 6 15�6h1x2 � 3 log21x � 32
�1�2.75



27.

29. or

31.

33. If then so 

35. 37. 39. 41.

43. 45. 47.

49. 51.

53. Approximately 3689 years old

55. Approximately 950.35 years ago

57. Approximately 444,000,000 years

59. Approximately 10.413 years

61. Approximately 9.853 days

63. Approximately 6.99%

65. a. Approximately 22.5 years
b. Approximately 22.1 years

67. $3197.05 69. 79.36 years

71. a. About 1.3601% b. In the year 2027

73. a. b.

75. a. There are 20 bacteria at the beginning and 2500
three hours later.

b.

77. a. At the outbreak: 200 people; after 3 weeks:
about 2718 people

b. In about 6.09 weeks

79. a.
b. �12.43 weeks

Section 5.7, page 396

1. Cubic, exponential, logistic

3. Exponential, quadratic, cubic

5. Exponential, logarithmic, quadratic, cubic

7. Quadratic, cubic 9. Quadratic, cubic

11. Ratios: 5.07, 5.06, 5.06, 5.08, 5.05; exponential is
appropriate

13. a. For large values of x the term is
close to zero so the quantity 
is slightly larger than 1, which means 

is always less than (but very 

close to) 442.1.

442.1
1 � 56.33e�0.0216x

11 � 56.33e�0.0216x2
56.33e�0.0216x

k � 0.229, c � 83.3

ln 2
ln 5

� 0.43

t � 0.182k � 21.459

x �
A

e � 1
e � 1x � ±210001

x � 5x �
9

1e � 12x �
�5 � 137

2

x � 3x � 6x � 5x � 9

u � veln u � eln v,ln u � ln v,

x � ln At � 2t2 � 1 B
x �

ln 3
ln 4

� 0.792x �
ln 2
ln 4

�
1
2

x � ln 3 � 1.099 b.

15. a.

b.

c.

17. appears the most linear. Power model

19. and are both nearly linear.
Power or logarithmic model

21. a.

92,000

0 8

105,000

5 1ln x, y2 65 1ln x, ln y2 6
5 1ln x, ln y2 6

0

0 20

1330

0

0 20

10

0

0 20

2

0

−50 510

500
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b.

c.

d. The logarithmic model predicts continued but
slowing growth while the logistic predicts a cap
of about 102,520. Therefore, the logarithmic
model seems the better one for the long haul.

23. a.

b.

c. Exponential.

0

0 110

175

y � 152.2210.97x2

0
0 110

5

0
0 110

80

92,000

0 8

105,000

f(x)

g(x)

25. a.

b.

c.

d. 2325.01, 2419.97
e. The quadratic model will give an ever

increasing number of kids, and the rate of
increase will continue to increase. Before too
terribly long the number of kids home schooled
by the quadratic model will exceed the number
of kids in the world. The logistic model, on the
other hand, gives us a maximum that can never
be exceeded.

27. a.
b. 77.4 years
c. 2012

29. a.

0
0 13

85

y � 17.5945 � 13.4239 ln x

y �
6413.2

1 � 107.2e�0.1815x

y � 7.05x2 � 78.34x � 398.73

0
0 22

1800
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c.-d. 25.

27. About 3.75 grams

29. 31.

33. 35.

37. 39. Undefined

41. Reflection across the y-axis, horizontal translation
of 4 units to the right; Domain: all real numbers

Range: all real numbers

43. Vertical stretch by a factor of 3, vertical translation
of 5 units downward; Domain: all positive real
numbers; Range: all real numbers

45. 3 47. 49. 51. 53. (c)

55. The domain consists of those values of x for which 

is positive; 

57. 59. 2 61. (c)

63. 65.

67. 69.

71. 73. About 1.64 mg

75. Approximately 12 years

77. $452.89 79. 7.6

81. a.

b.

c. The points (x, ln (y)) are approximately linear.
d.
e.

Chapter 5 can do calculus, page 411

1.

5

−5 5

−1

y � �x � 1;

10.27° F
y � 22.4210.967x2

0

�5 50

30

11° F

x � 101

x � 2x � e
1u�c2

d

x � �
1
2x �

3 ± 257
4

dw � uv

1�q, 02 ´ 11, q 2x
x � 1

ln a9y
x2 b2 ln x3

4

64;

et � rs

e7.118 � 1234log 756 � 2.8785

ln 1u � v2 � r2 � 1ln 756 � 6.628

f1x2 � 56,00011.0652x

1092 Answers to Selected Exercises

Predicted Worldwide
Worldwide number shipments
shipments shipments ratio

Year (thousands) (thousands) (current to 
previous)

1985 14.7 12.2
1.03

1986 15.1 14.1
1.11

1987 16.7 16.4
1.08

1988 18.1 19
1.18

1989 21.3 22
1.11

1990 23.7 25.5
1.14

1991 27 29.6
1.2

1992 32.4 34.4
1.20

1993 38.9 39.9
1.23

1994 47.9 46.2
1.26

1995 60.2 53.6
1.18

1996 70.9 62.2
1.19

1997 84.3 72.2

e. An exponential model may not be appropriate.

Chapter 5 Review, page 403

1. 3. 5. 7.

9.

11. Reflection across the x-axis, stretch vertically by a 
factor of 2

13. Reflection across the y-axis, stretch horizontally by
a factor of 2

15. Vertical translation of 4 units upward

17. and

19. a. 62,000 33,708
63,000 35,730
64,000 37,874

b.
c. Compunote is the best choice
d. Calcuplay will be paying more this time, but

your total earnings will be more from
Compunote

21. a. About $1341.68 b. $541.68

23. a. About $2357.90
b. After about 32.65 years

S � 30,00011.062t�1S � 60,000 � 10001t � 12

0 � y � 2�3 � x � 3

2
22x � 2h � 1 � 22x � 1

c2d4

2u
1
2 � v

1
2a

10
3 b

42
5c2



2.

3.

4.

5.

6.

10

−1

−5 5

y � e1x � 12 � e � 2

10

−1

−5 5

y � x � 3

10

−1

−5 5

y � �e21x � 22 � e2

5

−1

−5 5

y � �e�21x � 22 � e�2

5

−5 5

−1

y � �e�11x � 12 � e�1 7.

8.

9.

10.

11.

10

−1

−5 5

y � 19 ln 32 1x � 22 � 9

10

−1

−5 5

y � 13 ln 32 1x � 12 � 3

10

−1

−5 5

y � 1ln 32x � 1

10

−1

−5 5

y � e�21x � 22 � e�2 � 2

10

−1

−5 5

y � e21x � 22 � e2 � 2
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12.

Chapter 6

Section 6.1, page 419

1. 3.

5. 7.

9.

11.

13.

15. 17.

19. 21.

23. 25.

27. 29. 31.

33. False;

35. True;

37. False;

39.
0.0175 0.9998
0.00175 0.999998
0.000175 0.99999998
0.0000175 0.9999999998

Since no triangle has an angle
of the right triangle definitions do not apply.0°,

cos 0° � 1sin 0° � 0;

0.0001°
0.01°
0.1°
1°

cos usin uu

tan 75° � 3.7321 � tan 30° � tan 45° � 1.5774

1cos 28°22 � 0.7796 � 1 � 1sin 28°22 � 0.7796

sin 50° � 0.7660 � 2 sin 25° � 0.8452

16
7

3
8

1
2

u � 60°u � 45°

u � 30°sec 47° � 1.4663

tan 6° � 0.1051sin 32° � 0.5299

cot u �
d
h

˛, sec u �
m
d

˛, csc u �
m
h

sin u �
h
m ˛, cos u �

d
m ˛, tan u �

h
d

cot u �
2
23

˛, sec u �
27
2 ˛, csc u �

A
7
3

sin u �
A

3
7 ˛, cos u �

2
27

˛, tan u �
23
2

cot u �
3
22

˛, sec u �
211

3 ˛, csc u �
A

11
2

sin u �
A

2
11, cos u �

3
211

˛, tan u �
22
3

4°12¿27–23°9¿36–
15.4125°47.26°

5

−1

−5 5

y � a1
9 ln 3b1x � 22 �

1
9

41. The area of the triangle is The altitude h

forms a right triangle with side b as the
hypotenuse and side h opposite so 

Thus, the area of the 

triangle is 

43. 45.

Section 6.2, page 429

1. 3. 5.

7. 9. 11.

13. 15.

17.

19.

21.

23.

25. About 27. About 

29.

31.

33.

35.

37. a.
b.

39. 460.2 ft 41. 8598.3 ft 43. No

45. Approximately 263.44 feet

47. 351.1 m 49. 10.1 ft 51. 1.6 mi

53. a. 56.7 ft b. 9.7 ft

55. 173.2 mi 57. 52.5 mph 59. 449.1 ft

Section 6.3, page 441

1. 3.

5. 7.

9.

11. 13. 15. 17.

19. 21. 23. 25. �
p

15
p

30972°�75°

4°135°�18°36°

288°, 8p5  radians

240°, 4p3  radians10°, p18 radians

20°, p9  radians40°, 2p9  radians

�6.21 feet.
�23.18 feet.

�A � 60.8°, �C � 29.2°

�A � 48.2°, �C � 41.8°

�A � 44.4°, �C � 45.6°

�A � 33.7°, �C � 56.3°

48.19°48.59°

c � 3.5 cos 72° � 1.1
a � 3.5 sin 72° � 3.3,�C � 18°,

b �
5

cos 65° � 11.8a � 5 tan 65° � 10.7,�C � 25°,

c �
6

tan 14° � 24.1b �
6

sin 14° � 24.8,�C � 76°,

c � 10 sin 50° � 7.7
a � 10 cos 50° � 6.4,�A � 40°,

a �
1023

3c �
423

3

h � 5023h � 300h �
2522

2

c � 8.4c � 36c � 36

A � 33.246A � 4320.123

1
2 a � h �

1
2 a1b sin u2 �

1
2 ab sin u.

sin u �
b
h

S h � b sin u.

u,

1
2 a � h.
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27. 29. 31. 33.

35. 37. 39. 41.

43.

45.

47. 49. 51. 53.

55. 57. 59. 61.

63. 65. 67.

69. 71. 73. 75.

77. 3 radians 

79. a. radians per min

b. in. per min or ft per min

81. a. radians per sec
b. 6.69 mph

83. 15.92 ft 85. approximately 8.6 miles

Section 6.4, page 452

1.

3.

5.

7.

9.

11.

13.

15. a.

b. Since the sine and cosine are both negative, the
terminal side is in the third quadrant.

17. a.

b. Since the sine and cosine are both positive, the
terminal side is in the first quadrant.

tana�14p
9 b � 5.6713

sina�14p
9 b � 0.9848, cosa�14p

9 b � 0.1736,

tan 
7p
5 � 3.0777

sin 
7p
5 � �0.9511, cos 

7p
5 � �0.3090,

sin 16p � 0; cos 16p � 1

sin 
13p

6 �
1
2 ˛; cos 

13p
6 �

23
2

sin t � �
4
5, cos t � �

3
5, tan t �

4
3

sin t �
1
25

, cos t � �
2
25

, tan t � �
1
2

sin t �
�10
2103

, cos t �
23
2103

, tan t �
�10
23

sin t �
�6
261

, cos t �
�5
261

, tan t �
6
5

sin t �
7
253

, cos t �
2
253

, tan t �
7
2

5p

200p
3800p

400p

1� 171.9°2
2pk42.5p4p7p

942.48 mi3490.66 mi8.75

5200050
9

17
4

8p cm41p
6

7p
6

4p
3

11p
6 , 23p

6 , �13p
6 , �25p

6

9p
4 , 17p

4 , �7p
4 , �15p

4

7 � 2p3p
5

3p
4

5p
3

31p
6�

5p
4

3p
4

5p
12 19. a.

b. Since the sine and cosine are both negative, the
terminal side is in the third quadrant.

21. a. is
undefined

b. Since the sine is and the cosine is 0, the
terminal side is on the negative y-axis.

23. a.

b. Since the sine is positive and the cosine is
negative, the terminal side is in the second
quadrant.

25.

27.

29.

x

y

7
π

7
π

reference angle =

–

x

y

4
π

1.75π

reference angle =

x

y

6
π

6
17π

reference angle =

tan1�172 � �3.4939
cos1�172 � �0.2752,sin1�172 � 0.9614,

�1

tan 9.5pcos 9.5p � 0,sin 9.5p � �1,

tan 
10p

3 � 1.7321

cos 
10p

3 � �0.5,sin 
10p

3 � �0.8660,
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31.

33.

35.

is undefined.

37.

39.

41.

43.

45. and is undefined

47.

49. 51. 53.

55.

57.

59.

61.

63. Domain: all real numbers with multiple of 
Range: 

65. Domain: all real numbers with multiple of 
Range: all real numbers

Section 6.5, page 460

1. 3. 1 5. 1 7. csc2 tcos t

pu � a

1�q, �12 ´ 11, q 2
pu � a

1r cos t, r sin t2
tan t � �3cos t �

1
210

,sin t � �
3
210

,

sin t �
1
25

, cos t � �
2
25

, tan t � �
1
2

sin t � �
5
234

, cos t �
3
234

, tan t � �
5
3

�23
2

22
4  A1 � 23 B�22

2

sin u � 0, cos u � 1, and tan u � 0

tan usin u � 1, cos u � 0,

� �
23
3

sin a5p
6 b �

1
2, cos a5p

6 b � �
23
2 , tan a5p

6 b �  
�1
23

tan a�15p
4 b �  1

sin a�15p
4 b �

22
2 , cosa�15p

4 b �
22
2 , 

tan a�19p
3 b �  �23

sin a�19p
3 b � �

23
2 , cosa�19p

3 b �
1
2, 

tan a�23p
6 b �

1
23

�  
23
3

sin a�23p
6 b �

1
2, cosa�23p

6 b �
23
2 , 

sin a�3p
2 b � 1, cosa�3p

2 b � 0, tan a�3p
2 b �  

sinu
cosu

tan a11p
4 b �  �1

sin a11p
4 b �

22
2  , cosa11p

4 b � �
22
2 , 

sin a7p
3 b �

23
2  , cosa7p

3 b �
1
2, tan a7p

3 b �  23
9.

11.

13.

15. 17.

19. 21. 23.

25.

27. even 29. even 31. odd

33. 35. 37.

39. 41. 43.

45. 47. 49.

51. 53.

55. possible 57. not possible 59. not possible

61.

Chapter 6 Review, page 464

1. 3. (d) 5. 7.

9. 11.

13. 15. 225.9 ft

17. The boat has moved about 95.3 feet.

19. 21. 23. 25.

27. 2 revolutions per minute

29. 31. 0 33. 35.

37. 39. 41.

43. quadrants 2 and 3 45.

47. 49. e

51. 53. 55. b�1�˛

3
5

sin t
cos t
cos t
sin t

� tan2 t

9
4

23
2�2

23
3

�23�˛

1
2

3
5

16p
3�˛

3p
4

p

5255°

C � 34°, b � 13.3, c � 7.4

C � 50°, a � 6.4, c � 7.74
7

265
7

4
265

41.115°

cot t � cot1t ± p2
sec t � sec1t ± 2p2;csc t � csc1t ± 2p2;

32 � 22
2

32 � 22
2

�
221

5�
2
5�

221
5

�
3
4

3
4�

3
5

�
3
5sin t �

23
2sin t � �

23
2

0 sin t cos t 02sin t

cos tcos t � 21
4

cos tsin2 t � cos2 t

sec t � 1.0131cot t � 6.1668,
tan t � 0.1622,cos t � 0.9871,sin t � 0.1601,

csc t � 1.0372cot t � 0.2755,
sin t � 0.9641,cos t � 0.2656,sec t � 3.7646,

csc t � 3.0760sec t � 1.0574,
cot t � 2.9089,tan t � 0.3438,cos t � 0.9457,
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Chapter 6 can do calculus, page 471

1.

2.

3.

p

144

p

12

3 sin t � sin ap2 � tb

p

144

p

12

f 1t2 � sin t � 2 cos t

p

144

p

12

f 1t2 � sin t cos t
4.

5. a.

b. radians; meters and 

meters

6. approximately 13.23 feet from the statue

7. a.

b. approximately $117,321

Chapter 7

Section 7.1, page 483

1.

3.

5.

−π ≤ x ≤ 4π,
−2 ≤ y ≤ 2

−π ≤ x ≤ 3π,
−4 ≤ y ≤ 4

−π ≤ x ≤
−2 ≤ y ≤ 2

,13π
2

road cost � 10,000˛a10 �
1

tan tb � 20,000˛a 1
sin tb

width � 1022

height � 522p

4

200 sin t cos t

p

144

p

12

f 1t2 � 2 cos t �
1

1 � sin t
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max of 0.5
when x � 0.7854

max of 1.1375
when x � 0.2618

max of 1.1387
when x � 0.28362max of 0.5

when x � 0.78538

max of 2.2321
when x � 0.5236

max of 2.236
when x � 0.45815

max of 3.1566
when x � 1.309

max of 3.1622
when x � 1.2435



7. 9. 1

11. 13. 1

15.

17.

and 

19. all values on the interval except 

21. or where n is any 

integer

23. or where n is any 

integer

25. or where n is any 

integer

27. or where n is any 

integer

29. or where n is any 

integer

31. or where n is any 

integer

33. where n is any integer

35. Reflect the graph of f across the horizontal axis.
domain: all real numbers; range: 

37. Shift the graph of f vertically 5 units upward.
domain: all real numbers except odd multiples of 

range: all real numbers

39. Stretch the graph of f away from the horizontal
axis by a factor of 3. domain: all real numbers;
range: 

41. Stretch the graph of f away from the horizontal
axis by a factor of 3, then shift the resulting graph
vertically 2 units upward. domain: all real
numbers; range: 

43. Shift the graph of f vertically 3 units upward.
domain: all real numbers; range: 2 � g 1t2 � 4

�1 � g 1t2 � 5

�3 � g 1t2 � 3

p

2  ;

�1 � g 1t2 � 1

t �
p

3 � np,

t �
5p
4 � 2np,t �

3p
4 � 2np

t �
5p
6 � 2np,t �

p

6 � 2np

t �
11p

6 � 2np,t �
p

6 � 2np

t �
5p
3 � 2np,t �

4p
3 � 2np

t �
4p
3 � 2np,t �

2p
3 � 2np

t �
3p
4 � 2np,t �

p

4 � 2np

3p
23p, 2p 4

5p
4 6 t 6 3p

2

p

4 6 t 6 p2  ,�
3p
4 6 t 6 �

p

2  ,�
7p
4 6 t 6 �

3p
2  ,

�
p

2 � t �
p

2

�
3p
2  , �p2  , p2  , 3p2

�
3p
2 ˛, p2

45.

47.

49. d 51. e 53. f

55. a. odd; 
b. even; 
c. odd; 
d. even; 
e. odd; 

57. 1.4 59. 11

61.

a. 0 b. 0
c. 15.4 yards d.
e. When d is undefined. The beam is

parallel to the wall at this time.

Section 7.2, page 490

1. The graph of is the graph of
stretched vertically by a factor of 3 and

shifted down 2 units.

3. The graph of is the graph of 
shifted 4 units up.

5. The graph of is the graph of 

compressed vertically by a factor of 

and shifted up 1 unit.

1
2g 1t2 � sec t

p1t2 �
1
2 sec t � 1

f 1t2 � csc t
m1t2 � csc1 t2 � 4

g 1t2 � sec t
s1t2 � 3 sec t � 2

t � 0.25,
�3.6 yards

40

−2 2

−40

tan1�t2 � �tan t
sin1�t2 � �sin t

tan1�t2 � �tan t
cos1�t2 � cos t

sin1�t2 � �sin t

1

−2π 2π

−1

7

−7

−2π 2π
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7. The graph of is the graph of
reflected across the vertical axis, and

shifted 8 units down.

9. The graph of is the graph of
stretched vertically by a factor of 

11. 13.

15. 17.

19. D 21. B 23. A 25. A

27. B 29. A 31. A 33. B

35.

37.

39. Look at the graph of on page 488. If you
draw in the line it will pass through

and and obviously will not

intersect the graph of when 

But it will intersect each part of the 

graph that lies above the horizontal axis, to the 

right of it will also intersect those parts 

that lie below the horizontal axis, to the left of 

The first coordinate of each of these infinitely 

many intersection points will be a solution of

Section 7.3, page 498

1. amplitude: 1; period: 

3. amplitude: 1; period: 

5. amplitude: 4; period: 

7. amplitude: none; period: p2

2p

2p
3

2p

sec t � t.

�
p

2 .

t �
p

2 ;

�
p

2 � t �
p

2 .

y � sec t

Qp2 , p2 R,Q�p2 , �p2 R
y � t,

y � sec t

4

−2π 2π

−4

7

−1

π
2− π

2

g 1t2 � �cot1�t2g 1t2 � cscQt �
p

2 R � 5

g1t2 � �
1
4 sec tg 1t2 � 3 sec1t � 12
p.f 1t2 � csc t

v1t2 � p csc t

g 1t2 � sec t
q1t2 � sec1�t2 � 8 9. amplitude: 0.3; period: 

11. amplitude: period: 

13. amplitude: 5; period: 

15. amplitude: none; period: 4

17. a. 2 b.

c. d.

19. g is the graph of f horizontally compressed by a 

factor of amplitude: 1; period: 

21. g is the graph of f horizontally compressed by a 

factor of amplitude: 1; period: 

23. g is the graph of f reflected across the y-axis;
amplitude: none; period: 

25. g is the graph of f horizontally compressed by a 

factor of amplitude: 1; period: 

27. g is the graph of f vertically stretched by a factor
of 3; amplitude: 3; period: 

29. g is the graph of f vertically compressed by a 

factor of amplitude: none; period: 

31. g is the graph of f vertically stretched by a factor 

of 5 and horizontally compressed by a factor of 

amplitude: 5; period: 

33. g is the graph of f reflected across the x-axis,
vertically stretched by a factor of 2, and
horizontally stretched by a factor of 5; amplitude:
none; period: 

35. g is the graph of f vertically compressed by a 

factor of and horizontally compressed by a 

factor of amplitude: period: 

37. g is the graph of f vertically compressed by a 

factor of and horizontally compressed by a 

factor of amplitude: none; period: 1

39. 5

0 4π

−5

1
p ˛;

1
3

p

4 ˛.2
5 ˛;1

8 ˛;

2
5

5p.

p.

1
2 ˛;

p.1
3 ˛;

2p.

5p
4 ˛.5

8 ˛;

p.

p

4 ˛.1
8 ˛;

2p
5 ˛.1

5 ˛;

t � 1t � 0 or 2

t �
1
2 or 3

2

20p
17

2p
3

1
2 ˛;

6p
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41.

43.

45. d 47. b 49. f

51. 53.

55. 57.

59.

61. local maximum of 1 at and local 

minimum of at 

63. there is a local maximum of at local 

minimum of at 65.

Section 7.4, page 508

1. amplitude: 1; period: phase shift: vertical
shift: 0

3. amplitude: 5; period: phase shift: 0; vertical
shift: 0

5. amplitude: 1; period: phase shift: vertical
shift: 

7. amplitude: 6; period: phase shift: vertical 

shift: 0

9. amplitude: 4; period: phase shift: vertical 

shift: 1

p

18  ;2p
3  ;

�
1

3p  ;2
3  ;

�4
p;2p;

p;

�1;2p;

1
900,000t � � 

3p
2  .�1

t � p;
23
2

t �
p

3  .�1

t �
2p
3  ;t � 0

f 1t2 � �5 sin15t2
f 1t2 � 2 sin 4tf 1t2 �

3
2 sin 

pt
2

f 1t2 � 1.8 sin 
4t
3f 1t2 � 2 sin 

t
2

4

0 1

−4

12

−12

π
6− π

6

11. amplitude: 7; period: phase shift: 

vertical shift: 0

13. amplitude: 3; period: phase shift: vertical 

shift: 0

15. amplitude: 97; period: phase shift: 

vertical shift: 0

17. amplitude: 1; period: 1; phase shift: 0; vertical
shift: 7

19. amplitude: 3; period: 6; phase shift: vertical 

shift: 5

21.

23. or 

25. or

27. or 

29. or 

31. a.

b.

33. a. b.

35. a. b.

37. a.

b.

39. a.

b. f 1t2 � 2 cosat �
p

4 b � 6

f 1t2 � �2 sinat �
3p
4 b � 6

f 1t2 � �4 cosa2
3  t �

p

2 b � 1

f 1t2 � �4 sin 
2
3  t � 1

g 1t2 �
1
2 cosa8t �

p

2 bf 1t2 �
1
2 sin 8t

g 1t2 � �cosa2t �
p

2 bf 1t2 � �sin 2t

g 1t2 � �12 cos 10t

f 1t2 � 12 sina10t �
p

2 b
f 1t2 �

5
2 sina10p

9  t �
2p
9 b

f 1t2 �
5
2 sin 

10p
9  1t � 0.22 � 0

f 1t2 � 6 sina6
5  tb � 1f 1t2 � 6 sin 

6
5  1t � 02 � 1

f 1t2 � 0.5 sin10.8pt � 1.2p2 � 0.6
f 1t2 � 0.5 sin 0.8p1t � 1.52 � 0.6

f 1t2 �
2
3 sina2

3  t �
4p
9 b � 2

f 1t2 �
2
3 sin 

2
3  at �

2p
3 b � 2

f 1t2 � 3 sin 8at �
p

5 b or f 1t2 � 3 sina8t �
8p
5 b

3
p  ;

�
5

14  ;p

7  ;

5p
8  ;p;

� 

1
49  ;2p

7  ;
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41.

43.

45.

47. 3

0 2π

−1

1

3

−1

−2

−3

2ππ 3π
22

π

2
π

2

h(t) = 3 sin  2t +( )
y

x

49. Local maximum at local 

minimum at 

51. Local maxima at 

local minima at 

53. The graph of is the same as
the graph of a horizontal line
intercepting the y-axis at 1.

55. Not an identity 57. Possibly an identity

59.

61.

63. All waves in the graph of g are of equal height,
which is not the case with the graph of f. It cannot
be constructed from a sine curve through
translations, stretches, or contractions.

Section 7.4A, page 515

1.

3.

5.

7.

9.

11.

13.

15.

17. To the left of the y-axis, the graph lies above the 
t-axis, which is a horizontal asymptote of the
graph. To the right of the y-axis, the graph makes
waves of amplitude 1, of shorter and shorter
period.
Window: and 

19. The graph is symmetric with respect to the y-axis
and consists of waves along the t-axis, whose
amplitude slowly increases as you move farther
from the origin in either direction.

21. There is a hole at point (0, 1). The graph is
symmetric with respect to the y-axis and consists
of waves along the t-axis whose amplitude rapidly
decreases as you move farther from the origin in
either direction.

23. The function is periodic with period The 
graph lies on or below the t-axis because the
logarithmic function is negative for numbers

p.

Window: �30 � t � 30 and �0.3 � y � 1

Window: �30 � t � 30 and �6 � y � 6

�2 � y � 2�3 � t � 3.2

0 � t � 10 and �6 � y � 10 1one period2
0 � t � 0.04 and �7 � y � 7 1one period2
0 � t �

p

50 and �2 � y � 2 1one period2
�10 � t � 10 and �10 � y � 10

0 � t � 2p and �5 � y � 5 1one period2
f 1t2 � 5.1164 sin 13t � 0.74422
f 1t2 � 5.3852 sin 14t � 1.19032
f 1t2 � 2.2361 sin 1t � 1.10722

A � 5.3852, b � 1, c � �1.1903

A � 3.8332, b � 4, c � �1.4572

f 1x2 � 1,
f 1t2 � sin2 t � cos2 t

t �
11p

6 � 5.7596t �
7p
6 � 3.6652,

t �
p

2 � 1.5708,t �
3p
2 � 4.7124;

t �
5p
6 � 2.6180,t �

p

6 � 0.5236,

t �
11p

6 � 5.7596

t �
5p
6 � 2.6180;
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−1

−3

3

y

x

−π−2π 2ππ

1

−1

y

x

−π−2π 2ππ

5910aans_1098-1113  6/29/06  5:08 PM  Page 1101



between 0 and 1 and is always between 0
and 1. The graph has vertical asymptotes when 

at these 

points and ln 0 is not defined).
and (four

periods)

Chapter 7 Review, page 517

1. (c)

3.

5. where n is an integer

7. where n is an integer

9. The graph of g is the graph of f reflected across
the horizontal axis and compressed horizontally 

by a factor of domain: all real numbers except 

where n is an integer; range: all real 

numbers

11.

13.

15. A 17. C

6

−2π 2π

−1

4

−2π 2π

−4

t �
p

4 � n p2 ,

1
2 ˛.

�
p

3 � np,

0 � n2p,

�3 � y � 1Window: �2p � t � 2p

1cos t � 0± 7p
2 , . . .± 5p

2 ,± 3p
2 ,t � ± p2 ,

0 cos t 0 19.

21.

23. even

25.

27.

29. 400 31. C

33. 35.

37.

39. Not an identity 41. Possibly an identity

2

−3π 6π

−2

2 cosa5t
2 bf 1t2 � 8 sina2pt � 28p

5 b

4

−2π 2π

−4

8

−2π 2π

−8

6

−2π 2π

−2
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43.

45.

Chapter 7 can do calculus, page 521

1.

2.

3.

4.

5.

6. 7.

Chapter 8

Section 8.1, page 528

1. or 

3. or or 
or or or 

5. or or 
or 

7. or 

9. or 

11. or 

13. a. The graph of on the interval from 0 

to shows that only when 

Since sin x has period all other solutions are
obtained by adding or subtracting integer 

multiples of from that is,

−2

0 2π

2

f(x) = sin x

p

2 � 212p2 � �
7p
2 , p2 � 312p2 � �

11p
2 , etc.

p

2 � 312p2 �
13p

2 , etc., and p2 � 2p � �
3p
2 ,

p

2 � 2p �
5p
2 , p2 � 212p2 �

9p
2 ,

p

2 ,2p

2p,

x �
p

2 .sin x � 12p

f 1x2 � sin x

5.6766 � 2kpx � 0.5166 � 2kp

3.8212 � 2kpx � 2.4620 � 2kp

5.0671 � 2kpx � 1.2161 � 2kp

4.5453 � 2kp
2.8867 � 2kp1.8256 � 2kpx � 0.1671 � 2kp

4.7124 � 2kp2.6457 � 2kp1.8877 � 2kp
1.5708 � 2kp1.2538 � 2kpx � 0.4959 � 2kp

1.6868 � kpx � 0.5275 � kp

ex; �q � x � q1
x  ; 0 � x � 2

cos x; �q � x � q

� 

1
4 � x �

11
32

�3 � 6x � 12x2 � 24x3 � 48x4 � . . . . ;

� 

9
16 � x �

5
8�2 � 2x � 2x2 � 2x3 � 2x4 � . . . . ;

� 

6
16 � x �

5
16

3 � 6x � 12x2 � 24x3 � 48x4 � . . . . ;

� 

1
6 � x �

1
62 � 6x � 18x2 � 54x3 � 162x4 � . . . . ;

0 � t �
p

50 and �5 � y � 5 1one period2
f 1t2 � 10.5588 sin 14t � 0.45802 b. Similarly, the graph shows that only 

when so that all solutions are obtained 

by adding or subtracting integer multiples of 

from 

15. or 3.0223 17. or 4.5150

19. 21.

23.

25.

27. 29. 31.

33. and have no solutions when
or 

Section 8.2, page 536

1. 3. 5. 0 7.

9. 11. 13. 15. 0.3576

17. 19. 0.7168 21. 23. 2.2168

25.

27. 29. 31. 33.

35. 37. 39. 41.

43.

45.

47. y

x

f(x) = cos−1 (x + 1)

−2 −1

π

tan1sin�1 v2 �
v

21 � v2
 1�1 6 v 6 12

cos1sin�1 v2 � 21 � v2 1�1 � v � 12
5

12
4
5

4
5

p

6

p

3�
p

3
5p
6

p

2

cos u �
1
2; tan u � �23

�0.8584�1.2728

2p
3�

p

3�
p

4

p

6�
p

4
p

2

k 6 �1.k 7 1
cos x � kSin x � k

a � 30°a � 65.38°u � 120°, 240°

u � 60°, 120°, 240°, 300°

u � 210°, 270°, 330°

u � 114.83°, 245.17°u � 82.83°, 262.83°

x � 1.3734x � 0.1193

3p
2 � 212p2 � �

5p
2 , 3p2 � 312p2 � �

9p
2 , etc.

3p
2 � 312p2 �

15p
2 , etc., and 3p2 � 2p � �

p

2 ,

3p
2 � 2p �

7p
2 , 3p2 � 212p2 �

11p
2 ,

3p
2 :2p

x �
3p
2 ,

sin x � �1
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49.

51. a. b.

53.

The graph of is one-to-one and has an
inverse.

55. a. Let with Then
and Let
Then and

b. Let with Then 

and 
Let Then and

57. a. b.

Section 8.3, page 545

1. or 3. x � �
p

3 � kp2p
3 � 2kpx �

p

3 � 2kp

x � 9.13 feetu � tan�1a4
xb � tan�1a2

xb
tan1tan�1 v2 � tan u � v.

tan u � v,u � tan�1 v.
tan�11tan u2 � tan�1 w � u.u � tan�1 w,

�
p

2 � u �
p

2 .tan u � w

cos1cos�1 v2 � cos u � v.
cos u � v,u � cos�1 v.

cos�11cos u2 � cos�1 w � u.u � cos�1 w,
0 � u � p.cos u � w

π
2

−5

5

− π
2

y � csc�1 x

y � csc x

5

π
2

−5

− π
2

y � csc x

�9.2°u � sin�1a40
x b

y

x

−2π 2π−π π

−2π
3

π
3

2π
3

5. 7.

9. 11.

13.

15. 17.

19. 21.

23. 25.

27. 29.

31. 33.

35.

37. 39.

41.

43.

45.

47.

49.

51. 53.

55.

57. not possible 59. or 61. No solution

63.

Section 8.4, page 555

1.

3.

5. 7.

9.

11. a.

b. Roughly periodic;
y � 1.358 sin10.4778x � 0.5692 � 7.636

0

10

200

d1t2 � 10 sinapt
2 b

h1t2 � 6 cosapt
2 bh1t2 � 6 sinapt

2 b
f 1t2 � cos 20pt � 216 � sin2120pt2
f 1t2 � 125 sin apt

5 b

5p
6n �

2kp
nx �

p

6n �
2kp

n ,

74.0°16.0°

t �
tan�1 4

6 �
kp
6 � 1.2682, 0.7446, 0.2210, 1.7918

x �
p

4 , 5p4x �
p

4 , 5p4

x �
p

4 , 3p4 , 5p4 , 7p4

x � 1.0591, 2.8679, 4.2007, 6.0095

x � 0.3649, 1.2059, 3.5065, 4.3475

x � 0.8213, 2.3203

x � 0.8481, 1.7682, 2.2935, 4.9098

x �
p

6 , p2 , 5p6 , 3p2x �
p

4 , p2 , 5p4 , 3p2

x �
3p
4 , 7p4 , 2.1588, 5.3004

x � 3.4814, 5.9433x � 2.2143 � 2kp

x � ±0.7381 �
2kp

3x � �
p

9 �
kp
3

x � ± p2 � 4kpx � �
p

6 � 2kp or 2p3 � kp

x � ±1.9577 � 2kpx � 0.4101 � kp

x � �0.2327 � kpx � ±2.1700 � 2kp

x � �0.4836 � 2kp or 3.6252 � 2kp

14.18°27.57°

x � �
p

6 � 2kp or 7p6 � 2kpx � ± 5p
6 � 2kp
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c. No, the unemployment total will only be
predicted in the range 6.2781 to 8.9944.

13. a.
b. About 15.7, which is somewhat reasonable but

may not be the best model to use.
c.

The model is not a good fit in the second year.
d.

e. About 12.2
This model provides a much better fit.

Section 8.4.A, page 562

1.

3.

y � sin1440 � 2px2

1

0 0.01

−1

y � sin1294 � 2px2

1

0 0.01

−1

25

5

−1

−1

y � 2.1663 sin10.513x � 1.0512 � 1.71

25

5

−1

−1

y � 2.9138 sin10.400x � 1.8092 � 2.376

5. (graph of C-major chord: )

Chapter 8 Review, page 564

1. , where k is an integer.

3. or or
or

5. or or 

7.

In the first 2 seconds the 

solutions are 0.1801, 1.2273.

9. 11. 13. 0 15. 2 17.

19.

21. 23. or

25. or

27. or

29. or

31.

33. or 35.

37. or 2.2457 � 2kpx � 0.8959 � 2kp

x � ± p3 � kp3p
4 � kpx �

p

4 � kp

x � tan�1a5
2b � kp � 1.19029 � kp

x � 3.78509 � 2kpx � 2.49809 � 2kp

x �
5p
9 �

2kp
3x �

4p
9 �

2kp
3

x �
11p

6 � 2kpx �
p

6 � 2kp

�255°�75°�
2

515

0 4

π
2

− π
2

3p
4

p

3
p

3

t �

tan�1a3
5b

3 �
kp
3 .

3t � tan�1a3
5b � kp,tan 3t �

3
5,

4.7124 � 2kp2.6180 � 2kpx � 0.5236 � 2kp

5.2463 � 2kp4.1784 � 2kp
2.2997 � 2kpx � 0.8419 � 2kp

x � kp

y � sin1262 � 2px2 � sin1330 � 2px2 � sin1392 � 2px2

4

−4

0 0.03

C � E � G
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39. or

41. a. 19 feet
b. 3 ft below water
c. 20 seconds

d. Answers may vary: 

e. Answers may vary: 

f. and seconds,
where k is any integer.

43. Using approximate values,

Chapter 8 can do calculus, page 569

1. 1 2. 0 3. does not exist

4. 1 5. 1 6. 1

7. does not exist 8. does not exist

9. 1 10. 1 11. 0.75 12.

13. does not exist 14. 3 15. does not exist

16. does not exist 17. 6 18.

19. does not exist 20. 21. 5

22. does not exist 23. 3 24. 0

25.

Chapter 9

Section 9.1, page 580

1. Possibly an identity

3. Possibly an identity

5. b 7. e

9.

11.

13.

15.

17.

19. Not an identity

21.

23. cot1�x2 �
cos1�x2
sin1�x2 �

cos x
�sin x � �cot x

sin1�x2
cos1�x2 �

�sin x
cos x � �tan x

11 � cos x2 11 � cos x2 � 1 � cos2x � sin2x

tan x
sec x �

sin x
cos x

1
cos x

� sin x

tan x csc x � a sin x
cos xb a 1

sin xb �
1

cos x � sec x

cos x sec x � cos x a 1
cos xb � 1

tan x cos x � a sin x
cos xb cos x � sin x

lim
xS0

sin bx
sin cx �

b
c

�0.5

�4

8
7

y � 0.006 cos12094.768x � 8.3792

t � 15.582 � 20kt � 4.418 � 20k

h1t2 � 11 sin a p10 t �
p

2 b � 8

g1t2 � 11 cos a p10 tb � 8

80.94°9.06° 25. Not an identity

27.

29.

31.

33.

35.

37.

39. Not an identity

41.

43.

45.

47. Not an identity

49. Conjecture: cos x. Proof: 

51. Conjecture: tan x: Proof:

cos x csc x � cot x � 2 � sin x �
1

cos x �

cos x sec x �sin x csc x �sin x sec x �
1sin x � cos x2 1sec x � csc x2 � cot x � 2 �

cos x
cos x11 � cos x2

1 � cos x
�

cos x � cos2x
1 � cos x

�

cos x � 11 � sin2x2
1 � cos x

�
1 � cos x � sin2x

1 � cos x
�

1 �
sin2x

1 � cos x
�

� sec x tan x

� a 1
cos xba sin x

cos xb�
sin x
cos2x

1
csc x � sin x �

1
1

sin x � sin x
�

sin x
sin x �

sin x
1 � sin2x

�
1

sin x � csc x

sin x � cos x
sin x1cos x � sin x2

sin x � cos x
sin x cos x � sin2x

�

1
cos x �

1
sin x

1 �
sin x
cos x

�
sin x cos x
sin x cos x �

sec x � csc x
1 � tan x

�

tan x � tan x � tan x � 2 tan x

sec x
csc x �

sin x
cos x �

1
cos x

1
sin x

� tan x �
sin x
cos x �

cos2x � sin2x
1cos2x � sin2x2 1cos2x � sin2x2 �cos4x � sin4x �

tan xsin x
cos x �

1
cos x

1
sin x

�
sec x
csc x �

�tan2x1�sin2x2a 1
cos2x

b �

1�sin2x2 1sec2x2 �1cos2x � 12 1tan2x � 12 �

�sin2x tan2xsin2x1�tan2x2 �

sin2x11 � sec2x2 �sin2xa1 �
1

cos2x
b �

sin2x �
sin2x
cos2x

�sin2x � tan2x �

cos2x1tan x � 122
3cos x11 � tan x2 4 2 �1cos x � sin x22 �
3sin x1cot x � 12 4 2 �sin2x1cot x � 122 �

tan2x � cot2x
11 � tan2x2 � 11 � cot2x2 �sec2x � csc2x �
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53.

55.

57.

59. so 

61.

so, 

63.

65.

Section 9.2, page 587

1. 3. 5. 2 � 232 � 23
16 � 12

4

�
1cos y � sin x2 1cos y � sin x2
1cos y � sin x2 1cos x � sin y2 �

cos y � sin x
cos x � sin y

�
cos2y � sin2x

1cos y � sin x2 1cos x � sin y2

�
11 � sin2x2 � 11 � cos2y2
1cos y � sin x2 1cos x � sin y2

�
cos2x � sin2y

1cos y � sin x2 1cos x � sin y2

cos x � sin y
cos y � sin x �

cos x � sin y
cos x � sin y

� �tan y � tan x � tan x � tan y
� �tan y1tan x cot x2 � tan x1tan y cot y2
�tan x tan y1cot x � cot y2

� log101csc x � cot x2�1 � �log101csc x � cot x2
log10 1csc x � cot x2 � log10 a 1

csc x � cot xb
�

csc2x � cot2x
csc x � cot x �

1
csc x � cot x ;

csc x � cot x � 1csc x � cot x2 �
1csc x � cot x2
1csc x � cot x2

� log101tan x2�1 � �log101tan x2
log10 1cot x2 � log10 a 1

tan xbcot x �
1

tan x ,

�

cos x
sin x � cos x

cos xacos x
sin x b

�
cot x � cos x

cos x cot x

�
cos x11 � sin x2

1 � sin2x
�

cos x � sin x cos x
cos2x

�

1
sin x

1
sin x

�
cos2x

cos x11 � sin x2 �
cos x

1 � sin x
�

1 � sin x
1 � sin x

cos x cot x
cot x � cos x �

sin x
sin x �

cos x cos x
cos x � cos x sin x

� sec x � tan x

�
cos x11 � sin x2

cos2x
�

1 � sin x
cos x �

1
cos x �

sin x
cos x

cos x
1 � sin x

�
1 � sin x
1 � sin x

�
cos x11 � sin x2

1 � sin2 x

cos3x
1 � sin x

cos2x
1

cos x 11 � sin x2 ��
1 � sin2x

sec x11 � sin x2 �

11 � sin x2
11 � sin x2�

1 � sin x
sec x �

1 � sin x
sec x

� tan xcot x� tan x � cot x �

cot x � 21 �
cos x
sin x �

sin x
cos x

� 1 �cot x � 2 �

cos x �
1

sin x �cos x �
1

cos x
�sin x �

1
sin x � 7. 9. 11.

13. cos x 15. 17.

19. 21. cos x 23.

25. 27. 29.

31. 0.993 33.

35.

37. is in 

the third quadrant.

39. is in the 

third quadrant.

41.

43. Since 

Hence, 

45.

47.

49.

51. By Exercises 49 and 50, 

53.

55.

57.

59. Not an identity

�
cos x
sin x �

sin y
cos y � cot x � tan y

cos1x � y2
sin x cos y �

cos x cos y � sin x sin y
sin x cos y

� cos2x cos2y � sin2x sin2y
� 1cos x cos y22 � 1sin x sin y22

1cos x cos y � sin x sin y2� 1cos x cos y � sin x sin y2
cos 1x � y2 cos 1x � y2
�

1
2 12 sin x sin y2 � sin x sin y

sin x sin y2 � 1cos x cos y � sin x sin y2 4
1
2 3cos1x � y2 � cos1x � y2 4 �

1
2 3 1cos x cos y �

�
�sin x
�cos x � tan x

tan1x � p2 �
sin1x � p2
cos1x � p2

� 1sin x2 1�12 � 1cos x2 102 � �sin x
sin1x � p2 � sin x cos p � cos x sin p

� 1�12cos x � 102sin x � �cos x
cos1p � x2 � cos p cos x � sin p sin x

� 1sin x2 1�12 � 1cos x2 102 � �sin x
sin1x � p2 � sin x cos p � cos x sin p

sin2x � sin2y � sin2x � cos2x � 1

sin y � sin Qp2 � xR � cos x.y �
p

2 � x,

� cos u cos v sin w � sin u sin v sin w
� cos u sin v cos w

sin1u � v � w2 � sin u cos v cos w

x � ytan1x � y2 �
33
56;cos1x � y2 � �

56
65;

x � ytan1x � y2 �
44

117;sin1x � y2 � �
44

125;

� cos xacos h � 1
h

b � sin xasin h
h
b

�
cos x cos h � cos x

h
�

sin x sin h
h

�
1cos x cos h � sin x sin h2 � cos x

h

f 1x � h2 � f 1x2
h

�
cos1x � h2 � cos x

h

�2.34

�0.393
216 � 13

10
4 � 12

6

�2 sin x sin y�sin 2

�1/cos x�sin x

16 � 12
4�2 � 23�2 � 23

Answers to Selected Exercises 1107



61.

63. Not an identity 65. Not an identity

Section 9.2.A, page 592

1. 0.64 radians 3. 2.47 radians 5.

7. 1.37 radians or 1.77 radians 9. or

11. 1.39 radians or 1.75 radians

Section 9.3, page 600

1. 3.

5. 7.

9. 11.

13. 15.

17. 19.

21.

23.

25.

27.

29.

31.

33.

35.

37. 39.

41. 43. cos 3x � 4 cos3x � 3 cos xsin 
x
2 � 0.3162

cos 2x � 0.28sin 2x � 0.96

tan x2 � �29 � 415 � �25 � 2

sin 
x
2 �

B
15 � 2

215
, cos 

x
2 � �

B
15 � 2

215
, 

sin 
x
2 �

1
110

, cos 
x
2 �

�3
110

, tan 
x
2 �

�1
3

sin 
x
2 � 0.5477, cos 

x
2 � 0.8367, tan 

x
2 � 0.6547

sin 2x �
115

8 , cos 2x �
7
8, tan 2x �

115
7

sin 2x �
24
25, cos 2x �

7
25, tan 2x �

24
7

sin 2x �
24
25, cos 2x � �

7
25, tan 2x � �

24
7

sin 2x �
120
169, cos 2x �

119
169, tan 2x �

120
119

2 sin 2x cos 7x

2 sin 4x cos x1
2 cos 20x �

1
2 cos 14x

1
2 cos 6x �

1
2 cos 2x1

2 sin 10x �
1
2 sin 2x

�22 � 1
22 � 12

2

22 � 13
22 � 23

22 � 12
2

22 � 12
2

3p
4

p

4

p

2

�
tan x � tan y
tan x � tan y�

sin x
cos x �

sin y
cos y

sin x
cos x �

sin y
cos y

�
sin x cos y � cos x sin y
sin x cos y � cos x sin y �

1
cos x cos y

1
cos x cos y

sin1x � y2
sin1x � y2

45. cos x 47. sin 4y 49. 1

51.

53.

55. Not an identity

57.

59.

61. Not an identity

63.

65.

67.

69.

71. a.

b. By the half-angle identity proved in the text 

and part (a), 

73.

R �
v2 sin 2a

g

R �
2v2 sin a cos a

g

R � va2v sin a
g b cos a

R � vt cos a

tan 
x
2 �

1 � cos x
sin x �

sin x
1 � cos x

�
1 � cos2x

sin x11 � cos x2 �
sin2x

sin x11 � cos x2 �
sin x

1 � cos x

1 � cos x
sin x �

11 � cos x2 11 � cos x2
sin x11 � cos x2

�

�cos Qx � y
2 R

sinQx � y
2 R

� �cot ax � y
2 b

sin x � sin y
cos x � cos y �

2 sin ax � y
2 R cos ax � y

2 R
�2 sin ax � y

2 R sin ax � y
2 R

� cot x

sin 4x � sin 6x
cos 4x � cos 6x

�
2 sin 5x cos 1�x2

�2 sin 5x sin 1�x2 �
cos x
sin x

� �tan x

sin x � sin 3x
cos x � cos 3x �

2 cos 2x sin 1�x2
2 cos 2x cos 1�x2 �

�sin x
cos x

csc2ax
2b �

1

sin2Qx2R
�

1
1 � cos x

2

�
2

1 � cos x

� sin x13 � 4 sin2x2
� sin x12 � 2 sin2x � 1 � 2 sin2x2
� 2 sin x11 � sin2x2 � sin x � 2 sin3x
� 2 sin x cos2x � sin x � 2 sin3x
� 12 sin x cos x2 cos x � 11 � 2 sin2x2 sin x

sin 3x � sin12x � x2 � sin 2x cos x � cos 2x sin x

cos x
sin x � cot x

1 � cos 2x
sin 2x �

1 � 12 cos2x � 12
2 sin x cos x �

2 cos2x
2 sin x cos x �

cos2x � sin2x � cos 2x
cos4x � sin4x � 1cos2x � sin2x2 1cos2x � sin2x2 �

sin 16x � sin 3218x2 4 � 2 sin 8x cos 8x
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75.

Section 9.4, page 608

1. no solution 3.

5. 7.

9. 11.

13.

15. 17.

19. 21.

23. 25.

27. 29.

31. 33.

35.

37. a.

b. 2

c.

39. a.

b.

c.

Chapter 9 Review, page 611

1. 3.

5.

7.

�
sin t11 � cos t2

1 � cos2t
�

sin t11 � cos t2
sin2t

�
1 � cos t

sin t

sin t
1 � cos t

�
sin t

1 � cos t
�
11 � cos t2
11 � cos t2

3sin2t � 11 � sin2t2 4 112 � 2 sin2t � 1
sin4t � cos4t � 1sin2t � cos2t2 1sin2t � cos2t2 �

sin4 x1
3 � cot t

x �
3p
4

f 1x2 � 22

f 1x2 � 22 sin ax �
7p
4 b

x �
p

6

f 1x2 � 2 sin ax �
p

3 b
x �

p

4 , 3p4 , 5p4 , 7p4 , 0, p, 2p

x �
2p
5 , 6p5 , 2p, 0, 4p3x �

p

3 , �p, p

x � �p, 0, px �
5p
12 , 13p

12

x �
p

3 , 5p3x �
3p
4 , 7p4

x �
p

3 , 5p3 , px �
3p
4 , 7p4

x �
p

3 , 5p3x �
p

4 , 3p4 , 5p4 , 7p4

x �
p

4 , 3p4 , 5p4 , 7p4 , p12, 5p12 , 13p
12 , 17p

12

x �
3p
8 , 7p8 , 11p

8 , 15p
8x �

p

2 , 3p2

x � 0, 2px �
p

2 , 3p2

x � 0, p, 2p, 7p6 , 11p
6

� cos u � cos a

� 2a1 � cos a � 1 � cos u
2 b

� 2
° 1 � cos 2Q12 aR

2 �

1 � cos 2Q12 uR
2

¢

2asin2 1
2 a � sin2 1

2 ub
9. Not an identity

11.

13.

15.

17. (a)

19.

21. a. b. c.

23. 25.

27. 29.

31.

33.

35.

37. Yes. 

39.

�
B

2 � 13
4 �

22 � 13
2 ; cos a p12b �

�
R

1 � cos 
p

6
2 �

R

1 �
13
2

2

cos a p12b � cos c 12 ap6 b d
sin 2x � 2 sin x cos x � 2102 cos x � 0

120
169

� sin x12 sin x cos x2� 2 cos x1sin2 x2
2 cos x � 2 cos3 x � 2 cos x11 � cos2 x2

� sin 2x� 2 sin x cos x

�
2 sin2 x cos x

sin x�
2 sin2 x
sin x
cos x

�
2 sin2 x
tan x�

1 � 11 � 2 sin2 x2
tan x

1 � cos 2x
tan x

� 1.23 radians�
1

cos x

142 � 212
10�

120
169

44
125

117
44�

3
5

� cos2x � sin2y
� cos2x � cos2x sin2y � sin2y � cos2x sin2y
� cos2x11 � sin2y2 � 11 � cos2x2 sin2y
� cos2x cos2y � sin2x sin2y
� 3cos x cos y � sin x sin y 4 3cos x cos y � sin x sin y 4
cos 1x � y2 cos 1x � y2

� sin x tan x� sin x sin x
cos x

�
1 � cos2 x

cos x �
sin2 x
cos x

sec x � cos x �
1

cos x � cos x

� cos4 x�
1cos2 x � sin2 x2 cos4 x

cos2 x � sin2 x

�
1cos2 x � sin2 x2
a1 �

sin2 x
cos2 x

b 1
cos2 x

�
cos2 x � sin2 x
11 � tan2 x2sec2 x

�
1cos2 x � sin2 x2 1cos2 x � sin2 x2
11 � tan2 x2 11 � tan2 x2

cos4 x � sin4 x
1 � tan4 x

� sin2x � cos2x � 1
� sin2x � 2 sin x cos x � cos2x � 2 sin x cos x
1sin x � cos x22 � sin 2x
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So, 

41. 0.96 43. 45.

Chapter 9 can do calculus, page 615

1. a. 1; sin x is changing at a rate of 1 unit per
increase in x when 

b. sin x is increasing approximately 0.7071 

per unit increase in x when 

c. 0; sin x is not changing per unit increase in x

when 

d. sin x is increasing approximately 0.8660 

per unit increase in x when 

2.

3. a. 0; cos x is not changing per unit increase in x
when 

b. cos x is decreasing approximately 0.7071 

units per unit increase in x when 

c. cos x is decreasing 1 unit per unit increase 

in x when 

d. cos x is decreasing unit per unit increase 

in x when 

Chapter 10

Section 10.1, page 622

1.

3.

5.

7.

9.

11.

13.

15.

17. at vertex (0, 0); at vertex 
at vertex 11, �42

77.4°15, �22;48.4°54.2°

�A � 34.1°, �B � 50.5°, �C � 95.4°

�A � 38.8°, �B � 34.5°, �C � 106.7°

�A � 24.1°, �B � 30.8°, �C � 125.1°

�A � 120°, �B � 21.8°, �C � 38.2°

c � 21.5, �A � 33.5°, �B � 67.9°

a � 24.4, �B � 18.4°, �C � 21.6°

c � 13.9, �A � 22.5°, �B � 39.5°

a � 4.2, �B � 125.0°, �C � 35.0°

x �
p

6 .

1
2�

1
2;

x �
p

2 .

�1;

x �
p

4

�
12
2 ;

x � 0.

�sin x

x �
p

6 .

13
2 ;

x �
p

2

x �
p

4 .

12
2 ;

x � 0.

x � 2.0344 � kpx � kp

22 � 13
2 �

16 � 12
4  or 22 � 13 �

12 � 16
2

�
12
2 a
13
2 b �

12
2 a1

2b �
16 � 12

4 .

cos ap4 �
p

6 b � cos 
p

4  cos 
p

6 � sin 
p

4  sin 
p

6
19. 334.9 km 21. 63.7 ft

23. 25. 8.4 km

27. 231.9 ft 29. 154.5 ft

31. 4.7 cm and 9.0 cm 33.

35. 978.7 mi

37.

39. 16.99 m

Section 10.2, page 634

1.

3.

5.

7.

9. 7.3 11. 32.5 13. 82.3 15. 31.4

17. No solution

19.

21. No solution

23.

25.

27.

29.

31.

33.

35. No solution 37. 6.5 39. About 7691

41. 135.5 m 43. 45. 5 ft

47. 49. 30.1 km 51. About 9642 ft

53. a. Use the Law of Cosines in triangle ABD to find
then is (Why?)

Use the Law of Cosines in triangle ABC to find
then is You now

have two of the angles in triangle EAB and can
easily find the third. Use these angles, side AB,
and the Law of Sines to find AE.

b. 94.24 ft

55. 13.36 m 57. 5.8 gal 59. 11.18 sq units

61. No such triangle exists because the sum of the
lengths of any two sides of a triangle must be
greater than the length of the third side, which is
not the case here.

180° � �CAB.�EAB�CAB;

180° � �ABD.�EBA�ABD;

5.3°

5.4°

�C � 39.8°, �A � 77.7°, a � 18.9

c � 13.9, �A � 60.1°, �B � 72.9°

�A � 18.6°, �B � 39.6°, �C � 121.9°

a � 9.8, �B � 23.3°, �C � 81.7°

�C � 72°, b � 14.7, c � 15.2

a2 � 2.1�A2 � 9.8°,
�B2 � 114.2°,a1 � 10.3;�A1 � 58.2°,�B1 � 65.8°,

c2 � 8.4�C2 � 35.2°,�A2 � 124.8°,
c1 � 14.1;�C1 � 104.8°,�A1 � 55.2°,

�C � 41.5°, b � 9.7, c � 10.9

�A � 88°, a � 17.3, c � 12.8

�B � 14°, b � 2.2, c � 6.8

�C � 110°, b � 2.5, c � 6.3

�C � 73.0°�B � 56.8°,
�A � 50.2°,BC � 19.5,AC � 21.23,AB � 24.27,

33.44°

84.9°
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Section 10.3, page 642

1.–7.

9. 13 11. 13. 12

15. Many correct answers, including 

17.

19.

1

5

i

real

1

i

real
1

w � iz � 2i,

23

3 + 2i

i

real

(2i)(3, −

(1 + i)(1 − i)

5
2 i)

−8
3 − i5

3

21.

23.

25.

27.

29.

31.

33.

35.

37.

39.

41.

43.

45.

47. The polar form of i is Hence,
by the Polar Multiplication Rule

You can think of z as lying on a circle with center
at the origin and radius r. Then zi lies on the same
circle (since it too is r units from the origin), but

farther around the circle (in a counterclockwise
direction).
90°

zi � r � 11cos1u � 90°2 � i sin1u � 90°2.

11cos 90° � i sin 90°2.
222 acos 19p

12 � i sin 19p
12 b

12acos 2p
3 � i sin 2p

3 b
cos p2 � i sinp2

222 acos 7p
12 � i sin 7p

12 b

3
2 acos p4 � i sin p4 b � a322

4 b � a322
4 b i

42acos 7p
6 � i sin 7p

6 b � �2123 � 21i

6acos 2p
3 � i sin 2p

3 b � �3 � 323i

218.51cos 2.1910 � i sin 2.19102
251cos 1.1071 � i sin 1.10712
131cos 5.1072 � i sin 5.10722
51cos 0.9273 � i sin 0.92732

1

1

i

real

1

2

i

real
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49. a. b. c.

d.

f. lies on L since 

and lies on M since 

51. a.

b.

Section 10.4, page 652

1. i 3. 5.

7. 9. i 11.

13.

15.

17.

19.

21.

23. or or or 

or i or 

25. or or 

27. or or �
323

2 �
3
2 i

323
2 �

3
2 ix � 3i

�i�
23
2 �

1
2 i

23
2 �

1
2 i

�i�
23
2 �

1
2 i

�
23
2 �

1
2 i

23
2 �

1
2 ix �

23
2 �

1
2 i

2
4

2acosp8 � i sinp8 b, 2
4

2acos 9p
8 � i sin 9p

8 b

acos 17p
10 � i sin 17p

10 b
acos 13p

10 � i sin 13p
10 b,acos 9p

10 � i sin 9p
10 b,
acosp2 � i sinp2 b,acos p10 � i sin p10b,

acos 9p
5 � i sin 9p

5 b
acos 7p

5 � i sin 7p
5 b,1cos p � i sin p2,

acos 3p
5 � i sin 3p

5 b,acosp5 � i sinp5 b,

3acos 73p
48 � i sin 73p

48 b3acos 49p
48 � i sin 49p

48 b,
3acos 25p

48 � i sin 25p
48 b,3acos p48 � i sin p48b,

4acos 7p
5 � i sin 7p

5 b
4acos11p

15 � i sin 11p
15 b,4acos p15 � i sin p15b,

1, �1, i, �i1
2 �

23
2 i

�64
�24323

2 �
243
2 i

� r1 3cos1u1 � u22 � i sin1u1 � u22 4
i1sin u1 cos u2 � cos u1 sin u22 4
� r1 3 1cos u1 cos u2 � sin u1 sin u22 �
r11cos u1 � i sin u12 1cos u2 � i sin u22
� r21cos2u2 � sin2u22 � r2

r21cos u2 � i sin u22 1cos u2 � i sin u22
1b � d 2 � d �

b
a 3 1a � c2 � c 4 .

1a � c, b � d2d
c 3 1a � c2 � a 4

1b � d2 � b �1a � c, b � d2
y � d �

b
a 1x � c2

y � b � ad
cb1x � a2d

c
b
a 29. or or 

or 

31. 1, 

33.

35. 1, 

37. so 
the solutions of are
the sixth roots of unity other than 1; namely, 

39. 12

41. For each i, is an nth root of unity, so 
Hence 
and is a solution of the equation. If 

then multiplying both sides by shows that 

In other words, if is not equal to then
Thus, the solution are all

distinct.

Section 10.5, page 660

1. 3. 5.

7. 9.

11.

13.

15.

17.

19.

21.

23.

25.

27.

29.

31.

33. a.

b. 21a � c � c22 � 1b � d � d22 � 2a2 � b2 � �u�

21a � c � a22 � 1b � d � b22 � 2c2 � d2 � �v�

1v � 1Hc, dI � Hc, dI � v, 0v � 0Hc, dI � H0, 0I � 0

 � Hrc, rdI � Hsc, sdI � rv � sv
 1r � s2v � 1r � s2Hc, dI � H1r � s2c, 1r � s2dI
v � 1�v2 � Hc, dI � H�c, �dI � H0, 0I � 0

u1 � u2 � u3 � u4 � H�3, 9I, v � H3, �9I
�7
6 v �

2
3 v� � 225

��21w � 2u2� � 0

�v � w� � 1022

�u � v� � 2130

3u � 2v � h�
17
2 , 24i

u � v � h�
9
4, 7i ;u � v � h�

23
4 , 13i ;

�2 � 922I3u � 2v � H9 � 822,�1 � 322I;
u � v � H3 � 422,1 � 322I;u � v � H3 � 422,

10IH�18,
3u � 2v �3I;u � v � H�8,5I;u � v � H4,

h 13
5 , �2

5 iH�6, 10I
H6, 6I234325

vu1, p , vunvui � vuj.
uj,uiui � uj.

1
v

vui � vuj,vui

1vui2n � 1vn2 1ui2n � vn � 1 � r1cos u � i sin u2
1u12n � 1.ui

�1, 12 �
23
2 i, 12 �

23
2 i, �1

2 �
23
2 i, �1

2 �
23
2 i.

x5 � x4 � x3 � x2 � x � 1 � 0
x6 � 1 � 1x � 12 1x5 � x4 � x3 � x2 � x � 12,

�0.9397 ± 0.3420i�0.5 ± 0.8660i,
0.1736 ± 0.9848i,0.7660 ± 0.6428i,

�0.7071 ± 0.7071i0.7071 ± 0.7071i,± i,±1,

�0.9010 ± 0.4339i
�0.2225 ± 0.9749i,0.6235 ± 0.7818i,

2
4

2 a1
2 �

23
2 ib2

4
2 a�23

2 �
1
2 ib

2
4

2 a�1
2 �

23
2 ib2

4
2 a23

2 �
1
2 ib
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c. The slope is which is the same as the slope 

of the vector v.

d. The slope of the line is which is the same as 

the slope of the vector u.

Section 10.6, page 667

1.

3.

5. ,

7. 9.

11. 13.

15. 17.

19.

21.

23.

25.

27.

29. 31.

33. Direction: magnitude: 9.52 lb

35. Direction: magnitude: 80.4 kg

37.

39. Parallel to plane: 68.4 lb; perpendicular to plane:
187.9 lb

41. 1931.85 pounds

43. Ground speed: 401.1 mph; course: 

45. Ground speed: 448.7 mph; course: 

47. Air speed: 96.6 mph; direction: 

49. 0.8023 mph

51. 1005 lb on 1002 lb on 

53. lies on the straight line through (0, 0) and
which has slope 

Similarly, w lies on the line 

through (a, b) and (c, d), which also has slope 

So, and w are parallel. Verify that 

they actually have the same direction by
considering the relative positions of (a, b), (c, d),
and For instance, if pointsu � v1a � c, b � d2.

u � va � c
b � d

.

1a � c2 � 0
1b � d2 � 0

�
a � c
b � d

.

1a � c, b � d2
u � v

4°6°;

326°

174.2°

154.3°

u � sin�1a�894.8
1500 b � �36.6°

18.4°;

82.5°;

�
1
210

i �
3
210

j�
7
2113

i �
8
2113

j

�v� � 5213, u � 213.7°

�v� � 425, u � 296.6°

�v� � 241 � 6.4031, u � 51.34°

�v� � 10, u � 60°

v � H1.9284, �2.2981I
v � H�7.5175, 2.7362Iv � H�10, 1023I
v � h 523

2 , 52 i9i � 18j

7i � 7j5
2 i � 2j

3u � 2v � �223 i � 322 j
u � v � 23 i � 22 j, u � v � �23 i � 22 j

3u � 2v � 18i � 12j
u � v � 7i � 4j,u � v � i � 4j,

u � v � 3i, u � v � �i � 2j, 3u � 2v � �i � 5j

b
a ,

d
c , upward to the right, then (a, b) lies to the right

and above (c, d). Hence and so that
and which means that the

endpoint of w lies in the first quadrant, that is, 
w points upward to the right.

Section 10.6.A, page 679

1.

3.

5.

7. 6 9. 20 11. 13. 1.75065 radians

15. 2.1588 radians 17.

19. Orthogonal 21. Parallel 23. Neither

25. 27.

29.

31.

33. 35.

37.

39.

41. If or then u and v are parallel, so 
for some real number k. We know that .
If then and Since 

and so Therefore, 

On the other hand, if then
and Since and

so Then 
In

both cases we have shown 

43. If and then the
vector and 
Since and are perpendicular,
so the angle at vertex B is a right angle.

45. Many possible answers: One is 
and 

47. 300

49. 13 51. 24

53. The force in the direction of the lawnmower’s
motion is Thus, the work done
is 

55. 1368 ft-lb

151752 � 1125 ft-lb.
30 cos 60° � 15 lb.

lb 1� 600 cos 60°2
w � H1, �1I.v � H1, 1I,

u � H1, 0I,
BC

!
AB

!
AB

!
� BC

!
� 0,

BC
!
� H2, �2I.AC

!
� H4, 0I,AB

!
� H2, 2I,

C � 15, 22,B � 13, 42,A � 11, 22,
u � v � �u� �v� cos u.

�u� �v� cos u.��u� �v� ��u�1�k�u�2 �k�u�2 �
ku � u �u � ku, �u � v ��v� � �k�u�.

0 k 0 � �kk 6 0,k 6 0.cos u � �1
u � p,�u� �v� cos u.

�u� �v� ��u�1k�u�2 �k�u�2 �ku � u �u � ku �
u � v ��v� � k�u�.0 k 0 � k

k 7 0,k 7 0.cos u � 1u � 0,
�v� � 0 k 0 �u�

v � kup,u � 0

0 � u � H0, 0I � Ha, bI � 0a � 0b � 0

� 1ac � bd2 � 1ar � bs2 � ac � ar � bd � bs
u � v � u � w � Ha, bI � Hc, dI � Ha, bI � Hr, sI
� ac � ar � bd � bs
� Ha, bI � Hc � r, d � sI � a1c � r2 � b1d � s2

u � 1v � w2 � Ha, bI � 1Hc, dI � Hr, sI2
compvu �

3
210

compvu �
22
213

projuv � H0, 0I; projvu � H0, 0I
projvu � h 6

5, 25 iprojuv � h 12
17, �20

17 i ;

k � 22k � 2

p

2  radians

�28

u � v � 12, u � u � 13, v � v � 13

u � v � 6, u � u � 5, v � v � 9

u � v � �7, u � u � 25, v � v � 29

b � d 7 0,a � c 7 0
d 6 b,c 6 a
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Chapter 10 Review, page 684

1.

3.

5.

7. Approximately 301 mi

9.

11.

13.

15. and

17.

19. 147.4 21. 13.4 km

23. Joe is 217.9 m from the pole and Alice is 240 m
from the pole.

25. a. 3617.65 ft b. 4018.71 ft c. 3642.19 ft

27. 10 29. 37.95

31.

33. The graph is a circle of radius 2 centered at the
origin.

35. 37.

39. 41.

43. 1, 

45.

47. 49. 51.

53. 55.

57.

59. Ground speed: 321.87 mph; course: 

61. 63. 3 65. 0.70 radians

67.

69.
since u and v have

the same magnitude.

71. 1750 lb

Chapter 10 can do calculus, page 689

1. 1 2.

3. cos1�22 � i sin1�22; �0.4161 � 0.9093i

cos132 � i sin132; �0.9900 � 0.1411i

�u2� � �v2� � 0u � u � v � v �
v � u � v � v �u � u � u � v �1u � v2 � 1u � v2 �

projvu � v � 2i � j

�26

126.18°

�
1
25

 i �
2
25

 j

h 522
2 , 

522
2 i210

�11i � 8j2229H11, �1I
cos 

13p
8 � i sin 

13p
8cos 

9p
8 � i sin 

9p
8 ,

cos 
5p
8 � i sin 

5p
8 ,cos 

p

8 � i sin 
p

8 ,

cos 
5p
3 � i sin 

5p
3cos 

4p
3 � i sin 

4p
3 ,

�1,cos 
2p
3 � i sin 

2p
3 ,cos 

p

3 � i sin 
p

3 ,

81
2 �

8123
2  i223 � 2i

422 � 422i2acos 
p

3 � i sin 
p

3 b

210 � 220

a � 41.6; C � 75°, c � 54.1

B � 98.2°, C � 21.8°, c � 1.5
B � 81.8°, C � 38.2°, c � 2.5

A � 52.03°, B � 65.97°, b � 86.9

A � 25°, a � 2.9, b � 5.6

71.89°

A � 35.5°, b � 8.3, C � 68.5°

A � 20.6°, b � 21.8, C � 29.4°

A � 52.9°, B � 41.6°, C � 85.5°
4.

5.

6. 1

7.

8.

Chapter 11

Section 11.1, page 698

1. 3.

5. 7.

9. 11.

13. Ellipse

15. Ellipse

17. 19. 21.

23. approximately 1,507,964 sq. ft.

25. If then Multiplying both sides 

by gives the equation of a circle of
radius a with center at the origin.

27. As b gets larger, the ellipse becomes more
elongated horizontally. As b gets closer to 0, the
graph becomes very close to being a vertical line.
However, it will never be a vertical line, because b
cannot have a value of 0.

x2 � y2 � a2,a2

x2

a2 �
y2

a2 � 1.a � b,

7p
23

223p8p

−4

−6 6

4

−4

−6 6

4

x2

16 �
y2

9 � 12x2 � y2 � 12

x2 � 6y2 � 18x2

9 �
y2

49 � 1

x2

36 �
y2

16 � 1x2

49 �
y2

4 � 1

ep 1cos 1 � i sin 12; 12.5030 � 19.4722i

eacos �
p

3 � i sin �
p

3 b; 1.3591 � 2.3541i

e1cos p � i sin p2; �2.7183

cosap4 b � i sinap4 b; 0.7071 � 0.7071i
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29. Approximately 226,335 mi and 251,401 mi

31. of OC; of OF; since 
or by the

Pythagorean Theorem of CF.

Section 11.2, page 707

1. 3.

5. 7.

9.

11.

13.

foci are at and asymptotes 

are and 

15.

foci are at and asymptotes 

are and 

17.

foci are at and asymptotes 

are and y � �
2
3 xy �

2
3 xy � ± a

b
x;

a0, �
213

6 b ;a0, 
213

6 b

2

−2

−3 3

y � �2xy � 2xy � ± b
a x;

A�220, 0 B ;A220, 0 B

10

−10

−10 10

y � �
4
26

xy �
4
26

xy � ± b
a x;

A�222, 0 B ;A222, 0 B

10

−10

−10 10

x2

1 �
y2

8 � 1 or 8x2 � y2 � 8

x2

1 �
y2

8 � 1 or 8x2 � y2 � 8

y2

16 �
x2

9 � 1x2

4 �
y2

5 � 1

x2

4 � y2 � 1x2

9 �
y2

36 � 1

a � length
a2 � b2 � c2;c2 � a2 � b2c � 2a2 � b2,

c � lengthb � length

19. Hyperbola

21.

23.

25. The two branches of the hyperbola are very “flat”
when b is large. With very large b and a small
viewing window, the hyperbola may look like two
horizontal lines, but it isn’t because its asymptotes 

are not horizontal (their slopes, are 

close to, but not equal to, 0 when b is large).

27.

29.

31. The distance between the vertices is 2a. One point
on the hyperbola is the vertex at (a, 0). This point
is the distance from the closest focus and a
distance from the other focus. Thec � a

c � a

y � x � 2

8000

−8000

−200 3800

± 2
b

,y � ± 2
b

˛x

−10

−10 10

10

−10

−10 10

10

Because of limited resolution,
this calculator-generated graph
does not show that the top and
bottom halves of the graph are
connected.

−10

−10 10

10
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differences of these distances is 
Therefore, by the definition of a hyperbola,

when the difference of the distances from any
point on the hyperbola to the two foci is constant,
this constant difference is 2a; this is the distance
between the two vertices.

33. since in the right triangle
and in the equation of a hyperbola

which is the distance from
each focus to the center O.

Section 11.3, page 714

1. 3. 5.

7. 9.

11. Parabola

13. Parabola

15. Focus: directrix: 

17. Focus: (0, 1); directrix: 

19. 21.

23. The point closest to the focus is the vertex at (0, 0).

25. 27.

Section 11.4, page 726

1.

3.
41x � 722

25 �
1y � 422

36 � 1

1x � 222
4 �

1y � 322
16 � 1

y2 � �2xy2 � 8x

y2 � �4xx2 �
1
2 y

y � �1

y � �
1

12a0, 1
12b;

−10

−10 10

10

−4

−10 2

4

x2 � �8yy �
x2

4

y2 � 8xy2 � 20xy � 3x2

PV � c,c2 � a2 � b2,
a2 � b2 � c2

OP � b;OV � a,

2a.
1c � a2 �a �c �

5.

7.

9. 11.

13.

15.

17. Ellipse 19. Parabola 21. Hyperbola

23.

25.

27.

29.

−3

−2 13

7

−1

−5 5

9

−1

−7 7

9

−1

−5 10

9

x � 3 � 41y � 222
1x � 322

36 �
1y � 222

16 � 1

x � 2 � 31y � 122y � 131x � 122
1x � 422

9 �
1y � 222

16 � 1

1y � 322
4 �

1x � 222
6 � 1
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31.

33.

35. Ellipse; and 

37. Hyperbola; and 

39. Parabola; and 

41. Ellipse; and 

43. Hyperbola; and 

45. Parabola; and 

47. Hyperbola; and 

49. Ellipse; and 

51. Parabola; and 

53. or 

55. The asymptotes of are or 

with slopes and Since
these lines are perpendicular.

57. 59.

61.

63.

65.

67.

The exact location cannot be determined from the
given information.

Section 11.4A, page 733

1. 3. u2

4 � v2 � 1u2

2 �
v2

2 � 1

x2

1,210,000 �
y2

5,759,600 � 1 1measurement in feet2.

1x � 10522 � �200.451y � 552

1x � 322

9
�
1y � 422

4
� 1

1y � 522

5 �
1x � 722

3 � 1

a9, �1
2 ± 1

2234bb � 0

1�12 1�12 � �1,
�1.�1y � ±x,

y � ±
a
a

xx2

a2 �
y2

a2 � 1

1x � 522

16 �
1y � 322

49 � 1
1x � 522

49 �
1y � 322

16 � 1

�2 � y � 10�9 � x � 4

�4 � y � 4�6 � x � 6

�15 � y � 15�15 � x � 15

�1 � y � 13�19 � x � 2

�10 � y � 10�15 � x � 15

�1 � y � 1�1.5 � x � 1.5

�3 � y � 3�1 � x � 8

�3 � y � 9�7 � x � 13

�2 � y � 4�6 � x � 3

−10

−10 10

10

−15

−18 18

9
5.

7.

9. a.

b.

since is the coefficient of uv
c.

d. If then and 

we have 

11. a. From Exercise 9 (a) we have 

(everything else cancels)

b. If then also 
Since and so By
Exercise 10, the graph is an ellipse. The other
two cases are proved in the same way.

13. 15.

Section 11.5, page 743

1.

or 

3. and others

5. and 

others

7. 9. 11.

13. 15. A231.25, 2.6779 BA225, 1.1071 B

a6, �p6 ba23
2 , �1

2 ba3
2, 

323
2 b

a1, 5p6 b, a1, �7p
6 b, a�1, 11p

6 b, a�1, �13p
6 b,

15, 2p2, 15, �2p2, 1�5, 3p2, 1�5, �p2,

a6, 5p3 b, V � 17, 02T � a4, 3p2 b, U � a6, �p3 b

P � a2, p4 b, Q � a3, 2p3 b, R � 15, p2, S � a7, 7p6 b,

a23
2 , �1

2 ba522
2 , �

22
2 b

A¿C¿ 7 0.�4A¿C¿ 6 0B¿ � 0,
1B¿ 22 � 4A¿C¿ 6 0.B2 � 4AC 6 0,

1B2 � 4AC2 1cos2 u � sin2 u22 � B2 � 4AC
1B2 � 4AC2 1cos4 u � 2 cos2 u sin2 u � sin4 u2 �

�
4AC12 cos2 u sin2 u � cos4 u � sin4 u2
2 cos2 u sin2 u � sin4 u � 4 cos2 u sin2 u2 �
4BC1cos3 u sin u � cos u sin3 u2 4 � B21cos4 u �
4AB1cos3 u sin u � cos u sin3 u2 �
41A2 � C2 � B22 cos2 u sin2 u �
sin2 u2 cos u sin u � 34AC1cos4 u � sin4 u2 �
41C � A22cos2 u sin2 u � 4B1C � A2 1cos2 u �
B cos u sin u � A sin2 u2 � B21cos2 u � sin2 u22 �
41A cos2 u � B cos u sin u � C sin2 u2 1C cos2 u �
3B1cos2 u � sin2 u2 � 21C � A2 cos u sin u 4 2 �
C sin2 u2 1C cos2 u � B cos u sin u � A sin2 u2 �
B sin2 u22 � 41A cos2 u � B cos u sin u �
1B cos2 u � 2A cos u sin u � 2C cos u sin u �

1B¿ 22 � 4A¿C¿ �

�B cos 2u � B cos 2u � 0.
B¿ � 1�B cot 2u2 sin 2u � B cos 2u �

A � C � B cot 2ucot 2u �
A � C

B

cos2 u � sin2 u, B¿ � 1C � A2 sin 2u � B cos 2u.
Since sin 2u � 2 sin u cos u and cos 2u �

B¿B1cos2 u � sin2 u2
2C cos u sin u � B sin2 u � 21C � A2 sin u cos u �
B¿ � B cos2 u � 2A cos u sin u �
D sin u2v � F � 0
A sin2 u2v2 � 1D cos u � E sin u2u � 1E cos u �
B sin2 u2uv � 1C cos2 u � B cos u sin u �
1B cos2 u � 2A cos u sin u � 2C cos u sin u �
1A cos2 u � B cos u sin u � C sin2 u2u2 �

u � 36.87°; x �
4
5 u �

3
5 v; y �

3
5 u �

4
5 v

u � 53.13°; x �
3
5 u �

4
5 v; y �

4
5 u �

3
5 v
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17.

19.

21.

23.

5

2.5

5

7.5

10−10 −5

3π
2

θ = 0

θ = −

−2.5

−5

−7.5

−10

π
2θ = −

1

1 radian1

2

3

2−2 −1

π
2

θ = 0

θ =

−1

−2

−3

11 2 3

π
2

θ = 0

θ =

−1
− π

3

2

π
2

4
θ = 0

θ =

−2−4

2

−2

4

−4

25.

27.

29.

31.

0.5−0.5
θ = 0

−0.5

0.5

π
2θ =

3π
2θ =

10.5−1 −0.5
θ = 0

−0.5

−1

1

0.5

π
2θ =

−2 −1.5 −1 −0.5
θ = 0θ = π

−0.5

−1

0.5

1

π
2θ =

0.5 1−1 −0.5

3π
2

θ = 0

θ =

−0.5

−1

−1.5

−2

π
2θ =
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41.

43.

45.

47. a.

−3

−4 4

3

0.2 0.4−0.2
−0.2

0.2

0.4

0.6

0.8

θ = 0

π
2θ =

3π
2θ =

1

1

θ = 0

π
2θ =

0.2 0.4 0.6 0.8 1
θ = 0

−2
−1.5

−1
−0.5

0.5
1

1.5
2

π
2θ =

3π
2θ =
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1−1

0.75

−0.75
3π
2

θ = 0

θ =

π
2θ =

33.

35.

37.

39.

10.80.60.40.2−0.2 1.2

0.2

0.4

0.6

0.8

1

1.2

3π
2

θ = 0

θ =

0.2

π
2θ =

54321 6

1

2

3

3π
2

θ = 0

θ =

−2

−1

−3

π
2θ =

1 2−1−2
θ = 0

−0.5

0.5

π
2θ =

3π
2θ =



b.

c.

49.

a circle with 

center and radius 

51. Using the Law of Cosines in the following
diagram, so 

Section 11.6, page 752

1. (d) 3. (c) 5. (a)

7. Hyperbola, 9. Parabola, 

11. Ellipse, 13. 15. 17. 5
4250.1e �

2
3

e � 1e �
4
3

(s, β)
θ − β

(r, θ)

d
r

s

d � 2r2 � s2 � 2rs cos1u � b2.
d2 � r2 � s2 � 2rs cos1u � b2,

2a2 � b2

2 .ab
2, a2b

ax �
b
2b

2

� ay �
a
2b

2

�
1a2 � b2 2

4 ,

ax2 � bx �
b2

4 b � ay2 � ay �
a2

4 b �
1a2 � b22

4 1

x2 � y2 � ay � bx 1 x2 � bx � y2 � ay � 0 1
r � a sin u � b cos u1 r2 � ar sin u � br cos u1

3

�3

�3 3

−3

−4 4

3 19. a.

b.

c. The smaller the eccentricity, the closer the shape
is to circular.

21.

23.

25.

5 10−5−10
−5

−10

5

10

(10, )π
2

( , )3π
2

10
7

5

(−2, 0)

10−5−10
−5

−10

5

10

( , π2
3 )

5

(4, π)

10−5−10
−5

−10

5

10

22
4

210
4 ,

215
4 ,

4

�4

�6 6
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27.

29.

31.

33. 35.

37. 39.

41. 43.

45. 47.

Section 11.7, page 763

1.

3.

5.

7.

9.

11.

13.

15. 17. 19.

21. 23. 16x2 � 9y2 � 144x2 � y2 � 9

y � ln xy � 2x � 5y � 2x � 7

�25 � x � 22 and �25 � y � 26

�2 � x � 20 and �20 � y � 4

�12 � x � 12 and �12 � y � 12

�2 � x � 20 and �11 � y � 11

0 � x � 14 and �15 � y � 0

�3 � x � 4 and �2 � y � 3

�5 � x � 6 and �2 � y � 2

r �
3 � 107

1 � cos u
r �

2
1 � 2 cos u

r �
2

2 � cos u
r �

3
1 � sin u

r �
8

1 � 4 cos u
r �

3
1 � 2 cos u

r �
16

5 � 3 sin u
r �

6
1 � cos u

5 10−5−10
−5

5

10

15

(−10, )3π
2

(2, )π
2

5 10−5−10
−5

−10

5

10

( , )π
2

3
2

5 10 15

(15, 0)(3, π)

−5
−5

−10

5

10

25. Both give a straight line segment between
and The parametric

equations in (a) move from P to Q, and the
parametric equations in (b) move from Q to P.

27. Solving for t gives and 

substituting in then gives 

or 

This is a linear equation and therefore gives a
straight line. You can check by substitution that 
(a, b) and (c, d) lie on this straight line; in fact, these
points correspond to and respectively.

29.

31. Local minimum at 

33. Local maximum at (4, 5)

35. Solve the first equation for 

Substitute into the second to get 

which is the equation of a parabola.

37. a.

b. Yes

39.

41. a.

b. About 3.2 sec
c. 41.67 ft

0 � t � 3.5
y � 1110 sin 28°2t � 16t2
x � 1110 cos 28°2t

0

0 350

50

v � 802
4

3 � 105.29 ft/sec

0 � t � 4.5
y � 188 sin 48°2t � 16t2 � 4
x � 188 cos 48°2t

0
0 250

120

y � 1140 sin 31°2a x
140 cos 31°b � 16a x

140 cos 31°b
2

,

t �
x

140 cos 31° ˛.

1�6, 22
x � �6 � 18t, y � 12 � 22t 10 � t � 12

t � 1,t � 0

y � b �
d � b
c � a ˛1x � a2.y � b � 1d � b2 ˛

x � a
c � a ˛,

y � b � 1d � b2t
t �

x � a
c � ax � a � 1c � a2t

Q � 12, �52.P � 1�4, 72
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43. a.

b.
c.

An angle of seems to result in the longest
distance.

45. a. Since 

Then 

And 

b.

Therefore, 

Therefore, 

47. a.

The particles do not collide.
b. t � 1.1

0
0 12

6

311 � cos t2.
3 � 3 sinat �

3p
2 b � 3 � 3 cos t �

cos t sin 
3p
2 � 1sin t2 102 � 1cos t2 1�12 � cos t.

31t � sin t2. Sinat �
3p
2 b � sin t cos 

3p
2 �

3t � 3 cosat �
3p
2 b � 3t � 3 sin t �

� 1cos t2 102 � 1sin t2 1�12 � �sin t.

cosat �
3p
2 b � cos t cos 

3p
2 � sin t sin 

3p
2

� 3 � 3 sinat �
3p
2 b.

y � CT � PQ � 3 � 3 sin u3 cosat �
3p
2 b.

x � OT � CQ � 3t � 3 cos u � 3t �

u � t �
3p
2 .t �

3p
2 � u,�TCQ �

3p
2 ,

45°

0
0 350

200

45°

40°

40°

0

0 350

200

80°

60°

40°

20°

c.

The particles do not collide; they are closest
when 

d.

d is smallest when 

Section 11.7A, page 769

1.

3.

5.

7.

−2

−3 3

2

x �
1
2 cos t, y �

1
2 sin t 10 � t � 2p2

−7

−10 10

7

x � 210 cos t, y � 6 sin t 10 � t � 2p2
x � 2 cos t � 2, y � 2 sin t � 3 10 � t � 2p2
x � 9 � 5 cos t, y � 12 � 5 sin t 10 � t � 2p2

t � 1.1322.

−1

0 2

8
t � 1.13.

0
0 12

6

1122 Answers to Selected Exercises



9.

11.

13.

15.

−1

−5 10

9

x � 2 cos t � 1, y � 3 sin t � 5 10 � t � 2p2
−10

−5 15

10

x �
t2

4 , y � t 1t any real number2

−4

−6 6

4

x �
1

cos t , y �
1
2 tan t 10 � t � 2p2

−10

−10 10

10

x �
210
cos t , y � 6 tan t 10 � t � 2p2 17.

19.

21.

23.

−15

−18 18

9

x � 4 tan t � 1, y �
5

cos t � 3 10 � t � 2p2

−3

−2 13

7

x � 21t � 222, y � t 1any real number t2
−1

−5 5

9

x � t, y � 41t � 122 � 2 1any real number t2
−1

−7 7

9

x � 4 cos t � 1, y � 28 sin t � 4 10 � t � 2p2
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25.

Chapter 11 Review, page 772

1. This is an ellipse with foci at the points and
vertices at the points Shown is the
graph on the window 

3. This is the same graph as in Exercise 2; the
equations are equivalent.

5. This is an ellipse with foci at the 

points and vertices at the points 
Shown is the graph on the window 

7. This is a hyperbola with foci at the points 
and vertices at the points Shown is the
graph on the window �6 � y � 6.�9 � x � 9,

1±3, 02.
1±5, 02

�6 � y � 6.
�9 � x � 9,
10, ±42.10, ±22

x2

12 �
y2

16 � 1;

�6 � y � 6.�9 � x � 9,
A0, ±225 B . 10, ±22

−10

−10 10

10

x �
1

cos t � 3, y � 2 tan t � 2 10 � t � 2p2 9. This is a hyperbola with foci at the 

points and vertices at the points 
Shown is the graph on the window 

11. 13. 15.

17. Focus: directrix: 

19. Ellipse, foci: (1, 6), (1, 0), vertices: (1, 7), 

21. This is an ellipse with center at vertices at
the points and and foci at the points

and 

1 2 3 4 5 6

−4

−3

−6
−7

−5

13 � 25, �52.13 � 25, �52
16, �5210, �52

13, �52,

9

−3

−9 9

11, �12
y � �

5
14a0, 5

14b,
y2 � 16xy2 � �16xy2 � �25x

�6 � y � 6.
�9 � x � 9,

10, ±22.A0, ±25 B
y2

4 �
x2

1 � 1;
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23. This is a hyperbola with center at (0, 0), vertices at
the points (6, 0) and foci at the points 

and and asymptotes 

25. This is a parabola with vertex at the point (3, 3), 

focus at the point and directrix 

27. This is a parabola with vertex at the point 

focus at the point and directrix 

29. Center: 

31.

33.

35.
1x � 322

4 �
1y � 122

2 � 1

ay �
1
2b

2

� �
1
2 ˛ax �

3
2b

y2

4 �
1x � 322

16 � 1

14, �62

1 2 3 4

1

−2

−3

−1
5 6 7

x �
3
4.a5

4, �1b,
11, �12,

1 2 3 4

10

5

20

15

5 6

y �
23
8 .a3, 25

8 b,

−10

−10 10

10

y � ± 2
3 ˛x.

1�252, 02,A252, 0 B
1�6, 02

37. Hyperbola 39. Ellipse

41.

43.

45.

47.

49.

51.

53.

55.

10

5

10

15

20−20 −10

π
2

θ = 0

θ =

−5

−10

−15

−20

π
2θ = −

θ = 0

π
2θ =

2π
3

θ = 0

(2, 3π/4) (−3, −2π/3)

θ = π

π
2θ =

45°

y �
23
2 u �

1
2 v

x �
1
2 u �

23
2 v

�6 � x � 6 and �4 � y � 4

�15 � x � 10 and �10 � y � 20

�9 � x � 9 and �6 � y � 6
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57.

59.

61.

63. 65. Eccentricity

67. Hyperbola

Pole

(−2, π)
(4, 0)

θ = 0θ = π

�
B

2
3 � 0.8165a�3

2 ˛, �
323

2 b

2 4−2−4
θ = 0

−2

−4

2

4

π
2θ =

0.5 1−0.5−1
θ = 0

π
2θ =

1 2−2 −1
θ = 0

−1

−2

−3

−4

π
2θ = 69. Ellipse

71. 73.

75.

77.

79.

Point moves from (1, 0) to as t goes from 0
to Then point retraces its path, moving from

to (1, 0) as t goes from to 

81. 83. numbers 74 and 75

85.

11

−1

−9 9

x � 5 cos t � 3, y � 5 sin t � 5, 0 � t � 2p

x � 3 � 2y or y � �
1
2 ˛x �

3
2

2p.p1�1, 02
p.

1�1, 02

y

x

−1 1

2

y � �2x2 � 2

�15 � x � 15 and �10 � y � 10

�35 � x � 32 and �2 � y � 16

r �
24

5 � cos u
r �

2
1 � cos u

Pole
θ = 0θ = π

π
2θ =

3π
2θ =

3π
24,( )

π
212,( )
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87.

89.

91.

93.

15

−5

−15 15

x � 7 cos t � 2, y � 8 sin t � 5, 0 � t � 2p

0.1

−1.5

−2 2

x � sec t, y �
1

36 tan t, 0 � t � 2p

1

−1

−1.5 1.5

x �
1
2 cos t, y �

1
3 sin t, 0 � t � 2p

6

−6

−9 9

x � cos t � 2, y � 2 sin t � 3, 0 � t � 2p 95.

Note that the diagonal lines shown here are not
part of the graph but are just about where the
asymptotes should be.

97.

Chapter 11 can do calculus, page 777

1. approximately 30 2. approximately 20

3. approximately 8 4. approximately 4

5. approximately 10 6. approximately 5

Chapter 12

Section 12.1, page 788

1. Yes 3. Yes 5. No

7. 9.

11. 13.

15. 17.

19. Inconsistent

21. where b is any real number

23. where b is any real number

25. Inconsistent

27. 29.

31.

33. x � 3, y � �1, z � 4

x � 0.185, y � �0.624

x �
66
5 ˛, y �

18
5x � �6, y � 2

y �
3b � 2

4 ˛,x � b,

y �
3b � 4

2 ˛,x � b,

x � 2, y � �1x � 28, y � 22

x �
3c
2 ˛, y �

�c � 2d
2r �

5
2 ˛, s � �

5
2

x �
2
7 ˛, y � �

11
7x �

11
5 ˛, y � �

7
5

5

−5

−25 5

x � �321t � 422 � 5, y � t, �10 � t � 10

3

−9

−9 9

x � 212 tan t � 2, y � 2 sec t � 3, 0 � t � 2p
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35.

37. a. Electric: 
solar: 

b. Electric: solar: 
c. Costs same in fourteenth year; electric; solar

39. a.
b.
c.

Costs equal at approximately 7143 cases.
d. The company should buy from the supplier any

number of cases less than 7143 and produce
their own beyond that quantity.

41. 140 adults, 60 children

43. $19,500 at 2% and $15,500 at 4%

45. cashews and peanuts

47. 60cc of 20% and 40cc of 45%

49. 80 bowls; 120 plates

Section 12.1.A, page 794

1.

4

2

2

4

2 4

z

y

x

(1, 4, 5)

2 1
4 lb3

4 lb

0

0 15,000

130,000

≈ (7143, 58564)

y � 8.20x
y � 7.50x � 5000

$14,570$6800;
y � 114x � 14,000

y � 960x � 2000;

c � �3, d �
1
2

3.

5.

7.

9.

 z � �6
 intercepts: y � 2

 x � 6

4

2

2

4

2 4

z

y

x

(2, −3, −1)

4

2

2

4

2 4

z

y

x

(3, 0, 0)

4

2

2

4

2 4

z

y

x
(0, 2, −3)

1128 Answers to Selected Exercises



11.

13.

15.

17.

 z � �12
 intercepts: no y-intercept

 x � 4

 z � �8
 intercepts: y � 2

 x � 4

 z � �3
 intercepts: y � 3

 x � 3

 z �
3
2

 intercepts: y � �
9
4

 x � 3

19.

21. Each equation can be represented by a plane. Two
planes are parallel, are coincident, or they intersect
in a line. The system of equations either has no
solution, an infinite number of solutions which lie
on the plane, or an infinite number of solutions,
all of which lie on a straight line.

Section 12.2, page 801

1. 3.

5.

7.

9.

11. where t is
any real number

13.

15.

17.

19. No solution.

21. where t is any real 

number

23. 25. No solutions

27. for any real number t

29.

31.

33.

35. z �
5
2y �

10
3 ˛,x � �

3
4 ˛,

w � �5.z � �2,y � 1,x � 3,

w � �2z � �3,y � 1,x � �1,

z � 0y � 0,x � 0,

x � �t � 2,y � t � 1,z � t,

x � 1, y � 2

x � t,y �
1
2 � 2t,z � t,

z � 2y � �6,x � �14,

z �
3
2y � �

3
4 ˛,x � �

1
2 ˛,

z � 1y � �1,x � �1,

w � t,z � 4,y � �3 � 2t,x � 2 � t,

w � 0z � �2,y � 5,x �
3
2,

4x � 2y � 5z � 2w � 2
4x � 4y � 4z � 2w � 3
4x � 2y � 4z � 2w � 1

 4x � 7y � 2
 2x � 3y � 1

¶
1 �

1
2

7
4 0

2 �
3
2 5 0

0 �2 1
3 0

∂£2 �3 4 1
1 2 �6 0
3 �7 4 �3

≥

 z � �3
 intercepts: no y-intercept

 x � �2
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37. 10 quarters; 28 dimes; 14 nickels

39. $3000 from her friend; $6000 from the bank; $1000
from the insurance company

41. $15,000 in the mutual fund; $30,000 in bonds;
$25,000 in food franchise

43. Three possible solutions:
18 bedroom, 13 living room, 0 whole house
16 bedroom, 8 living room, 2 whole house
14 bedroom, 3 living room, 4 whole house

45. Tom: 8 hours; George: 24 hours; Mario: 12 hours.

47. 2000 chairs; 1600 chests; 2500 tables

49. 20 model A; 15 model B; 10 model C

Section 12.3, page 811

1.

3.

5.

7. AB defined, BA not defined

9. AB defined, BA defined, 

11. AB defined, BA not defined

13. 15.

17.

19.

21. BA � £ 19 9 8
�10 2 0

0 0 0
≥AB � £ 8 24 �8

2 �2 6
�3 �21 15

≥;
BA � ¢�4 9

24 2
≤AB � ¢17 �3

33 �19
≤;

§ 1 �1 1 2
4 3 3 2

�1 �1 �3 2
5 3 2 5

¥
£1 �3

2 �1
5 6

≥¢3 0 11
2 8 10

≤
3 � 2;

2 � 23 � 3;

2 � 4;

 � £ 8 6 �10
�4 �2 14

8 12 2
≥

 2C � £ 2142 2132 21�52
21�22 21�12 2172

2142 2162 2112
≥

 � £6 �3 �2
2 �3 8
7 11 �4

≥
 A � C � £ 2 � 4 �6 � 3 3 � 1�52

4 � 1�22 �2 � 1�12 1 � 7
3 � 4 5 � 6 �5 � 1

≥
 � £�2 �2 10

9 1 3
2 �1 1

≥
 A � B � £2 � 1�42 �6 � 4 3 � 7

4 � 5 �2 � 3 1 � 2
3 � 1�12 5 � 1�62 �5 � 6

≥

23. To:
J K L

From: 

25.

27.

The total cost to bake and decorate each giant
cookie is $3.75; sheet cake: $6.50; 3-tiered cake:
$14.75.

29. represents the total 

amount of tuition the college got from lecture;
represents the total amount of tuition

the college got from lab; and are not
meaningful in the context of the problem.

31. C G H L Z

33. a.
C Ma Mil Min SL

b.

c.

This matrix represents the total number of
flights that are direct, have one layover, or have
two layovers between each pair of cities.

A � A2 � A3 � •
12 11 11 11 11
11 7 10 10 7
11 10 7 7 10
11 10 7 7 10
11 7 10 10 7

µ

A3 � •
8 8 8 8 8
8 4 8 8 4
8 8 4 4 8
8 8 4 4 8
8 4 8 8 4

µA2 � •
4 2 2 2 2
2 3 1 1 3
2 1 3 3 1
2 1 3 3 1
2 3 1 1 3

µ ,

C
Ma
Mil

Min
SL

•
0 1 1 1 1
1 0 1 1 0
1 1 0 0 1
1 1 0 0 1
1 0 1 1 0

µ

C
G
H
L
Z

 •
0 0 1 0 0
1 0 1 1 0
0 0 0 0 0
0 0 1 1 0
0 0 1 1 0

µ

a21a12

a22 � $5080

a11 � $91,000¢91000 18200
25400 5080

≤;

£ 3.75
6.5

14.75
≥

£1 2 2
1 4 3
1 1 2

≥£0 1 1
1 1 2
0 1 0

≥ £0 1 1
1 1 2
0 1 0

≥ �£0 1 1 2

1 1 2
0 1 0

≥ �

J
K
L
£0 1 1

1 1 2
0 1 0

≥
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Section 12.4, page 819

1.

3.

5.

7.

9.

11.

13. 15. No inverse

17. No inverse 19.

21.

23.

25.

27.

29. no solution

31.
where t is any real number.

33. w �
579
161z � �

1124
161 ,y �

426
161,x � �

1149
161 ,

w � t,z � �1 � 2t,x � 2 � t, y � 3.5 � 2.5t,

x � �0.5, y � �2.1, z � 6.7, w � 2.8

x � �8, y � 16, z � 5

x � �1, y � 0, z � �3

x � 3, y � �1

£�3 2 �4
�1 1 �1

8 �5 10
≥

£�2 1
3
2 �

1
2
≥  3r � 2s � 2t � 1 3u � 2v � 2w � 0 3x � 2y � 2z � 0

 s � 2t � 0 v � 2w � 1 y � 2z � 0
 r � 2s � 2t � 0 u � 2v � 2w � 0 x � 2y � 2z � 1

 4u � v � 1 4x � y � 0
 2u � 0 2x � 1

£1 0 0
0 1 0
0 0 1

≥A � B � £ 1 0 1
�1 0 1

1 1 �1
≥ •1

2 �
1
2 0

0 1 1

1
2

1
2 0

µ �

� ¢1 0
0 1
≤¢3122 � 11�52 5122 � 21�52

31�12 � 1132 51�12 � 2132
≤

A � B � ¢3 1
5 2
≤¢ 2 �1

�5 3
≤ �

I3C � £2 1 0
0 3 2
4 �1 0

≥
CI3 � £2 1 0

0 3 2
4 �1 0

≥ ;I3 � £1 0 0
0 1 0
0 0 1

≥ ;

I2C � ¢3 �2
1 4

≤CI2 � ¢3 �2
1 4

≤;I2 � ¢1 0
0 1
≤; 35. a.

The A matrix and X matrix are the same; no
b. The first system has an infinite number of 

solutions of the form the 

second system has no solution.
If a coefficient matrix does not have an inverse,
then any system with those coefficients will
have an infinite number of solutions or no
solution.

37.

39.

41.

43.

45. ; 

47. and 

where t is any real number. The equation is 

which reduces to 

49.

Section 12.5, page 824

1. or 

3. or 

5. or 

7. or 

9. or 

11. or or 
or y � �2x � �221,

y � �2x � 221,y � 3x � �4,y � 3x � 4,

y � 2x � 4,y � 0x � 2,

y � 1x � 6,y � �2x � 0,

y � 7x � 3,y � 3x � 7,

y �
3
2x � �B 3

2,y �
3
2x � B 3

2,

y � 1x � �1,y � 9x � 3,

b � 2339.7h � 224.4,l � 10,128.2,

hyperbola

xy � 12;�
t

12 xy � t � 0,

F � t,E � 0,D � 0,C � 0,B � �
1

12 F,A � 0,

y � e x � 4e�x � 1c � 1b � �4,a � 1,

�4 � 10,000a � 1000b � 100c � 10d � e110, �42
5 � 16a � 8b � 4c � 2d � e12, 52
3 � a � b � c � d � e11, 32
0 � 16a � 8b � 4c � 2d � e1�2, 02
�1 � 625a � 125b � 25c � 5d � e1�5, �12
y � ax4 � bx3 � cx2 � dx � e1x, y2

3 � 512a � 64b � 8c � d18, 32
�7 � 64a � 16b � 4c � d14, �72
1 � 8a � 4b � 2c � d12, 12
5 � d10, 52
y � ax3 � bx2 � cx � d1x, y2

y � 0.5x2 � 1.5x � 2.c � 2;b � �1.5,a � 0.5,

y � x2 � 1c � �1;b � 0,a � 1,

y �
1
2 t �

3
2 ;x � t,

¢ 4
�7
≤¢ 1 �2

�3 6
≤¢x

y
≤ �¢ 3

�9
≤;¢ 1 �2

�3 6
≤¢x

y
≤ �
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13. or 
or 

15. or 
or 

17.

19. No solutions

21. or

23. or 
or or 

25. or 

27. or 
or or

29. center (0, 0); 

31. center (7.5, 12.5); 

33. (440.2, 38205.5) and (1893.1, 81794.5).

35. Two possible boxes: one is 2 by 2 by 4 m and the
other is approximately 3.123 by 3.123 by 1.640 m.

37. 39. 1.6 and 2.6

41. 43. 12 ft by 17 ft

45. 47.

Section 12.5.A, page 832

1.

3. �10 � y � 10�10 � x � 10;

�10 � y � 10�10 � x � 10;

y � 6x � 98 � 15 inches

15 and �12

�4 and �12

r � 12.75

r � 5

y � �0.0480x � 1.4873,
y � �1.4873x � 0.0480,y � 1.4873

x � �0.0480,y � 0.0480x � �1.4873,

y � �7.7796
x � �0.9324,y � �2.2596x � �3.8371,

y � 11.7195
x � 2.8120,y � 7.7230x � 2.1407,y � 7.7374

x � �3.1434,y � 19.3201x � �4.8093,

y �
�3 � 2105

8x �
13 � 2105

8 ˛,

y �
�3 � 2105

8x �
13 � 2105

8 ˛,

y � �0.8145x � �0.9519,

y � 0.5986x � 1.4184,
y � 0.9578x � 0.3634,y � 0.4412x � �1.9493,

y � 2.4814x � 2.8073,y � 1.0826
x � 1.3163,y � �8.1891x � �1.6237, 5.

7.

9.

11.

13.

corner points: 10, 02, 10, 62, a31
3, 0b, 14, 32

0 � y � 100 � x � 10;

�10 � y � 10�10 � x � 10;

�10 � y � 20�10 � x � 10;

�10 � y � 10�10 � x � 10;

�10 � y � 10�10 � x � 10;
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15.

corner points: 

17. At (0, 6), the objective function has a value of 30.

19. At (0, 0), the objective function has a value of 0.

21. 24 roast beef sandwiches for a profit of $72

23. 3000 peach trees and 27,000 almond trees

Chapter 12 Review Exercises, page 835

1. 3.

5. 7.

9. for any real number t

11. 37 and 13. (c) 15. 100

17. 19.

21. ; consistent

23. no solution; inconsistent

25. for any real 

number t; consistent

27. 29. Not defined

31. 33.

35.

37.

39.

41.

43. or

45. or 

47. maximum is 150 at (5, 0); minimum is 20 at (0, 2)

49. minimum of 97.5 pounds at (85, 12.5)

x � 1.812, y � 2.717x � �1.692, y � 3.136

x � 1 � 27, y � 1 � 27
x � 1 � 27, y � 1 � 27

x � 3, y � 9 or x � �1, y � 1

y � 5x2 � 2x � 1

w �
46
85z � �

21
34,y � �

14
85,x � �

1
85,

x � 4, y � 3, z � 2

£ 1 2 �2
�1 3 0

0 �2 1
≥¢�9 7

�4 3
≤

¢�2 3
�4 �1

≤
z � t,y �

3
11 t �

10
11,x �

1
11 t �

37
11,

y � �
11
9x �

26
9 ,

8x � 9y � 10z � �3
4x � 3y � 7z � 12x � 3y � 7
2x � 3z � �22x � 6y � 16

�19

z � ty � �2t,x � �t � 1,

x � 2, y � 4, z � 6z � 22y � �70,x � 35,

y � �2x � 0,y � �7x � �5,

10, 02, 10, 42, 12, 02, a20
7 , 18

7 b

0 � y � 100 � x � 10; Chapter 12 can do calculus, page 841

1. 2.

3.

4. 5.

6.

7.

Chapter 13

Section 13.1, page 851

1. The population is the entire student body; the
sample is 50 students from each grade level.

3. The population is the total number of American
families; the sample is 50 families in each of 10
counties in each of 5 states.

5. In #1 the data is qualitative.
In #2 the data is qualitative.
In #3 the data is quantitative and discrete.
In #4 the data is quantitative and continuous.

7. 200 cartons. 9. 2500 families.

11. Exercise Relative frequency
Aerobics 40%
Kick boxing 16%
Tai chi 16%
Stationary bike 28%

13.

Aerobics Kick
boxing

Tai chi Stationary
bike

10%

20%

30%

40%

50%

2x �
2

x � 1 �
3

x � 3

�
3
5

x � 4
�

3
5 ˛x �

1
5

x2 � 2x � 2

2
x � 1 �

3x � 1
x2 � x � 1

�5
2x � 1

�
3x � 1
x2 � 4

�
3

25
x � 2

�

3
25

x � 3
�

7
5

1x � 322

�
1
2

x � 1
�

1
2

x � 1
�1

x � 1 �
2

x � 2
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15. Color Frequency Relative frequency
red 6 24%
blue 8 32%
purple 5 20%
green 4 16%
yellow 1 4%
orange 1 4%

17.

19. symmetric 21. skewed left 23. uniform

25.
2 3 4 7 9
3 3 3 6 8
4 1 1 2 3 5 6 7 7 9 Key: represents 23
5 1 4
6 7

27.
5 6
6
7 0 2 6 8 9

Key: represents 56
8 1 2 3 4 5 6 6 6 7 8
9 0 1 1 2 3 8 9

10 0 0

29. The number 90 is an outlier since it is quite a
distance from the rest of the data.

31. The shape of the fall semester data is basically
symmetric; the summer semester data is skewed
right. It may be that in the summer enrolled
students live closer to campus.

33. 25

0 5 10 15 20 25 30 35

0

5 0 6

2 0 3

red blue purple green yellow orange

10%

20%

30%

40%

35. Sample answer: the histogram is not as symmetric
as the stem plot. The histogram more accurately
shows the distribution of the data due to the
smaller class interval of 5.

Section 13.2, page 862

1. approximately 43.429

3. approximately 7.583

5. 42 7. 5.15

9. mean: 12.2
median: 12
mode: 13

11. 53 13. Grains

15. The median is larger than the mean.

17. The mean and the median are the same.

19. approximately 2.828

21. approximately 7.071

23.

25.

27. 19 29. 44

31. 7 33. 21

35. five-number summary: 8, 17, 18.5, 24, 27

37. five-number summary: 50, 62.5, 73.5, 83.5, 94

39. mean: 43.167 median: 42.5

41. standard deviation: 20.3
range: 80
interquartile range: 35

43. The sample standard deviation is a good measure
of dispersion because the data set is relatively
small.

50 94

8 27

s � 13.176; s � 13.518

s � 5.249; s � 5.447
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45. 90.4

47.

49. The median more accurately describes the
“typical” salary, since the outlier of 105,000 has a
large effect on the mean.

51. Answers may vary. Sample:
data mean standard deviation

26,28,30,32,34 30 3.162
20,25,30,35,40 30 7.906

53. The mean will increase by the value of k.

55. The mean will be multiplied by the constant k.

57. All data values must be the same.

Section 13.3, page 872

1. {A, B, C, D} 3. 0.8

5. Outcome black red white

Probability

7. 9. approximately 0.05 or 5%

11. {0, 1, 2} 13. approximately 39%

15. Number of blue 0 1 2

Probability

17. 12.52 19. 17.2 21. 0.41 23. 0.026

25.

27. 1 to 5 29.

31. approximately 0.55

33. The median appears to occur at 15 inches of rain.

35. or 50%5
10

1
2

0.1

0.2

0.3

1 2 3 4 5

0.4

0.5

9
64

30
64 �

15
32

25
64

1
216

1
6

1
3

1
2

median mean

Section 13.4, page 882

1. Outcome red blue green yellow
Probability

3. 0.0016

5. Outcome nun gimel hay shin
Probability 0.1 0.45 0.24 0.21

7. 0.0001

9. Answers may vary. Sample:
Outcome 2 3 4 5 6 7 8 9 10 11 12

Probability

11. Answers may vary. Sample: 6.89

13. approximately 0.0027 15. 0.0016

17. 0.56; approximately 0.176 19. 2048

21. 3,268,760 23. 362,880

25. approximately 0.04 27. 12,870

29. approximately 

31. 48,228,180; 

33.

approximately 0.008
approximately 0.411

35. 366 people

Section 13.4A, page 889

1. 0.35 3.

5.

7. approximately 0.738

9. approximately 0.0796

11. approximately 0.000023

13. expected value: 50; standard deviation: 5

15. approximately 0.160; approximately 0.185

Section 13.5, page 896

1. 20 3. approximately 0.68

P142 � 0.004
P132 � 0.047
P122 � 0.211
P112 � 0.422
P102 � 0.316

P142 � 0.179
P132 � 0.384
P122 � 0.311
P112 � 0.111
P102 � 0.015

n � 35: approximately 0.814
n � 20:
n � 3:

probability � 1 �
365 Pn

365n

365!
1365 � n2!

1.03669 � 1051;

3.108 � 10�4

1
50

4
50

5
50

5
50

6
50

7
50

5
50

6
50

6
50

4
50

1
50

�0.04�0.15�0.31�0.50

Answers to Selected Exercises 1135
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5. 5. quantitative

7. 18 2
19
20
21
22 2 3 8
23 2 3
24 4
25
26 0
27 7
28 4 8
29 1 4 4
30 5 7 7
31 7 9 9 9
32 2 3 5 7
33 0 0 1 4
34 0
35 2
36 0 1
37 Key represents 18.2
38
39 0

9. The distribution is skewed left.

11. 31.2 13. 4.72 15.

17.

19. Outcome 1 2 3 4 5
Probability 0.1 0.2 0.4 0.2 0.1

21. 0.7 23. 0 to 3

25. Number of red 0 1 2 3
Probability 0.512 0.384 0.096 0.008

27.

29. 0.4; 0.53; 0.07 31. 0.5 33. 0.86

35. approximately 0.0048 37. 3.08; 1.3

1 2 3 4

0.5

1.0

18.2 39

Q1 � 27.7; Q3 � 33

18 0 2

1136 Answers to Selected Exercises

0.1

−40

−0.01

60

7.

9. the mean is 70. The standard deviation is 5.228.

11. 0.5 13. 0.68 15. 0.8385

17.

19.

21. 0.19 23. 0.48 25. 0.16

27. 0.815 29. 0.48

31. Fifty percent of the scores
fall between 63.25 and 76.75.

Chapter 13 Review, page 900

1. qualitative

3.

Q1 � 63.25; Q3 � 76.75;

$1.35 S 1.43 z-value
$1.00 S �3.57 z-value
$0.95 S �4.29 z-value

530 S 0.3 z-value
640 S 1.4 z-value
450 S �0.5 z-value
560 S 0.6 z-value

0.1

0 1000

−0.01

sparrow purple
finch

chickadee cardinal bluejay

10

15

20

25

5
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39.

41. 0.68 43. 99.85% 45. 0.55

Chapter 13 can do calculus, page 907

In Exercises 1–6, estimates may vary.

1. 2. 3.

4. 5. 6.

7. Your answer should be close to 0.7301. A sample is
shown of the program using the normal curve 

with equation 

and 

(Scales )

8. Samples of the program are shown

for h � 3; area � 1.74

84 � X � 192, �0.01 � Y � 0.05

h � 0.025.b � 150,

a � 100,y �
1

1812p
e�
1x�13822

648 ;

�5.67�0.51�0.14

�4.5�2�1
3

40

0.1

−0.01

110

for 

for 
(Scales 
The area estimates get larger for larger values of h.
The value for is close to 2, which is the exact
area under the curve from 0 to 1.

9. A sample is shown of the program using the
equation of the standard normal curve with

and The estimate is very
close to the expected area of 0.997, or 99.7% of the
area under the curve.

(Scales 

Chapter 14

Section 14.1, page 916

1.

�3 � x � 3, �0.5 � y � 12

h � 0.5.b � 3,a � �3,

h � 5

�3.7 � x � 5.7, �1 � y � 52
h � 5; area � 2.02

h � 4; area � 1.856

Answers to Selected Exercises 1137

x 2.9 2.99 2.999

f(x) 0.25641 0.25063 0.25006



3.

5.

7.

9.

11. 1.5 13. 1.25 15 1.5 17. 0.333

19. 21. 0.2887 23. 0 25. 1

27. does not 

exist

f 1x2lim
xS2

f 1x2 � 1;lim
xS0

f 1x2 � �1;lim
xS�3

�2

lim
xS0

� 0

lim
xS1

 � �0.1111

lim
xS�7

� �0.1667

lim
xS0

� 0.3535

lim
xS3

� 0.25

29. does not exist; 

31. ; 

33. a.

b. does not exist.

c. d. does not exist.

35. No matter how close x gets to c, there are still an
infinite number of both rational and irrational
numbers between x and c, so t(x) will take the
values 0 and 1 an infinite number of times, but
never get close to a single number for all values of
x that are very close to c.

Section 14.2, page 923

1. 5 3. Limit does not exist.

5. 0 7. 9. 47 11. 7

13. 15.

17. 19. 0 21.

23. The limit does not exist. Values of x less than 
are mapped by the function to and values of x
more than are mapped by the function to 1.

25. 12 27.

29. As the angle t in standard position gets closer to 

the x-coordinate of the point at which the 

terminal side of t crosses the unit circle gets closer
to 0. Since this x-coordinate is the cosine of the
angle t, we have cos t � 0.lim

tS p
2

p

2 ,

1
222

�3
�1

�3

�
1

222
1
2

�
1

25214

�
3
5

f 1x2lim
xS2

f 1x2 � 3lim
xS1

f 1x2lim
xS�2

1

1

2

3

4

5

y

x

2−2 −1

f 1x2 � 1lim
xS2

f 1x2 � 1lim
xS0

f 1x2 � 2;lim
xS�3

f 1x2 � 0lim
xS2

f 1x2lim
xS0

f 1x2 � 2;lim
xS�3

1138 Answers to Selected Exercises

x 3.001 3.01 3.1

f(x) 0.24994 0.24938 0.2439

x

f(x) 0.35809 0.354 0.3536

�0.001�0.01�0.1

x

f(x) �0.1667�0.1666�0.1662

�7.001�7.01�7.1

x 0.9 0.99 0.999

f(x) �0.1111�0.1115�0.1149

x 0.001 0.01 0.1

f(x) 0.35351 0.35311 0.34924

x

f(x) �0.1671�0.1667�0.1667

�6.9�6.99�6.999

x 1.001 1.01 1.1

f(x) �0.1075�0.1107�0.1111

x

f(x) 0.04996 0.005 0.0005

�0.001�0.01�0.1

x 0.001 0.01 0.1

f(x) �0.05�0.005�0.0005



31. Using the function when x is
close to 2 but slightly more than 2, we have 

When x is close to 2 but slightly less
than 2 we have In this case, the
difference is either 5 or 4 depending on whether x
is more than 2 or less than 2 and so the limit
doesn’t exist.

33.

35. Many correct answers, including 

and In this case, does 

not exist by Example 10; a similar argument 
shows that does not exist. But 

by Exercise 22.

Section 14.2A, page 927

1. 0 3. 0 5. 6

7. a. 0 b. 1 c. d.

9. a. 1 b. 0 c. Limit does not exist.
d. Limit does not exist.

11. a. 5 b. 0 c. 4 d. 2

13. 3 15. 17. Limit does not exist.

19. 21. 2 23. and 

Section 14.3, page 935

The symbol means “implies.”

1. Given let Then 

3. Given let Then 

5. Given let Then 

7. Given let be any positive number. Then
for every number x (including those satisfying0 f 1x2 � 4 0 � 0 4 � 4 0 � 0 6 e0 6 0 x � 1 0 6 d2,

de 7 0,

0 f 1x2 � 15 0 6 e
0 16x � 32 � 15 0 6 e10 6x � 12 0 6 e1

0 61x � 22 0 6 e1e10 x � 2 0 6 e6 1 6 0 x � 2 0 6

0 6 0 x � 2 0 6 d1d �
e

6.e 7 0,

0 x � 5 0 6 e1 0 f 1x2 � 5 0 6 e
0 6 0 x � 5 0 6 d1d � e.e 7 0,

0 f 1x2 � 7 0 6 e
0 13x � 22 � 7 0 6 e10 3x � 9 0 6 e1

0 31x � 32 0 6 e13 0 x � 3 0 6 e10 x � 3 0 6 e3 1

0 6 0 x � 3 0 6 d1d �
e

3.e 7 0,

1

3x 4 � 1lim
xS2�

3x 4 � 2lim
xS2�

�2.5

1
8

�1�1

1 f � g2 1x2 � 0lim
xS0

g 1x2lim
xS0

f 1x2lim
xS0

c � 0.g1x2 �
�x0 x 0 ,

f 1x2 �
0 x 0
x ,

�1

3�x 4 � �2.x � 2,
3�x 4 � �3.

x � 2,
g1x2 � x � 3�x 4 , 9. Given let Then 

11. Given let Then 

13. Given let Then

15. Let Then there exist positive numbers 

such that if then 

and if then 

Choose to be the smaller of Then if 

we have both 

and Then 

This can be

rewritten as 
Now using the triangle inequality we have

Therefore, 

Section 14.4, page 946

1.

3. Continuous at and discontinuous at

5. Continuous at and discontinuous at

7.

9.

1
20 � f 122

�5
1�42 1252 �

22 � 9
122 � 2 � 62 122 � 6 � 2 � 92 �

lim
xS2
1x2 � 92

lim
xS2
1x2 � x � 62 � lim

xS2
1x2 � 6x � 92 �

x2 � 9
1x2 � x � 62 1x2 � 6x � 92 �lim

xS2
f 1x2 �lim

xS2

9 � 513 � 227 � 14 � f 132
1lim

xS3
 52 1lim

xS3
 1x � 22 27 �x2 �lim

xS3
151x � 2272 �lim

xS3

 x 2 �lim
xS3

1x2 � 51x � 2272 �lim
xS3

f 1x2 �lim
xS3

x � �2
x � 3;x � 0

x � 0
x � 3;x � �2

x � 3, x � 6

1 f 1x2 � g 1x2 2 � L � M.lim
xSc

0 f 1x2 � g1x2 � 1L � M2 0 6 e.

0 f 1x2 � L 0 � 0M � g 1x2 0 6 e.

0 f 1x2 � L 0 � 0 g1x2 � M 0 6 e2 �
e

2 � e.

0 g1x2 � M 0 6 e2.

0 f 1x2 � L 0 6 e20 6 0 x � c 0 6 d,

d1, d2.d

0 g1x2 � M 0 6 e2.0 6 0 x � c 0 6 d2,

0 f 1x2 � L 0 6 e20 6 0 x � c 0 6 d1,

d1, d2e 7 0.

0 f 1x2 � 0 0 6 e0 x2 � 0 0 6 e10 x2 0 6 e1
0 x 0 2 6 e10 6 0 x 0 6 2e10 6 0 x � 0 0 6 d1

d � 2e.e 7 0,

0 f 1x2 � 1 0 6 e
0 2x � 4 0 6 e1 0 12x � 52 � 1 0 6 e1

0 21x � 1�22 2 0 6 e12 0 x � 1�22 0 6 e1

0 x � 1�22 0 6 e2 10 6 0 x � 1�22 0 6 d1

d �
e

2.e 7 0,

0 f 1x2 � 1�22 0 6 e
0 1x � 62 � 1�22 0 6 e10 x � 4 0 6 e1

0 6 0 x � 4 0 6 d1d � e.e 7 0,
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11.

13. f is not defined at 

15. f is not defined at 

17. , but hence 

19. Continuous 21. Continuous

23. Continuous

25. Continuous at every real number except 

27. Continuous at every real number except and

29.

31. f has a removable discontinuity at 

33. f has a removable discontinuity at 

35. If for all then for all
and for all Thus 

does not exist. Hence the definition of continuity
cannot be satisfied, no matter what g(0) is.

Section 14.5, page 957

1. 3. 0 5. 0 7. 0

9. No vertical asymptotes; 

11. No vertical asymptotes;  

13. Vertical asymptote 

15. 17.

19. No horizontal asymptote 21.

23. 25. 5 27. 2 29. 31.

33. 35. 1 37. 39. 0 41. 0�1�23

22
3�

3
22

q

1
2

y � �2y �
3
4

lim
xS�q

 f 1x2 � �q

lim
xSq

 f 1x2 � q;x � �10;

lim
xS�q

 f 1x2 � �1

lim
xSq

 f 1x2 � 2;

lim
xS�q

 f 1x2 � 0

lim
xSq

 f 1x2 � q;

�1

lim
xS0

 g 1x2x 6 0.g1x2 � �1x 7 0
g1x2 � 1x � 0,g1x2 � f1x2

x � 4.

g1x2 �
1

2 � 2x

x � 1.

g1x2 �
1

x � 1

b � 1

x � 2
x � 0

x � 3

f 1x2 � f 102lim
xS0

f 102 � 1;lim
xS0

 f 1x2 � 0

x � �1.

x � 3.

6
25 � f136236 � 6

30 � 30 �
216
900 �

36136
136 � 62 136 � 62 �

lim
xS36 

x � lim
xS36 
2x

lim
xS36
1x � 62 � lim

xS36
1x � 62 �

f 1x2 �
lim
xS36
Ax2x B

lim
xS36
1x � 622 �lim

xS36

43. With a parachute: 20 ft/sec 
Without a parachute: 177.78 ft/sec

45. 1 47. 1

49. The first part of the informal definition is included
in the second part, which says “the values of f(x)
can be made arbitrarily close to L by taking large
enough values of x.” This means that whenever
you specify how close f(x) should be to L, we can
tell you how large x must be to guarantee this. In
other words, you specify how close you want f(x)
to be to L by giving a positive number and we
tell you how large x must be to guarantee that f(x)
is within of L, that is, to guarantee that

We do this by giving a positive
number k such that whenever

This can be reworded as follows: For every
positive number there is a positive number k
(depending on ) with this property:

If then 

Chapter 14 Review, page 961

1. 2 3. 2 5. 7.

9. 11. 4 13. 1

15. Given let Then 

17. Continuous at discontinuous at 

19. a.

b. f is not defined at and hence is
discontinuous there.

21. Vertical asymptotes at and The
graph moves upward as x approaches from
the left and downward as x approaches from
the right. The graph moves downward as x
approaches 2 from the left and upward as x
approaches 2 from the right.

23. 25. 27.

Chapter 14 can do calculus, page 967

1. a. upper estimate: 259 ft.
lower estimate: 157 ft.

y �
1
2

10
3

1
2

�1
�1

x � 2.x � �1

x � 3

4
5 � f 122

�4
�5 �

22 � 2 � 6
22 � 9

� 
lim
xS2 1x2 � x � 62

lim
xS2 1x2 � 92 �

lim
xS2

 x
2 � x � 6
x2 � 9

�lim
xS2

 f 1x2 �

x � 2x � �3;

0 f 1x2 � 7 0 6 e
0 12x � 12 � 7 0 6 e10 2x � 6 0 6 e1

0 21x � 32 0 6 e120 x � 3 0 6 e10 x � 3 0 6 e2 1

0 6 0 x � 3 0 6 d1d �
e

2 .e 7 0,

1
2

�2�5

0 f 1x2 � L 0 6 e.x 7 k,

e

e,
x 7 k.

0 f 1x2 � L 0 6 e
0 f 1x2 � L 0 6 e.

e

e
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b.

c. less than 5 ft: 
less than 1 ft: 

2. Lower estimate: 21
Upper estimate: 25
For the lower estimate, count all of the complete
squares beneath the curve. For the upper estimate,
count all of the complete squares below the curve
and estimate the number of partial squares below
the curve.

3. a. 1.798 b. The degree of accuracy can be
increased by lowering the 

4. between 15 and 17 ft. 5. 1.0

6. between 0.67 and 0.72 ft.

Algebra Review

Section A.1, page 972

1. 36 3. 73 5.

7. 9. 11.

13. 15. 17.

19. 21. 23.

25. 27. 29.

31. 33. 35.

37. 39. 41.

43. 45. 47.

49. 51. 53.

55. 57. 59.

61. Negative 63. Negative 65. Negative

67. 69. 71.

73. Many possible examples, including
but 

75. Many possible examples, including
but 13 � 222�3 � 65 � 777632 � 23 � 9 � 8 � 72;

13 � 422 � 72 � 4932 � 42 � 9 � 16 � 25,

brs�st

c2rta6tb4t3s

a �
1
ac3d6a7c

b6

1
1108x2

1
1c10d6 2a12b8

b2c2d6ce9x7

2�122123xy

a8x�38x�1y3ab3

384w6�21a69x4y2

24x70.03y9x10

129
8�

211
216

81
16

�1121
3�

125
64

�5

¢t.

¢t 6 0.0098 sec.
¢t 6 0.04902 sec.

−5

0 5

110
77. Many possible examples, including 

but 

79. False for all nonzero a; for instance,
but 

Section A.2, page 976

1. 3.

5. 7.

9.

11. 13. 15.

17.

19. 21.

23. 25.

27. 29.

31. 33.

35. 37.

39. 41.

43. 45.

47.

49. 51.

53.

55. 57. 59. 6 61. 1 63. 5

65. 67.

69. 71.

73.

75.

77. 79.

81.

83. Example: if then 
correct statement: 

85. Example: if then 
correct statement: 

87. Example: if then 
correct statement: 

89. Example: if then correct
statement: 

91. Example: if then 
correct statement: 

93. If x is the chosen number, then adding 1 and
squaring the result gives Subtracting 1
from the original number x and squaring the result
gives Subtracting the second of these1x � 122.

1x � 122.
x2 � 5x � 6

1x � 32 1x � 22 �42 � 5 � 4 � 6;
14 � 32 14 � 22 �x � 4,

y � y � y � 3y
2 � 2 � 2 � 23;y � 2,

17x2 17y2 � 49xy7 � 2 � 3;
17 � 22 17 � 32 �y � 3,x � 2,

1x � y22 � x2 � 2xy � y2
12 � 322 � 2 � 32;y � 3,x � 2,

31 y � 22 � 3y � 6
314 � 22 � 13 � 42 � 2;y � 4,

2x4n � 5x3n � 8x2n � 18xn � 5

xm�n � 2xn � 3xm � 634�r�t

x3 � 1a � b � c2x2 � 1ab � ac � bc2x � abc

abx2 � 1a2 � b22x � ab

3ax2 � 13b � 2a2x � 2b13x2 � 4x � 13

9 � 61y � yx � 25

�63

�3x3 � 5x2y � 26xy2 � 8y3

x3 � 6x2 � 11x � 624x3 � 4x2 � 4x

�15w3 � 2w2 � 9w � 18

2y3 � 9y2 � 7y � 39x4 � 12x2y4 � 4y8

16x6 � 8x3y4 � y825x2 � 10bx � b2

y2 � 22y � 12116a2 � 25b2

x2 � 163y3 � 9y2 � 4y � 12

�6x2 � x � 35y2 � 7y � 12

2x2 � 2x � 12x2 � x � 2

12a2b � 18ab2 � 6a3b212z4 � 30z3

12a2x2 � 6a3xy � 6a2xy

15y3 � 5y�5xy � x�3x3 � 15x � 8

4z � 12z2w � 6z3w2 � zw3 � 8

5u3 � u � 4�x3 � 4x2 � 2x � 3

�2a2b8x

�32 � �91�322 � 1�32 1�32 � 9,

2
6
3 � 22 � 4

26

23 �
64
8 � 8,
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squares from the first yields: 
Dividing by 

the original number x now gives So the 

answer is always 4, no matter what number x is
chosen.

95. Many correct answers

Section A.3, page 981

1. 3.

5. 7.

9. 11.

13. 15.

17. 19.

21. 23.

25. 27.

29. 31.

33. 35.

37.

39. 41.

43. 45.

47.

49.

51. 53.

55.

57. 59.

61.

63.

65. If 
then and But implies
that and hence that 
or equivalently, that Since there is no real
number with this property, cannot possibly
factor in this way.

Section A.4, page 985

1. 3. 5.

7. 9. 11.

13. 15. 17.

19. 21. 23.

25.
x2 � xy � y2 � x � y

x3 � y3

2x � 4
x13x � 42

x � 3
1x � 422

�1
x1x � 12

b2 � c2

bc
ce � 3cd

de
121
42

29
35

1
x

a � b
a2 � ab � b2

x � 2
x � 1

195
8

9
7

x2 � 1
d2 � �1.

1 � cd � 1�d2d � �d2,c � �d
c � d � 0cd � 1.c � d � 0

x2 � 1 � 1x � c2 1x � d2 � x2 � 1c � d2x � cd,

1x2 � 82 1x � 42 � Ax � 18 B Ax � 18 B 1x � 42
1a � 2b2 1a2 � b2

1x � z2 1x � y21x2 � 3y2 1x2 � y2
1z � 12 1z2 � z � 12 1z � 12 1z2 � z � 12

19 � y22 13 � y2 13 � y21 y2 � 52 1 y2 � 22
1x � 22 1x2 � 2x � 42 1x � 22 1x2 � 2x � 42

1x3 � 232 1x3 � 232 �

12x � y2 14x2 � 2xy � y22
1x � 12 1x2 � x � 121�x � 523
12 � x2 14 � 2x � x221x � 223

1x � 52 1x2 � 5x � 252
12x � 5y2214u � 32 12u � 32
21x � 12 15x � 129x1x � 82
12z � 32 1z � 4213x � 12 1x � 12
1x � 92 1x � 221x � 52 1x � 22
1x � 3221 y � 92 1 y � 42
1z � 32 1z � 121x � 32 1x � 22
1x2 � y22 1x � y2 1x � y217 � 2z22
A15 � x B A15 � x B19x � 222
13y � 52 13y � 521x � 22 1x � 22

4x
x � 4.

1x2 � 2x � 12 � 4x.1x2 � 2x � 12 �
1x � 122 � 1x � 122 �

27.

29. 2 31. 33. 35.

37. 39. 41.

43. 45. 47.

49. 51. 53.

55. 57. 59.

61. Example: if then 

correct statement: 

63. Example: if then 

correct statement: 

65. Example: if then correct 

statement: 

67. Example: if then 

correct 

statement: 

Section A.5, page 991

1. 13; 3.

5.

7.

9. a.

(0, 12)

(6, 36)

1
0

(1992)
2 3 4 5 6 7

10 M

20 M

30 M

40 M

22 0 a � b 0 ; aa � b
2 , a � b

2 b
26 � 216 � 1.05; a22 � 23

2 , 32b
217; a3

2, �3ba�1
2, �1b

A1x � 1y B �
1

1x � 1y
� 1

A24 � 29 B �
1

24 � 29
� 4 � 9;

y � 9,x � 4,

u
v �

v
u �

u2 � v2

vu

1
2 �

2
1 � 1;v � 2,u � 1,

a 1
1a � 1b

b
2

�
1

a � 21ab � b

a 1
14 � 19

b2

�
1

4 � 9;

b � 9,a � 4,

1
a �

1
b

�
b � a

ab

1
1 �

1
2 �

1
1 � 2;b � 2,a � 1,

xy
x � y

�1
x1x � h2

�3y � 3
y

y � x
xy

cd1c � d2
c � d

x2y2

1x � y2 1x � 2y2

x � 3
2x

u2

v w
35
24

1u � v2 14u � 3v2
12u � v2 12u � 3v2

u � 1
u

5y2

31 y � 52

12x
x � 3

3y
x2

2
13c2

�6x5 � 38x4 � 84x3 � 71x2 � 14x � 1
4x1x � 123 1x � 223
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b.

c. In 1995, about 24 million personal computers
were sold. We must assume that sales
increased steadily.

11.

13.

15.

17.

19. Center radius 

21. Center radius 

23. Center radius 

25. Hypotenuse from (1, 1) to has length 
other sides have lengths and Since

this is a right triangle.

27. Hypotenuse from to has length
other sides have lengths and Since

this is a right triangle.

29.

31.

33. 1x � 522 � 1y � 422 � 16

1x � 122 � 1y � 222 � 8

1x � 222 � 1y � 222 � 8

A15 B 2 � A145 B 2 � A150 B 2, 145.15150;
13, �221�2, 32

A12 B 2 � A18 B 2 � A110 B 2, 18.12
110;12, �22

1169.251�12.5, �52,
2171�3, 22,
21101�4, 32,

1 5 8

−2

−4

1 2 3

1

4

x2 � y2 � 2

1x � 322 � 1y � 422 � 4

(3, 24)

1
0

(1992)
2 3 4 5 6 7

10 M

20 M

30 M

40 M

35.

37. and 

39. Assume The other two vertices of one
possible square are 
those of another square are 

those of a third square are 

41. (0, 0), (6, 0)

43.

45.

47. M has coordinates by the midpoint 

formula. Hence the distance from M to (0, 0) is

and the distance from M to (0, r) is the same:

as is the distance from M to 

49. Place one vertex of the rectangle at the origin,
with one side on the positive x-axis and another
on the positive y-axis. Let be the coordinates
of the vertex on the x-axis and the
coordinates of the vertex on the y-axis. Then the
fourth vertex has coordinates (draw a
picture!). One diagonal has endpoints 
and so that its length is 

The other
diagonal has endpoints (0, 0) and and hence
has the same length: 

51. The circle has center and
radius (the distance from to (0, 0)). So the
family consists of every circle that is tangent to the
y-axis and has center on the x-axis.

53. The points are on opposite sides of the origin
because one first coordinate is positive and one is
negative. They are equidistant from the origin
because the midpoint on the line segment joining
them is

c c � 1�c2
2 , 

d � 1�d2
2 d � 10, 02.

1k, 020k 0 1k, 021x � k22 � y2 � k2

210 � a22 � 10 � b22 � 2a2 � b2.

1a, b2
210 � a22 � 1b � 022 � 2a2 � b2.
1a, 02,

10, b2
1a, b2
10, b2

1a, 02

 �
B

s2

4 �
r2

4 .

 
B
a s

2 � sb2

� a r
2 � 0b2

�
B
a� s

2b
2

� ar
sb

2

1s, 02:
 �
B

s2

4 �
r2

4

 
B
a s

2 � 0b2

� a r
2 � rb2

�
B
a s

2b
2

� a� r
2b

2

B
a s

2 � 0b2

� a r
2 � 0b2

�
B

s2

4 �
r2

4 ,

a s
2, r

2b
x � 6

A3, �5 � 111 B , A3, �5 � 111 B

ac �
k � d

2 ,  k � d
2 b .ac �

k � d
2 ,  k � d

2 b ,

1c � 1k � d2, k2;
1c � 1k � d2, d2,

1c � k � d, k2;1c � k � d, d2,
k 7 d.

12, 121�3, �42
x2 � y2 � 4x � 2y � 0

Answers to Selected Exercises 1143



Advanced Topics

Section B.1, page 1000

1. 720 3. 220 5. 0 7. 64 9. 3,921,225

11.

13.

15.

17.

19.

21. 23. 56

25. 27. 29.

31. 33. 4032 35. 160

37. a.

b.

39.

41.

43. a.

b.

c. When h is very close to 0, so are the last four 

terms in part b, so 

45.

a12
2
b x10h � a12

3
b x9h2 � a12

4
b x8h3 � p �

f 1x � h2 � f 1x2
h

�
1x � h212 � x12

h
� a12

1
b x11 �

a5
1
b x4 � 5x4.

f 1x � h2 � f 1x2
h

�

a5
3
b x2h2 � a5

4
b xh3 � h4

f 1x � h2 � f 1x2
h

� a5
1
b x4 � a5

2
b x3h �

a5
2
b x3h2 � a5

3
b x2h3 � a5

4
b xh4 � h5

a5
4
b xh4 � h5� � x5 � a5

1
b x4h �

�x5 � a5
1
b x4h � a5

2
b x3h2 � a5

3
b x2h3 �

f 1x � h2 � f 1x2 � 1x � h25 � x5 �

sin4 u4i cos u sin3 u �
6 cos2 u sin2 u �cos4 u � 4i cos3 u sin u �

an
2
b � an

3
b � p � a n

n � 1
b � an

n
b

a n

n � 1
b 11 � 1n�1 � 1n � an

0
b � an

1
b �

an
2
b 1n�2 � 12 � an

3
b 1n�3 � 13 � p �

2n � 11 � 12n � 1n � an
1
b 1n�1 � 1 �

an
1
b � a n

n � 1
b �

n!
1!1n � 12! �

n1n � 12!
1n � 12! � n

a9
1
b �

9!
1!8! � 9; a9

8
b �

9!
8!1! � 9

35
8 u�5

35c3d410x3y2�8i

x�12 � 4x�8 � 6x�4 � 4 � x4

c1045c8 � 10c9 �210c6 � 120c7 �
210c4 � 252c5 �1 � 10c � 45c2 � 120c3 �

x3 � 6x21x � 15x2 � 20x1x � 15x � 61x � 1

32x5 � 80x4y2 � 80x3y4 � 40x2y6 � 10xy8 � y10

a5 � 5a4b � 10a3b2 � 10a2b3 � 5ab4 � b5

x5 � 5x4y � 10x3y2 � 10x2y3 � 5xy4 � y5

when h is very close to 0.

47. a.

b. Since 

c.

d. For example, rows 2 and 3 of Pascal’s triangle
are

1 2 1

1 �3 3 1

that is,

The circled 3 is the sum of the two closest
entries in the row above: But this just 

says that which is part c with 

and Similarly, in the general case,
verify that the two closest entries in the row 

above are and and use 

part c.

Section B.2, page 1009

1. Step 1: For the statement is 
which is true. Step 2: Assume that the statement is
true for that is,

Add to
both sides, and rearrange terms:

But this last line says that the statement is true for
Therefore, by the Principle of Mathe-

matical Induction the statement is true for every
positive integer n.

n � k � 1.

1 � 2 � 22 � 23 � p � 2k�1 � 21k�12�1 � 2k�1 � 1

1 � 2 � 22 � 23 � p � 2k�1 � 21k�12�1 � 212k2 � 1

1 � 2 � 22 � 23 � p � 2k�1 � 2k � 2k � 1 � 2k

2k1 � 2 � 22 � 23 � p � 2k�1 � 2k � 1.
n � k:

1 � 21 � 1,n � 1

a n

r � 1
ban

r
ban � 1

r � 1
b

r � 0.n � 2

a3
1
b � a2

0
b � a2

1
b,
1 � 2.

a3
3
ba3

2
ba3

1
ba3

0
b

a2
2
ba2

1
ba2

0
b

an � 1
r � 1

b1n � 12!
1r � 12! 3 1n � 12 � 1r � 12 4 ! �

n!1n � 12
1r � 12!1n � r2! �

n!1n � r2 � n!1r � 12
1r � 12!1n � r2! �

n!
r!1n � r2! �

n!
1r � 12! 3n � 1r � 12 4 ! �an

r
b �a n

r � 1
b �

3 1n � 12 � 1r � 12 4 ! � 1n � r2!
1n � 12 � 1r � 12 � n � r,

� 1n � r2 3n � 1r � 12 4 !
� 1n � r2 3n � 1r � 12 4 1n � 1r � 12 � 12 p 2 � 1
1n � r2 1n � r � 12 1n � r � 22 1n � r � 32 p 2 � 1
1n � r2! �

� 12x11,

a12
10
b x2h9 � a12

11
b xh10 � h11 � a12

1
b x11
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Note: Hereafter, in these answers, step 1 will be
omitted if it is trivial (as in Exercise 1), and only
the essential parts of step 2 will be given.

3. Assume that the statement is true for 

Add to both sides:

The first and last parts of this equation say that
the statement is true for 

5. Assume that the statement is true for 

Add to both sides:

The first and last parts of this equation say that
the statement is true for 

7. Assume that the statement is true for 

Adding to 

both sides yields:

The first and last parts of this equation show that
the statement is true for 

9. Assume the statement is true for 
Adding 1 to both sides, we have: 

or equivalently, 
Therefore, the statement is true for n � k � 1.

1k � 12 � 2 7 1k � 12.k � 1,
k � 2 � 1 7

k � 2 7 k.n � k:

n � k � 1.

�
1k � 122

1k � 12 1k � 22 �
k � 1
k � 2

�
k � 1

1k � 12 � 1

�
k 1k � 22 � 1
1k � 12 1k � 22 �

k2 � 2k � 1
1k � 12 1k � 22

�
k

k � 1
�

1
1k � 12 1k � 22

1
1 � 2 �

1
2 � 3 � p �

1
k 1k � 12 �

1
1k � 12 1k � 22

1
1k � 12 3 1k � 12 � 1 4 �

1
1k � 12 1k � 22

1
1 � 2 �

1
2 � 3 � p �

1
k 1k � 12 �

k
k � 1

.

n � k:

n � k � 1.

�
1k � 12 3 1k � 12 � 1 4 321k � 12 � 1 4

6

�
1k � 12 1k � 22 12k � 32

6

�
1k � 12 12k2 � 7k � 62

6

�
1k � 12 3k 12k � 12 � 61k � 12 4

6

�
k 1k � 12 12k � 12 � 61k � 122

6

�
k 1k � 12 12k � 12

6 � 1k � 122
12 � 22 � 32 � p � k2 � 1k � 122

1k � 122
12 � 22 � 32 � p � k2 �

k 1k � 12 12k � 12
6

n � k:

n � k � 1.

1k � 122.k2 � 21k � 12 � 1 � k2 � 2k � 1 �
1 � 3 � 5 � p � 12k � 12 � 321k � 12 � 1 4 �

21k � 12 � 1
1 � 3 � 5 � p � 12k � 12 � k2.

n � k:

11. Assume the statement is true for 
Multiplying both sides by 3 yields: 
or equivalently, Now since we
know that and hence that 
Therefore, or equivalently,

Combining this last inequality
with the fact that we see that

or equivalently, 
Therefore, the statement is true for 

13. Assume the statement is true for 
Adding 3 to both sides yields:

or equivalently,
Since is

certainly greater than we conclude
that Therefore, the
statement is true for 

15. Assume the statement is true for then 3 is a
factor of that is, for
some integer M. Thus, Now

From the first and last terms of
this equation we see that 

Hence, 3 is a factor of 
Therefore, the statement is true for 

17. Assume the statement is true for 64 is a
factor of Then 
64N for some integer N so that 
64N. Now 

Consequently,

From the first and last parts of this equation we
see that 64 is a factor of 
Therefore, the statement is true for 

19. Assuming that the statement is true for 

Adding to both sides, we 

have

�
2ck � k 1k � 12d � 2c � 2kd

2

�
k 32c � 1k � 12d 4 � 21c � kd2

2

�
k 32c � 1k � 12d 4

2 � c � kd

3c � 1k � 12d 4 � 1c � kd2
c � 1c � d2 � 1c � 2d2 � p �

c � kd
k 32c � 1k � 12d 4

2 .

c � 1c � d2 � 1c � 2d2 � p � 3c � 1k � 12d 4 �
n � k:

n � k � 1.
321k�12�2 � 81k � 12 � 9.

� 64k � 64 � 9 � 64N � 641k � 1 � 9N2.
� 72K � 81 � 9 � 64N � 8k � 17
� 3918k � 9 � 64N2 4 � 8k � 17
� 321k�12�2 � 8k � 17

321k�12�2 � 81k � 12 � 9 � 321k�12�2 � 8k � 8 � 9

918k � 9 � 64N2.32 � 32k�2 �
32� 12k�22 �32k�2�2 �321k�12�2 �

9 �8k �32k�2 �
32k�2 � 8k � 9 �32k�2 � 8k � 9.

n � k:

n � k � 1.
221k�12�1 � 1.314M � 12.

221k�12�1 � 1 �
314M � 12 � 1.

314M2 � 3 � 1 �12M � 4 �413M � 12 �
22 � 22k�1 �22�2k�1 �22k�2�1 �221k�12�1 �

22k�1 � 3M � 1.
22k�1 � 1 � 3M22k�1 � 1;

n � k ;

n � k � 1.
31k � 12 7 1k � 12 � 1.

1k � 12 � 1,
1k � 12 � 331k � 12 7 1k � 12 � 3.

3k � 3 7 k � 1 � 3,
3k 7 k � 1.

n � k:

n � k � 1.
3k�1 � 31k � 12.3k�1 � 3k � 3,

3k�1 � 3 � 3k,
3 � 3k � 3k � 3.

2 � 3k � 3k � 3 � 3k,
2 � 3k � 3.3k � 3

k � 1,3k�1 � 3 � 3k.
3 � 3k � 3 � 3k,

3k � 3k.n � k:
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Therefore, the statement is true for 

21. a.

b. Conjecture:

Proof: The statement is true for by
part a. Assume that the statement is true for

Now use the fact that to write
as follows:

The first and last parts of this equation show
that the conjecture is true for 
Therefore, by mathematical induction, the
conjecture is true for every integer 

23. False; counterexample: 

25. True: Proof: Since the statement
is true for Assume the statement is true for

Then 

The first and last
terms of this inequality say that the statement is
true for Therefore, by induction the
statement is true for every positive integer n.

27. False; counterexample: 

29. Since the statement is true for
Assume the statement is true for 

(with Adding 2 to both sides
shows that or equivalently,

Since , we see
that So the statement is true
for Therefore, by the Extendedn � k � 1.

21k � 12 � 4 7 k � 1.
k � 2 7 k � 121k � 12 � 4 7 k � 2.

2k � 4 � 2 7 k � 2,
2k � 4 7 k.k � 52:

n � kn � 5.
2 � 5 � 4 7 5,

n � 2

n � k � 1.

1k � 122 � 1.k2 � 2k � 1 � 1 �
k2 � 2k � 2 �k2 � 2k � 2 � 2 71 �

1 � 21k � 12 �1 7 k2 �1k � 122 � 21k � 12 �
3 1k � 12 � 1 4 2 �1k � 122 7 k2 � 1.n � k:

n � 1.
11 � 122 7 12 � 1,

n � 9

n � 2.

n � k � 1.

xk�3y3 � p � xyk�1 � yk 4
 � 1x � y2 3xk � xk�1y � xk�2y2 �

xk�2y2 � xk�3y3 � p � xyk�1 � yk2
 � 1x � y2xk � 1x � y2 1xk�1y �

� xk�3y2 � p � xyk�2 � yk�12
 � 1x � y2xk � y1x � y2 1xk�1 � xk�2 y
 � 1x � y2xk � y1xk � yk2
 � 1xk�1 � yxk2 � 1yxk � yk�12

 xk�1 � yk�1 � xk�1 � yxk � yxk � yk�1

xk�1 � yk�1
�yxk � yxk � 0

1x � y2 1xk�1 � xk�2y � p � xy k�2 � y k�12.
xk � yk �

n � k:

n � 2, 3, 4,
xyn�2 � yn�12.x2yn�3 �xn�3y2 � p �

xn�2y �1x � y2 1xn�1 �xn � yn �
x4 � y4 � 1x � y2 1x3 � x2y � xy2 � y32
x3 � y3 � 1x � y2 1x2 � xy � y22;
x2 � y2 � 1x � y2 1x � y2;

n � k � 1.

�
1k � 12 12c � 3 1k � 12 � 1 4d2

2

�
1k � 122c � kd1k � 12

2 �
1k � 12 12c � kd2

2

�
1k � 122c � kd1k � 1 � 22

2

�
2ck � 2c � kd1k � 12 � 2kd

2
Principle of Mathematical Induction, the statement
is true for all 

31. Since the statement is true for 
Assume that and that the statement is true
for Then 

The first and last terms of this
inequality show that the statement is true for

Therefore, by induction, the statement
is true for all 

33. Since and we
see that So the statement is true
for Assume that and that the
statement is true for 
Multiplying both sides by 3 yields:

or equivalently,
But

Therefore, Now we shall show
that Since we have

so that Adding to
both sides of yields: or
equivalently, Consequently,

The first and last terms of this inequality show
that the statement is true for Therefore,
the statement is true for all by induction.

35. a. 3 (that is, for 7 (that is, 
for 15 (that is, for 

b. Conjecture: The smallest possible number of
moves for n rings is Proof: This
conjecture is easily seen to be true for or

Assume it is true for and that we
have rings to move. In order to move the
bottom ring from the first peg to another peg
(say, the second one), it is first necessary to
move the top k rings off the first peg and leave
the second peg vacant at the end (the second
peg will have to be used during this moving
process). If this is to be done according to the
rules, we will end up with the top k rings on
the third peg in the same order they were on
the first peg. According to the induction
assumption, the least possible number of
moves needed to do this is It now takes
one move to transfer the bottom ring [the

st] from the first to the second peg.
Finally, the top k rings now on the third peg
must be moved to the second peg. Once again
by the induction hypothesis, the least number
of moves for doing this is Therefore, the
smallest total number of moves needed to
transfer all rings from the first to the
second peg is 

Hence,2k�1 � 1.2 � 2k � 1 �12k � 2k2 � 1 �
12k � 12 � 1 � 12k � 12 �

k � 1

2k � 1.

1k � 12
2k � 1.

k � 1
n � kn � 2.

n � 1
2n � 1.

n � 4.24 � 12n � 3;
23 � 12n � 2;22 � 12

n � 4
n � k � 1.

3k�1 7 2k�1 � 30k 7 2k�1 � 101k � 12.
30k 7 101k � 12.

30k 7 10k � 10,20k 7 10
10k20k 7 80 7 10.20k � 20 � 4,

k � 4,30k 7 101k � 12.
3k�1 7 2k�1 � 30k.

3 � 2k � 30k 7 2 � 2k � 30k � 2k�1 � 30k.

3k�1 7 3 � 2k � 30k.
3 � 3k 7 312k � 10k2,

3k 7 2k � 10k.n � k:
k � 4n � 4.

34 7 24 � 10 � 4.
24 � 10 � 4 � 16 � 40 � 56,34 � 81

n � 2.
n � k � 1.

k2 � 1 7 k � 1.
k2 � 2k � 1 71k � 122 �k2 7 k.n � k:

k � 2
n � 2.22 7 2,

n � 5.
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the conjecture is true for Therefore,
by induction it is true for all positive integers n.

37. De Moivre’s Theorem: For any complex number
and any positive integer n,

Proof: The theorem is
obviously true when Assume that the
theorem is true for that is, 

Then

i sin 1ku2 4 2.3r1cos u � i sin u2 4 1rk 3cos 1ku2 �
zk�1 � z � zk �

rk 3  cos 1ku2 � i sin 1ku2 4 .
zk �n � k,

n � 1.
zn � rn 3  cos 1nu2 � i sin 1nu2 4 .
z � r1cos u � i sin u2

n � k � 1. According to the multiplication rule for complex
numbers in polar form (multiply the moduli and
add the arguments) we have:

This statement says the theorem is true for
Therefore, by induction, the theorem is

true for every positive integer n.
n � k � 1.

 � rk�15cos 3 1k � 12u 4 � i sin 3 1k � 12u 4 6.
 zk�1 � r � rk 3cos 1u � ku2 � i sin 1u � ku2 4
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absolute value
complex numbers, 638–639
definitions, 107–108, 134
deviations, 858
distance and, 108, 128
equations, 109–111
extraneous solutions, 110–111
functions, 156, 173–174
inequalities, 127–132
properties, 108–109
square roots, 109

acoustics, 696
addition

identities, 582–585, 593–600,
604, 610

matrix, 804–805
vector, 657–659, 662, 683

adjacency matrix, 809–811
adjacent sides, 415
algebraic expressions, 973–977
amplitude, 494–497, 502–505, 516,

563
amplitude modulation (AM), 472,

499
analytic geometry, definition,

691
angle-angle-side (AAS) 

information, 626
Angle of Inclination Theorem,

589–590
angles

arc length, 434–435, 438–439,
776–777

argument, 639
central, 434
coterminal, 434, 436, 450
degree measure, 437–438

angles (continued)
direction, 662–664
double-angle identities,

593–595, 602–603, 611
of elevation and depression,

425–429
with the horizontal, 620–621
identity, 620
inclination, 589–592
intersecting lines, 590–592
inverse trigonometric functions

as, 530
negative angle identities,

459–460, 464
parts of, 413, 433–434
radian measure, 436–439, 444–446
reference, 448–451
rotation, 730–731, 771
solving triangles, 421, 422
special, 418–419, 437, 462
standard position, 434
between vectors, 671–673, 683

angle-side-angle (ASA)
information, 631–632

Angle Theorem, 672
angular speed, 439–440
applications

box construction, 103–104, 323
break-even point, 824
composition of functions, 195–196
compound interest, 345–349,

382, 402
distance, 101–102
exponential equations, 345–352,

379–384
food webs, 810–811
gravity, 677–678
guidelines, 97
height and elevation, 425–429
interest, 100–101
ladder safety, 426

applications (continued)
linear programming, 831–832
LORAN, 724–725
lottery probabilities, 870, 

881–882, 886–887
matrices, 795–801
mixtures, 104
multiple choice exams, 887–888
optimization, 322–324, 468–471
parabolas, 711–714
population growth, 340–342, 

349–350, 382–384, 389–392, 395
radiocarbon dating, 352, 381–382
response times, 895–896
rotating wheels, 550–551
sequences, 13–19, 26–29
solutions in context, 98–100
sound waves, 558–562
spring motion, 551–553
trigonometry, 421–429
vector, 661–667
width of walkway, 102–103

approaching infinity, 201, 303–305,
914, 948–957

arccosine function, 532–534, 538,
539, 541

Archimedian spiral, 742
arc length, 434–435, 437–439, 

776–777
arcsine function, 529–534, 539
arctangent function, 534–536, 

540
area

circular puddle, 195
under a curve, 904–906
maximum, 138–139, 169–170,

468–471
quarter-circle, 905–906
Riemann sums, 964–967
triangle, 632–633, 682
z-values, 895–896
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arguments, 639
arithmetic progression. see

arithmetic sequences
arithmetic sequences

definition, 21, 66
explicit forms, 22–24, 34, 66
finding terms, 24
graphs, 22, 33–34
lines and, 34
partial sums, 26–29
recursive forms, 22, 24, 66
summation notation, 25–26

arithmetic series, 25–29
asymptotes

horizontal, 284–285, 288, 951–953
hyperbolas, 701–706, 720
oblique, 285–286
parabolic, 286
slant, 285–286, 289
vertical, 280–281, 288–289, 479,

486, 950
augmented matrices, 795–798
auxiliary rectangles, 703
average rates of change, 214–220,

226
averages, 853–854
axes (singular: axis)

definition, 5
ellipses, 692, 694–695
hyperbolas, 701–702
imaginary, 638
parabolas, 709, 711
polar, 734
rotation of, 728–732
three-dimensional, 790–791

axis of symmetry, 163, 711

bacteria growth, 350, 382–383
bar graphs, 845
beats, sound, 561
Bernoulli experiments, 884–889
Big-Little Concept, 281, 954
bimodal data, 855
binomial distributions, 887–888, 898
binomial expansion, 997–1000
binomial experiments, 842, 884–888
Binomial Theorem, 994–1000
boiling points, 335
bounds, 254–256
bounds test, 256
box plots, 861–862
box volume, 99–100, 323
break-even point, 824

Calculator Explorations, 8, 16, 27,
201, 299, 409, 411, 457, 857, 861,
862, 877, 911, 994, 995, 1025

calculators
absolute value, 110, 638
area under the normal curve,

895
complex numbers, 297, 299,

302–303, 638
composite functions, 193
conic sections, 721
continuity, 945
discontinuity, 115, 910, 937
dot mode, 157
ellipses, 695
factorials, 520
function graphers, 34–35
function notation, 143
geometric sequences, 60
graphical root finder, 84–85, 

122
graphic solutions, 84
greatest integer function, 147
histograms, 849–850
holes in graphs, 115, 910, 937
horizontal shifts, 175–176
hyperbolas, 703–704
inequality symbols, 156
infinite geometric series, 76–78
instantaneous rates of change,

237
intersection finders, 525
inverse sine function, 531
iterations of functions, 200
limits of functions, 913
linear regression, 47–51
logarithms, 357, 375–376, 393
matrix operations, 299, 798–801,

808–809
numerical derivatives, 237
orbits, 302–303
parabolas, 712
parametric mode, 159, 756, 

760–761
periodic graphs, 493
piecewise-functions, 157
points of inflection, 267
polar form, 641
polynomial regression, 274–275
probabilities, 875–876, 887
radian mode, 445, 480
radical equations, 113
rational exponents, 330

calculators (continued)
rational functions, 283–285
rational zeros, 252
reflections, 177
sequences and sums, 16, 26–27
shading on graphs, 827–828
sine functions, 526
sound wave data collection,

559–561
statistics, 857
stretches and compressions, 177
sum and difference functions,

191
systems of equations, 780
tables of values, 910
trigonometric ratios, 416–417,

421–423, 426, 454, 473–479
tuning programs, 559
vertical shifts, 174
viewing windows, 512

calculus, 76, 138. see also Can Do 
Calculus

Can Do Calculus
approximating functions with

infinite series, 520–521
arc length of a polar graph,

776–777
area under a curve, 904–906
Euler’s formula, 688–689
infinite geometric series, 76–79
instantaneous rates of change,

234–237, 614–615
limits of trigonometric

functions, 566–568
maximum area of a triangle,

138–139
optimization applications,

322–324, 468–471
partial fractions, 838–841
Riemann sums, 964–967
tangents to exponential

functions, 408–411
carbon-14 dating, 352, 381–382
cardioid graphs, 742
Cartesian coordinate systems, 5, 739
Cassegrain telescopes, 705
center, statistical, 857
chances, 866. see also probability
change in x or y, 31
change-of-base formula, 374–375,

402
chord frequency, 561–562
chords, 18
circle equation, 989
circle graphs, 742
circles, parameterization of,

766–767
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circles, unit, 445–446, 448–449, 474,
475, 478, 650–651

circumference, ellipses, 699
closed intervals, 118
coefficient of determination, 47
coefficients, 239
cofunction identities, 585–587, 611
combinations, in counting,

880–882, 899
common differences, 22–24, 34
common logarithmic functions,

356–357, 364
common ratios, 58–61, 66, 77
complements, event, 866–867
completing the square, 90–92, 169
complex numbers

absolute values, 638–639
arithmetic of, 295–296
definition, 294
equal, 294
Euler’s formula, 688–689
factorization, 308, 310–313
imaginary powers of, 688–689
Mandelbrot set, 304–306
nth roots, 645–651
orbits, 301–304
polar form, 639–640
polar multiplication and

division, 640–642
polynomial coefficients, 307
powers of, 644–645, 688–689
properties, 293–294
quotients of, 296
real and imaginary parts, 300
roots of unity, 648–651
square roots, 297
zeros, 308–310, 317

complex number system, 293–294
complex plane, 301, 637–642, 650
components, vector, 655, 676–677
composite functions, 193–195, 

211–212
compound inequalities, 118–120
compound interest, 345–349, 

360–361, 382, 402
compressions, 177–180
concavity, 154
conic sections

definitions, 691, 747
degenerate, 691
discriminants, 723–724
eccentricity, 745–748
ellipses, 692–698, 716–722, 

745–747, 767, 771–772
horizontal and vertical shifts,

716–717
hyperbolas, 700–706, 721–725,

745–750, 771–772

conic sections (continued)
identifying, 717–719, 722–723
nonstandard equations, 721–722
parabolas, 163, 709–714, 719,

756–760, 771–772
parameterizations, 766–769
polar equations, 745–752, 772
rotations, 722–724, 728–732
standard equations, 720

conjugate pairs, 296
conjugates, complex, 296, 309
conjugate solutions, 299
conjugate zeros, 309–313
Conjugate Zero Theorem, 309
consistent systems, 781
constant functions, 152, 173, 192, 953
constant polynomials, 240
constants, 239
constraints, 829
continuity

analytic description, 937–939
calculators and, 937
composite functions, 944
definition, 939
at endpoints, 941–942
informal definition, 936–937
on intervals, 940–942
from the left and right, 941
at a point, 938–940
polynomial equations, 261–262
properties of continuous

functions, 942–943
removable discontinuities, 947
of special functions, 940

continuous compounding, 347–349
convergence, 77, 200, 203, 520–521
coordinate planes, 5, 790
coordinates, 5
coordinate systems

comparison of, 792
conversions, 737–738
polar, 734–743, 776–777
rectangular, 5, 736–739
three-dimensional, 790–793

corner points, 829, 831–832
correlation coefficients, 47, 52, 66
cosecants, 416–419, 444–446, 

485–487, 490
cosines

addition and subtraction
identities, 610

amplitude, 493–498, 516
basic equations, 538–541
coterminal angles, 451
damping, 512–514
definition, 416, 444–445
domain and range, 447, 

477–478, 483

cosines (continued)
double-angle identities,

593–595, 602–603, 611
exact values, 448–451, 536
graphs of, 475–478, 497–498
half-angle identities, 596–597, 611
inverse function, 532–534, 

539–541, 563
law of, 617–622, 682
oscillating behavior, 568
periodicity, 456–458, 493–497,

516
phase shifts, 501–505, 516, 549
power-reducing identities,

595–596
product-to-sum identities, 599
property summary, 483
restricted, 532–533
roots of unity, 648–651, 682
special angles, 418–419, 462
sum-to-product identities, 599–600
transformations, 481–482, 503–505
trigonometric identities,

454–460, 463
unit circle, 445–446

cotangents, 416–419, 444–446, 
489–490

coterminal angles, 434, 436–437,
450–451

counting numbers, 3
counting techniques, 879–882, 899
Critical Thinking, 20, 21, 64, 132,

172, 214, 250, 259, 273, 300,
344, 363, 388, 420–421, 433,
453, 492, 529, 538, 547, 624,
637, 643–644, 652, 700, 708,
727, 733, 744, 765–766, 794,
820, 852, 864, 884, 935, 947, 959

crystal lattices, 802
cube root of one, 299
cubic functions, 173, 240
cubic models, 396
cubic regression, 274–276
curve fitting, 818. see also models; 

regression
cycles, 492, 559
cycloids, 761–763
cylinder surface area, 149, 324

damping, 512–514
data. see also statistics

comparing, 893–894
definition, 843
displays of, 844–850
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data (continued)
distribution shapes, 846–847
outliers, 847, 862
qualitative, 843, 845–846
quantitative, 843, 846–850
standardized, 893
types of, 843
variability, 857
z-values, 894–896

decomposition, partial fraction,
838–841

definite integrals, 967
degenerate conic sections, 691
degree measure, 94, 436–437, 462,

528
degree of a polynomial, 240–242,

260–261, 263, 313
DeMoivre’s Theorem, 644–645, 682
denominators, partial fractions,

838–841
density functions, 871–872, 891,

898
depression, angles of, 425–429
derivatives, numerical, 237
deviations, data, 857–859
difference functions, 191, 943
difference of cubes, 298
difference quotients, 143–144, 

219–220, 234–235, 408, 584,
922–923

differential calculus, 76
directed networks, 809–811
direction angles, 662–664
directrix, 709–711, 720
discriminants, 93–94, 172, 723–724
distance

absolute value and, 108, 128
applications, 101–102, 113–114
average rates of change,

214–220
between two moving objects, 619
formula, 987–988
from velocities, 964–967

distance difference, 700
distributions

binomial, 887–888, 898
definition, 846
mean, median, and mode,

856–857
normal, 889–896
probability, 865–866
shapes, 846–847, 857

divergence, 77
division

algorithm, 243
checking, 242–243
polar, of complex numbers,

640–642

division (continued)
polynomial, 240–245
remainders and factors, 243–245
synthetic, 241–242

domains
convention, 145–146
exponential and logarithmic

functions, 359–360, 375–376
functions, 142, 145
inverse functions, 533
rational functions, 279
of relations, 6–7
restricting, 210–211, 529–530,

532, 534–535
sequences, 14–15
sum, difference, product,

quotient functions, 192
trigonometric functions, 447,

477, 480, 483, 486–488, 490
dot products

angles between vectors,
671–673

gravity, 677–678
projections and components,

674–677
properties, 670–671

double-angle identities, 593–595,
602–603, 611

dreidels, 882
dynamical systems, 199

e, 341, 347–349. see also exponential 
functions; logarithmic functions

eccentricity, 745–748
effective rate of interest, 354
elementary row operations,

795–796
elevation, angles of, 425–429
eliminating the parameter, 757–759
elimination method, 783–786, 

797–798, 821
ellipses

applications, 696–698
characteristics, 694
circumference, 699
definitions, 692, 745–747
eccentricity, 745–747
equations, 692–694, 696, 

720–722, 771–772
graphing, 695
parameterization, 767
polar equations, 749
translations, 716–718

empirical rule, 892–893, 899

end behavior, 262–264, 284–287,
289, 316, 954–955

endpoints, 118
Engelsohn’s equations, 685
equations. see also quadratic

equations; systems of
equations; trigonometric
equations

absolute value, 109–111
applications of, 97–104
basic, 524–528, 538–542
conditional, 523
conic sections, 720
degrees, 94
ellipses, 692–694, 696, 720–722,

770–771
Engelsohn’s, 685
exponential, 379–384
fractional, 114–115
functions, 144–145
graphical solutions, 81–86, 

524–528
hyperbolas, 701–702, 704, 720,

771–772
linear, 33–37, 39
logarithmic, 379, 384–386
matrix, 814, 817–818
normal curve, 891, 899
number relations, 97–98
parabolas, 709–710, 712, 720
parametric, 157–159, 755–757,

767–769
polar, 745–752, 772
polynomial, 94–95, 260–262
radical, 111–113
rotation, 728–730
second-degree, 722–724
solutions in context, 98–100
tangent lines, 236–237
translated conics, 718

equivalent inequalities, 119
equivalent statements, 81, 134
equivalent systems, 795
equivalent vectors, 653–655
Euler’s formula, 688–689
even degree, 261, 263, 313
even functions, 188, 482–483, 

489–490
events, definition, 865. see also

probability
eventually fixed points, 202–203
eventually periodic points, 202
expected values, 869–870
experiments

binomial, 842, 884–888
definition, 864–865
probability estimates from,

874–877

Index 1151

E



exponential decay, 350–352, 402
exponential equations, 379–384
exponential functions. see also

logarithmic functions
applications, 345–352
bases, 336–337, 371, 380, 402
bases other than e, 410–411
common logarithms and,

356–357
compound interest, 345–347,

382
graphs, 59, 336–342, 375
growth and decay, 339–342,

349–352, 402
horizontal stretches, 338–339
natural, 341
natural logarithms and,

358–359
Power Law, 366–367
Product Law, 365
solving, 379–381
tangent lines to, 408–410
translations, 338
trigonometric functions, 454
vertical stretches, 339

exponential growth, 349–350, 
402

exponential models, 389–390, 
392–394

exponents
complex numbers, 295–296
fractional, 294
irrational, 333
laws of, 330–331, 402, 969–973
rational, 329–331, 333, 402

extraneous solutions, 110–111
extrema, 153, 170, 266, 468–469,

607–608, 829–830

factorials, 520–521, 880
factoring

common factors, 978
complex numbers, 308–313
cubic factoring patterns, 979
partial fractions, 839–841
polynomials, 243–245, 253–254,

310–313
quadratic equations, 88–89, 978
trigonometric equations,

542–544
Factor Theorem, 245–246, 

252–253
feasible regions, 829–831
Ferris wheels, 522, 555

Fibonacci sequence, 20–21
filtering, 350–351
finance, exponential change,

339–340
finance, interest applications,

100–101, 339–340, 345–349,
354, 360–361, 382

finite differences, 43–44, 47–48
first octant, 790
five-number summary, 861–862
fixed points, 202–203
flagpole height, 427
focal axis, 701
foci (singular: focus)

ellipses, 692, 694, 696–697, 720
hyperbolas, 700–702, 720
parabolas, 709, 711, 720

food webs, 810–811
force, gravitational, 677–678
force, resultant, 664–667
fractional expressions, 114–115
fractions, partial, 838–841. see also

rational functions
free-fall, 958–959
frequency, definition, 844
frequency, wave, 558–562
frequency tables, 844–845
functions. see also logarithmic 

functions; polynomial functions; 
trigonometric functions
absolute-value, 156, 173
composite, 193–195, 211–212, 944
concavity and inflection points,

154, 266
constant, 152, 173, 192, 953
continuity, 261–262, 936–945
cube root, 173
cubic, 173, 240
defined by graphs, 150–152
definition, 142–143
density, 871–872, 891, 900
difference quotients, 143–144,

219–220, 234–235, 408–410,
584, 922–923

domain, 142, 145
equations, 144
evaluating, 10, 143
even and odd, 188–189, 

482–483, 489–490
exponential, 336–342
fractional, 114–115
graphs of, 8–9
greatest integer, 147, 157, 173
horizontal line test, 208–209,

226
identity, 173, 918
increasing and decreasing,

152–154

functions (continued)
as infinite series, 520–521
input and output, 141–142, 204
instantaneous rates of change,

234–237
inverse, 204–212, 529–536, 

539–540, 563
iterations of, 199–200
limits of, 566–568, 909–915
linear, 34–36
local maxima and minima, 153,

266, 468–471, 607–608, 829–831
notation, 9–10, 143
numerical representation, 7–8
objective, 829–831
odd, 188–189, 482–483, 489–490
one-to-one, 208–211
orbits, 200–203, 301–303
parametric, 157–159
parent, 172–173
piecewise-defined, 146–147, 155
polynomial, 145, 165–168, 

188–189, 239–248
probability density, 871–872,

891, 898
product and quotient, 192
profit, 146
quartic, 240
range, 142
rates of change, 214–220
rational, 278–289, 954–957
reciprocal, 173
sinusoidal, 510–511, 521, 547–555
square root, 173
step, 157
sums and differences, 191
symmetry, 186–189
transformations, 172–181
trigonometric ratios, 443–444
vertical line test, 151–152, 225
zeros, 240, 245–248, 250–257,

265, 308–313, 316–317
Fundamental Counting Principle,

879–882, 899
Fundamental Theorem of Algebra,

307–313
Fundamental Theorem of Linear 

Programming, 829–831

Gateway Arch (St. Louis, MO), 342
Gauss-Jordan elimination, 797–798,

817
geometric sequences

applications, 62–63
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geometric sequences (continued)
definition, 58, 66
examples of, 58
explicit form, 59–61, 66
infinite, 76–79
partial sums, 61–63
recursive form, 59, 66

geometric series, 76–79, 520–521
graphical root finder, 84–85
graphical testing, 572–573
graphing calculators. see calculators
Graphing Explorations, 83, 122,

156, 157, 158, 174, 175, 176,
177, 181, 185, 186, 187, 207,
260, 261, 262, 266, 274, 337,
342, 365, 366, 446, 475, 482,
486, 487, 494, 496, 510, 513,
514, 562, 572, 581, 582, 651,
741, 751, 756, 761, 784, 891,
910, 913, 950, 1023, 1024

graphs
absolute-value functions, 156
amplitude, 493–498, 516
arithmetic sequences, 22
bar, 845
binomial distributions, 888
box plots, 861–862
concavity, 154
continuity, 261–262
cosecant function, 486–487
cosine function, 475–478, 

493–494, 501
cotangent function, 488–489
damped and compressed,

512–514
defining functions, 150–152
definition, 30
ellipses, 695–696
end behavior, 262–264, 289
of equations, 30, 173
equation solutions, 81–86, 

524–528
exponential functions, 336–341
finding slopes, 32
function values from, 8–9
geometric sequences, 59
greatest integer functions, 157
histograms, 849–850
holes, 282–283, 289
horizontal asymptotes, 284,

951–953
horizontal shifts, 175–176
horizontal stretches, 338–339
hyperbolas, 702–704
identifying, 505
identities, 506–507
increasing and decreasing

functions, 152–154

graphs (continued)
inequalities, 121–123
inflection points, 154, 266
inverse cosine function, 533
inverse relations, 205–207
inverse sine function, 530
inverse tangent function, 535
limits of functions, 566–568,

950–953
of lines, 34–37
local maxima and minima,

153–154, 266
logarithmic functions, 359–361,

375–376
maximum area of a triangle, 139
multiplicity, 265, 283
nth roots, 328
one-to-one, 208–209
open circles, 150
oscillating behavior, 514–515,

568
parabolas, 286, 711–712
parametric, 157–159, 206–207,

755–757
parent functions, 172–173
periodicity, 487, 489, 

493–497
phase shifts, 501–505
piecewise-defined functions, 155
plane curves, 754–755
polar, 739–743
polynomial functions, 260–268
quadratic functions, 163–167
rational functions, 279–289
reflections, 176–177, 206, 226
roots of unity, 651, 681
rotated conics, 731–732
scatter plots, 5
secant function, 487–488
sequences, 14–15
sine function, 473–475, 494–495
sinusoidal, 511–512
slant asymptotes, 285–286
stem plots, 847–848
stretches and compressions,

177–181
symmetry, 184–189, 482–483
systems of equations, 780–788,

822–824
tangent function, 478–481
in three dimensions, 790–794
translations, 338, 716–717
in two dimensions, 792
vertical asymptotes, 282–283,

288–289, 950
vertical shifts, 174
vertical stretches, 339
viewing windows, 512

gravitational acceleration, 293
greatest integer functions, 147, 

157, 173

half-angle identities, 596–598, 604,
611

half-life, 351–352
half-open intervals, 118
Halley’s Comet, 700, 754
headings, 432
height, from trigonometry, 425–429
Heron’s formula, 633, 682
Hertz, 559
histograms, 849–850
holes, 282–283, 289, 910, 937–939
horizontal asymptotes, 284, 288,

951–953
horizontal lines, 37, 152, 792
horizontal line test, 209–210, 226, 530
horizontal shifts, 175–176
horizontal stretches and 

compressions, 178–180, 338–339
Hubble Space Telescope, 705
Huygens, Christiaan, 761
hyperbolas

applications, 705–706, 724–725
characteristics, 702
definitions, 700–701, 747
eccentricity, 745–748
equations, 701–702, 704, 720,

771–772
graphing, 702–704, 721–724
parametric equations, 768
polar equations, 749

hypotenuses, 415

identities. see trigonometric identities
identity functions, 173, 918
identity matrices, 815
imaginary axis, 638
imaginary numbers. see complex 

numbers
inconsistent systems, 781, 784–785
independent events, 867–868
index of refraction, 545
indirect measurement, 427–429
inequalities

absolute value, 127–131
algebraic methods, 128
applications, 123–124
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inequalities (continued)
compound, 118–120
equivalent, 119
interval notation, 118–119
linear, 119–120, 827
multiplying by negative

numbers, 119
nonlinear, 121–122
quadratic and factorable,

122–123, 129–130
solving, 119–123
systems of, 826–832
test-point method, 826

infinite geometric series, 76–79,
520–521

infinite sequences, 13
infinite series, 520–521
infinity

concept, 119, 201, 948
horizontal asymptotes, 951–953
limits approaching, 201, 

303–305, 914, 948–953
negative, 948, 951–953, 956
properties of limits, 953–957
vertical asymptotes and, 950

inflection points, 154, 266, 317
initial point (vectors), 653
initial sides, of rays, 433
input, 7–9
instantaneous rates of change,

234–237
integers, 3–4
integral calculus, 76
integrals, definite, 967
intensity, 562
interest applications, 100–101, 

339–340, 345–349, 354, 
360–361, 382, 404

Intermediate Value Theorem,
944–945

interquartile range, 860–861
intersection method, 86, 127, 134,

524–525
interval notation, 118–119
interval of convergence, 520–521
inverse functions

composition of, 532
cosine, 532–534, 538–539, 541,

563
definition, 210
horizontal line test, 530
restricting the domain, 210–211
sine, 529–532, 539, 563
tangent, 534–536, 540, 563

inverse matrices, 815–817
inverse relations

algebraic representations,
207–208, 534

inverse relations (continued)
composite, 211–212
definition, 205
graphs, 205–207
horizontal line test, 209–210, 226
one-to-one functions, 208–211
restricting the domain, 210–211,

529, 532, 534
irrational exponents, 333
irrational numbers, 4, 341, 688
irreducible polynomials, 253, 315
iterations, 199–200

ladder safety, 426
latitude, 442
law of cosines, 617–622, 682
law of sines

AAS information, 626
ambiguous case, 627–628
area of a triangle, 632–633
ASA information, 631–632
definition, 625, 682
SSA information, 628–633
supplementary angle identity,

628
laws of exponents, 330–331, 402
laws of logarithms, 373–374, 402
least squares regression lines,

47–52
lemniscate graphs, 743
length, maximum, 469
light, reflection, 705–706, 712–714
limaçon graphs, 743
limits of functions

approaching infinity, 201, 
303–305, 914, 948–957

approaching two values, 914–915
of constants, 918, 953
definition, 909–913, 929–935
difference quotients, 922–923
function values, 912–913
identity function, 918
nonexistence of, 913–915
notation, 910–911, 925, 931, 951
one-sided, 924–927, 935
oscillating functions, 915
polynomial functions, 919–920
properties of, 919, 933–934,

953–957
proving, 931–934
rational functions, 920–923,

954–957
trigonometric functions, 566–568
two-sided, 926–927

limits of sequences, 76–77
Limit Theorem, 922, 954
linear combinations of vectors, 662
linear depreciation, 35–36
linear equations, 33–37, 39
linear functions, 34–36, 240
linear inequalities, 119–120, 827
linear models

corresponding function, 396
finite differences, 43–44
least squares regression lines,

47–52
modeling terminology, 44–46
prediction from, 51–52
residuals, 44–46, 49–51, 66

linear programming, 829–832
linear regression, 47–52
linear speed, 439–440
linear systems, 779, 781–782, 

796–797
lines. see also slope

angles between intersecting,
590–592

arithmetic sequences and, 34
least squares regression, 47–52
parallel and perpendicular,

38–39, 66
parameterizations of, 755
point-slope form, 36–37, 39, 66,

792
secant, 218–219, 408, 409
slope-intercept form, 33–36, 39,

66, 792–793
standard form, 39, 66
tangent, 235–237, 408–411
vertical and horizontal, 37–38,

66
local maxima, 153, 266
local minima, 153, 266
logarithmic equations, 379, 384–386
logarithmic functions

change-of-base formula,
374–375, 402

common, 356–357, 364
graphs, 359–361, 375–376
laws of, 373–374, 402
natural, 358–359, 364
other bases, 370–376
Power Law, 367
Product Law, 365
properties, 363–364, 372–373
Quotient Law, 366
solving, 384–386
transformations, 359–360, 

375–376
logarithmic models, 389, 394
logistic models, 342, 389, 391–392,

395, 401
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LORAN, 724–725
lottery probabilities, 870, 881–882,

886–887
lower bounds, 255–256

Mach numbers, 529
magnitude, vector, 653, 655
Mandelbrot set, 304–306
mathematical induction, 1002–1010
mathematical models, definition,

43. see also models
mathematical patterns, 13–19
matrices (singular: matrix)

addition and subtraction,
804–805

adjacency, 809–810
applications, 800–801, 808–811
augmented, 795–798
dimensions, 804
directed networks, 809–811
elementary row operations,

795–796
equivalent, 795–796
Gauss-Jordan elimination,

797–798, 817
identity, 815
inverse, 815–817
matrix equations, 814, 817–818
multiplication, 805–809
notation, 299, 795, 797, 804
reduced row echelon form,

797–801
square systems, 814–818

maxima, 153, 170, 266, 468, 
607–608, 829–830

mean, 853–854, 856–857, 869, 898
measures of center, 853–857
measures of spread, 857–862
median, 854–856, 861–862
midpoint formula, 998
minima, 153, 266, 829–830
mixtures, 104, 787–788
mode, 855–856, 898
modeling terminology, 44–46
models

cubic, 396
definition, 43
exponential, 389–390, 392–394,

396
linear, 43–52, 396
logarithmic, 389, 394–395, 396
logistic, 341–342, 389, 391–392,

396, 402
polynomial, 273–276

models (continued)
power, 389, 392–394, 396
quadratic, 396
quartic, 274–276, 392
simple harmonic motion,

549–553
terminology, 44–46

modulus. see absolute value
motion

parameterization, 759–763
pendulum, 335
planetary, 393–394
projectile, 546, 602, 761–762

multimodal data, 855
multiple choice exams, 887–888
multiplication

matrix, 805–809
by negative numbers, 119
polar, of complex numbers,

640–642
scalar, 655–656, 659, 661, 683,

805–806
multiplicity, 265, 283, 308–309, 316
music, 558–562
mutually exclusive events,

866–868

natural logarithmic functions,
358–359, 364

natural numbers, 3–4
navigation systems, 724–725
negative angle identities, 459–460,

463, 574
negative correlation, 52
negative infinity, 948, 951–953,

956
negative numbers, 119, 297, 330
n factorial, 520–521, 880
no correlation, 52
nonlinear systems, 779, 821–824
nonnegative integers, 3
nonrepeated linear factor 

denominators, 838–839
nonrepeated quadratic factor 

denominators, 838–839
nonsingular matrices, 815
normal curve

area under, 906
definition, 889–890
empirical rule, 892–893, 899
equation of, 891, 900
properties, 890–892
quartiles, 897

normal curve (continued)
standard, 890, 893–896
z-values, 894–896, 900

normal distributions, 889–896
notation

angles, 413–415
complex numbers, 294, 296, 301
ellipses, 694
functions, 9–10, 143, 191–192
interval, 118–119
inverse functions, 210, 532, 534
iterated functions, 199–200
limits of functions, 910–911,

925, 929–930, 951
matrix, 299, 795, 797, 804
sequences, 14, 16–17
summation, 25–26, 61
triangles, 617
trigonometric functions, 483,

523, 581
vectors, 653, 655, 662

nth roots, 327–329, 645–651
nuclear wastes, 340
number e, 341, 347–349. see also

exponential functions; 
logarithmic functions

number lines, 4, 107–108, 128
number relations, 6–7, 97–98
numerical derivatives, 237

objective functions, 829–830
oblique asymptotes, 285–286
oblique triangles, 617–622, 

625–633
octants, 790–791
odd degree, 260–261, 313
odd functions, 188–189, 482, 

489–490
one-stage paths, 809
one-to-one functions, 208–211
open intervals, 118
opposite sides, 415
optimization applications,

322–324, 468–469
orbits, 200–203, 301–304, 697–698,

705, 754
ordered pairs, 5, 118
order importance, in counting,

879–880
orientation, 757
origin, 5, 734
origin symmetry, 186–189
orthogonal vectors, 673, 683
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oscillating behavior, 514–515, 568,
915

outliers, 847, 862
output, 7, 9

parabolas
applications, 712–714
asymptotes, 286–287
characteristics, 711
curve fitting, 818
definitions, 163, 709, 747
equations, 712, 720, 770–771
graphs, 711–712
parameterization, 756–760, 

769
polar equations, 749
translations, 719

parallel lines, 38–39, 66
parallel planes, 793
parallel vectors, 671
parameterization, 755, 757–763,

766–769
parameters, definition, 157, 785
parametric graphing, 157–159,

206–207, 755–757
parent functions, 172–173
parentheses, 9
partial fractions, 838–841
partial sums, 26–29
pendulum motion, 335
perfect square trinomials, 91
periodicity identities, 456–458, 460,

463, 574
periodic orbits, 202
periodic points, 202
periods

determining, 495–497, 501–502
pendulum, 335
trigonometric functions, 483,

487, 489, 493–495, 516, 563
permutations, 880–881, 899
perpendicular lines, 38–39, 66
phase shifts, 501–503, 516, 549, 563
pi, 4
piecewise-defined functions,

146–147
pie charts, 845–846
plane curves, 754–755
planetary motion, 393–394, 697–698
plutonium, 340
point-slope form, 36–37, 39, 66,

792
points of ellipsis, 13
points of inflection, 154, 266, 317

polar coordinates
arc lengths, 776–777
graphs, 739–743
polar coordinate system, 734–

736
rectangular coordinates and,

736–738
polar equations, 745–752, 772
polar form of complex numbers,

639–640
polar multiplication and division,

640–642
polynomial functions. see also

polynomials
complete graphs, 267–268
continuity, 261–262
definition, 240
end behavior, 262–264, 267,

316
graphs, 260–268
intercepts, 264–265, 267
limits of, 919–920
local extrema, 266–268
multiplicity, 265
points of inflection, 266, 317

polynomial inequalities, 127
polynomial models, 273–276
polynomials. see also polynomial

functions
bounds, 254–256
complex coefficients, 307–310
complex zeros, 309–313, 317
conjugate solutions, 299
constant, 240
definition, 239–240
degree of, 240, 242, 248, 260–

261, 263, 308
division, 240–245
equations, 94–95, 240
factoring, 246–247, 253–254,

310–313, 317
Factor Theorem, 245–246, 

252–253
rational zero test, 251–253
regression, 273–276
remainders, 244–245
solutions, 246–247
x-intercepts, 246, 316
zeros, 240, 245–248, 250–257,

265, 308–313, 316–317
population growth, 340–342, 

349–350, 382–384, 389–392,
395

populations, statistical, 843, 
858–859, 899

positive correlation, 52
positive integers, 3
Power Law of Exponents, 366–367

Power Law of Logarithms, 367,
373–374

power models, 389, 392–394, 396
Power Principle, 112–113
power-reducing identities, 595–596
powers of i, 295–296
principal, 100
probability

area under a curve, 904–906
binomial experiments, 885–888,

900
complements, 866–867
counting techniques, 879–882,

899
definitions, 864–865
density functions, 871–872, 891,

900
distributions, 865–866
expected values, 869–870
experimental estimates, 874–

877
independent events, 867–868
mutually exclusive events,

866–868
random variables, 869–870
simulations, 875–876, 905–906
theoretical estimates, 877–878

probability density functions,
871–872, 891

product functions, 192, 943
Product Law of Exponents, 365
Product Law of Logarithms, 365,

373–374
product-to-sum identities, 599
profit functions, 146, 170, 196, 

216–217
projectile motion, 546, 602, 

761–762
projections, 674–677, 681
proofs, identities, 573–579
Pythagorean identities, 456, 460,

463, 574–577
Pythagorean Theorem, 421,

1012–1015

quadrants, 5
quadratic equations

algebraic solutions, 88–95
applications, 169–170
changing forms, 167–169
completing the square, 90–92
complex solutions, 298
definition, 88
discriminant, 93–94
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quadratic equations (continued)
factoring, 89
graphs of, 173
irreducible, 253
number of solutions, 93–94
parabolas, 163
polynomial form, 94–95, 

164–167, 169, 225, 240
regression, 274–276
summary of forms, 169
taking the square root of both

sides, 90
transformation form, 164–165,

168–169, 225
vertex, 163–166, 169
x-intercept form, 164, 166–169,

225
quadratic formula, 92–94, 134, 165,

544–545
quadratic inequalities, 122, 129–

130
quadratic models, 396
quadratic regression, 274–276
quartic functions, 240
quartic regression, 274–276
quartiles, 860–861, 897
quotient functions, 192, 943
quotient identities, 455, 460, 

463, 574
Quotient Law of Exponents, 365
Quotient Law of Logarithms, 366,

373–374

radian/degree conversion,
436–437, 463

radian measure, 435–438, 444–445
radicals, 111–113, 327–329, 332–

333. see also roots
radioactive decay, 340, 351–352, 402
radiocarbon dating, 352, 381–382
radio signals, 472, 500, 724–725
radio telescopes, 713–714
Ramanujan, 699
random samples, definition, 843
random variables, 869–870
ranges

definition, 142
exponential and logarithmic

functions, 359, 375
relations, 6–7
statistical, 859–860
trigonometric functions, 446,

476, 479, 482, 486–489

rates of change
average, 214–219, 226
difference quotient, 219–220,

234
instantaneous, 234–237, 

614–615
logistic models, 391
slope of tangent lines, 235–237

rational exponents, 329–331, 
402

rational functions
complete graphs, 287–289
definition, 278
domains, 279
end behavior, 284–285, 287, 289
holes, 282–283, 289
horizontal asymptotes, 284
intercepts, 279–280, 288–289,

317
limits, 920–923, 954–957
maximum of, 322
parabolic asymptotes, 286
partial fractions, 838–841
slant asymptotes, 285–286, 289
trigonometric identities,

578–579
vertical asymptotes, 281–282,

288–289, 317, 950
rational inequalities, 127–128
rationalizing denominators and

numerators, 332–333
rational numbers, 4, 78–79
rational zeros, 250–254, 316
rays, rotation, 433
real axis, 638
real numbers, 3–4
real solutions, 89, 94
real zeros, 245, 248, 250–257
reciprocal identities, 455, 460, 463,

574
rectangles, 98–99, 703
rectangular box volume, 99–100,

323
rectangular coordinate systems, 5,

736–738
recursively defined sequences,

15, 66
reduced row echelon form, 797–801
reference angles, 449–451
reflection

light, 705–706, 712–714
radio signals, 712–714
sound, 696–697

reflections, 177, 206, 226, 481, 487,
501, 696–697, 705–706, 712–714

refraction, 545
regression. see also models

cubic, 274–276

regression (continued)
exponential, 390
least squares, 47–52
linear, 47–52
polynomial, 273–276
power, 394
quadratic, 274–276
quartic, 274–276, 392
sinusoidal functions, 553–554

relations, 6–7, 97–98
relative frequency, 844–845
remainders, 244–245
Remainder Theorem, 244
removable discontinuities, 947
repeating decimals, 78–79
replacement, in counting, 879–880
residuals, 44–46, 48, 50–51, 66
response times, 895–896
restricted domains, 210–211, 529,

532, 534
resultant force, 664–667
Richter magnitudes, 368–369
Riemann sums, 964–967
right triangles, 415–418, 421–426
roots

absolute value, 109
of complex numbers, 646–648
cube root of one, 299
extraneous, 110–111
graphical root finder, 84–85, 122
limits at infinity, 955–957
nth, 327–329, 645–651
square, 90, 109, 297, 955–956
of unity, 648–651, 682

roots of unity, 648–651, 682
rose graphs, 742
rotation angles, 730–731, 771
rotations, 722–723, 728–732, 771
rounding, 426, 525
rule of a relation, 7
rule of the function, 7

samples, definition, 843
sample space, definition,

864–865
sample standard deviation,

858, 899
scalar multiplication, 655–656, 659,

661, 683, 805–806
scatter plots, 5–7, 48, 50–51
Schwarz inequality, 673, 683
secant lines, 218–219, 408
secants, 408, 416–418, 444–445,

486–487, 489
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second-degree equations, 722–724.
see also quadratic equations

self-similar under magnification, 305
sequences

applications, 17–19, 28–29
arithmetic, 21–29, 34, 66
definition, 13, 66
explicit forms, 34, 66
geometric, 58–63, 76–79
graphs, 14–16
limits, 76–77
notation, 14, 16–17
partial sums, 26–29
recursive forms, 15–16, 22, 66
summation notation, 25

series
arithmetic, 25–29
infinite geometric, 76–79, 520–521

shading on graphs, 827–828
side-angle-side (SAS) information,

618–621
side-side-angle (SSA) information,

627–631
side-side-side (SSS) information,

619, 633
sides of angles, 413, 422, 424
simple harmonic motion. see also

sinusoidal functions
bouncing springs, 551–553
characteristics, 547
definition, 549
examples of, 522, 550–553
rotating wheel, 550–551

simple interest, 100
sines

addition and subtraction
identities, 582–583, 604, 610

amplitude, 497–498, 516
basic equations, 539–540, 542
calculators, 423
coterminal angles, 451
damping, 512–513
definition, 416, 444
domain and range, 446, 476, 482
double-angle identities,

593–594, 602–603, 611
exact values, 448–450
finding values, 449–450
graphical transformations,

481–482, 503–504
graph of, 473–475, 497–498,

510–511
half-angle identities, 596–597,

604, 611
instantaneous rates of change,

614–615
inverse function, 529–532, 539,

563

sines (continued)
law of, 625–633, 682
oscillating behavior, 514–515
periodicity, 456–457, 493–494,

496–497, 516
phase shifts, 501–503, 516, 549
polar graphs, 740–741
power-reducing identities,

595–596
product-to-sum identities, 599
restricted, 529, 531
roots of unity, 648–651, 682
sinusoidal graphs, 510–511
special angles, 418, 462
summary of properties, 483
sum-to-product identities,

599–600
trigonometric identities,

454–460, 463
unit circle, 445

key, 423
sinusoidal functions

amplitude, 547–549
constructing, 548–549
examples, 522
graphs, 510–511, 548
modeling, 553–555
rotating wheels, 550–551
sound waves, 560–561
spring motion, 551–553

skewed distributions, 846
skid mark length, 335
slant asymptotes, 285–286, 289
slope

correlation and, 52, 66
definition, 31–32, 66
from a graph, 32
horizontal and vertical lines,

37–38
parallel and perpendicular lines,

38–39
point-slope form, 36–37, 39, 

66, 792
properties, 33
secant lines, 408, 410
slope-intercept form, 33–36, 39,

66, 792–793
tangent lines, 235–237, 408–409

Snell’s Law of Refraction, 545
solutions, definition, 81
solving a triangle, 421
sound, speed of, 705
sound waves, 558–562, 696–697
special angles, 418–419, 437, 462
speed

angular, 439–440
average, 215–216, 219–220
instantaneous, 234–236

speed (continued)
linear, 439–440
skid mark length, 335
sound, 705

spring motion, 551–553
square roots, 90, 109, 173, 297,

955–956
square systems, 814–818
standard deviation, 857–859, 888,

894, 899
standard form, of a line, 39, 66
standard normal curve, 890, 

893–896
standard position, of angles, 434
standard viewing window, 84
statistics. see also data

box plots, 861–862
data displays, 844–850
five-number summary, 861–862
interquartile range, 860–861
mean, 853–854, 856–857, 

869, 899
median, 854–856, 861
mode, 855–856, 898
range, 859–860
standard deviation, 857–859,

888, 894, 899
variance, 858
z-values, 894–896, 900

stem plots, 847–848
step functions, 157
substitution method, 782, 821–822
subtraction

identities, 582–585, 593–600
matrix, 804–805
vector, 658–659

sum functions, 191, 943
summation notation, 25–26, 61
sum of the convergent series, 77
sum-to-product identities, 599–600
surface area of a cylinder, 149, 324
symmetric distributions, 846
symmetry, 184–189, 482–483
synthetic division, 241–242
systems of equations. see also

matrices
algebraic solutions, 782–786
applications, 786–787
augmented matrices and,

795–798
definition, 779
elimination method, 783–786,

797–798, 821
equivalent, 795
graphs of, 780–781, 783–785,

822–824
inconsistent and consistent, 781,

784–785, 799

SIN�1
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systems of equations (continued)
linear, 779, 781–782, 796–797
nonlinear, 779, 821–824
number of solutions, 781–782, 821
square, 814–818
substitution method, 782, 821–822

systems of inequalities, 826, 828–832

tangent lines, 235–237, 408–411
tangents

addition and subtraction
identities, 584–585, 610

basic equations, 540
coterminal angles, 451
definition, 416, 444
domain and range, 447, 483
exact values, 448–450, 536
graphical transformations,

481–482
graph of, 478–479
half-angle identities, 596, 598, 611
inverse function, 534–536, 

540, 563
periodicity, 456–457, 495, 516
restricted, 534
special angles, 418, 462
summary of properties, 483
trigonometric identities,

454–460, 463
two intersecting lines, 590–593
unit circle, 446

technology tips. see calculators
telescopes, 705, 713–714
temperature, rate of change, 217–218
terminal points, of vectors, 653
terminal sides, of rays, 433
terminal velocity, 908, 959
terms, of a sequence, 14
test-point method for inequalities,

826–827
theorems

Angle of Inclination Theorem,
589–590

Angle Theorem, 672–673
Conjugate Zero Theorem, 309
DeMoivre’s Theorem, 644–645,

682
Factor Theorem, 245–246, 252–253
Fundamental Theorem of

Algebra, 307–313
Fundamental Theorem of Linear

Programming, 829–830
Intermediate Value Theorem,

944–945

theorems (continued)
Limit Theorem, 922, 954
Pythagorean Theorem, 421
Remainder Theorem, 244
Triangle Sum Theorem, 421

three-dimensional coordinates,
790–791

TRACE feature, 176, 185
transformation form, 164–165,

168–169, 225
transformations

amplitude, 497–498, 503–505,
516, 563

combined, 180, 503–505
conic sections, 716–725
horizontal shifts, 175–176
logarithmic functions, 359–360,

375–376
parameterization of, 757–759
parent functions, 172–173
phase shifts, 501–504, 516, 

549, 563
reflections, 176–177, 206, 226,

481, 487, 501
rotations, 722–723, 728–732, 771
stretches and compressions,

177–181, 338–339, 481, 
487–489, 497

transforming identities, 574–576
trigonometric functions,

481–482, 487–489, 501–507
vertical shifts, 174, 481–482,

501, 504, 516, 563
translations, 338
trapezoids, area of, 468–469
triangles

angle of inclination, 589–592
angles, 413–414
area, 632–633, 682
Heron’s formula, 633, 682
hypotenuses, 415
maximum area, 138–139
oblique, 617–622, 625–633
right, 414–419, 421–426
similar, 415–417
solving, 421–426
special, 418–419, 437, 462
standard notation, 617
trigonometric ratios, 415–417

Triangle Sum Theorem, 421
trigonometric equations

algebraic solutions, 538–545
basic, 524–526, 538–542
complex numbers, 644–648
conditional, 523
factoring, 542–544
fractional, 577–579
graphical solutions, 524–528

trigonometric equations (continued)
inverse trigonometric functions,

529–536, 539–540, 563
quadratic formula and, 544–545
roots of unity, 648–651, 682
rotation of conic sections, 728–730
solution algorithm, 540–541
special values, 541
substitutions, 542

trigonometric form of complex 
numbers, 639–640

trigonometric functions. see also
trigonometric identities
for all angles, 460
angle notation, 413
applications, 425–426
coordinate plane, 443–444
cosecants, 416, 418, 444–445,

486–487, 490
coterminal angles, 451
damped and compressed

graphs, 512–514
definitions, 462
domain, 447, 477, 480, 483, 490
even and odd, 482–483, 489–490
exact values, 448–449, 536
finding values, 450–451
graphs of, 472–482, 510–514
identities, 454–460, 463
instantaneous rates of change,

614–615
inverse cosine, 532–534
inverse sine, 529–532
inverse tangent, 534–536
limits of, 566–569
maximum and minimum,

607–608
optimization with, 468–469
oscillating behavior, 514–515, 568
phase shifts, 501–504, 516, 549
polar coordinates, 736–738
powers of, 454
ranges, 447, 477, 480, 483, 

487–488, 490
ratios, 415–419
restricted, 529, 531–532, 534
secants, 408, 419, 444–445, 

487–488, 490
signs, 447–448
special angles, 418–419, 462
summary of properties, 483, 490

trigonometric functions. see also
transformations, 481–482, 

487–489, 501–507, 446–449
unit circle, 446–449

trigonometric identities
addition and subtraction, 581–

587, 593–600, 604, 610

T
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trigonometric identities (continued)
alternate solutions, 577–579

605–608
cofunction, 585–587, 611
definition, 454–455
double-angle, 593–595, 602–603,

611
Euler’s formula, 688–689
factoring and, 544
graphical testing, 572–573
graphs and, 506–507
half-angle, 596–598, 604, 611
negative angle, 457–459, 462
periodicity, 456–458, 460, 463
power-reducing, 595–596
product-to-sum, 599
proofs, 573–579
Pythagorean, 456, 460, 463, 

575–577
quadratic formula and, 544–545
quotient, 455, 460, 463
reciprocal, 455, 460, 463
summary of, 460, 463, 574
sum-to-product, 599–600
using, 602–608

trimodal data, 855
trivial solutions, 799
tuning forks, 558–562
two-stage paths, 810
typing, 388

uniform distributions, 846
unit circles, 445–446, 449, 473, 475,

478, 650
unit vectors, 661–664
upper bounds, 255–256

variability, 857–860
variance, 858
vectors

angles between, 671–673, 681
arithmetic, 655–659, 662, 681
components, 674–677, 681
components and magnitudes, 655
direction angles, 662–664
dot products, 670–678
equivalent, 654–655
gravity, 677–678
linear combinations, 662
magnitude, 653, 655

vectors (continued)
notation, 653, 655, 662
orthogonal, 673, 681
parallel, 671
projections, 674–677, 681
properties, 659
resultant force, 664–667
Schwarz inequality, 673, 

683
unit, 661–664
velocity, 663
work calculation, 677–678
zero, 658

velocity
average, 235
free-fall, 958–959
instantaneous, 234–236
terminal, 908, 959
total distance from, 964–965
vectors, 663

vertical asymptotes, 281–282, 
288–289, 950

vertical lines, 37–38, 66, 792
vertical line test, 151–152, 186,

225
vertical shifts, 174, 481–482, 501,

504, 516
vertical stretches and 

compressions, 177–180, 339,
481, 487, 501

vertices (singular: vertex)
directed matrices, 809–810
ellipse, 692, 720
hyperbolas, 701, 720
parabolas, 709, 720
quadratic functions, 163–166,

169, 225
triangle, 415

Very Large Array (Socorro, New
Mexico), 713–714

volume, 216, 323

waves, 493–498, 558–562
whole numbers, 3–4
wind chill, 335
work, 677–678

x-axis symmetry, 185–186, 
188

x-coordinates, 5

x-coordinate transformations,
180–181

x-intercept form of quadratic 
functions, 164, 166–169, 225

x-intercept method, 84–86, 94, 112,
127–128, 134, 525–528

x-intercepts
ellipses, 694
hyperbolas, 702
parabolas, 163
polynomial functions, 264–265
quadratic functions, 163–165,

169, 225
rational functions, 279–280,

288–289
x-variables, 6

y-axis symmetry, 184–185, 188
y-coordinates, 5, 166
y-coordinate transformations,

178–179
y-intercepts

ellipses, 694
hyperbolas, 702
parabolas, 163
polynomial functions, 264
quadratic functions, 163–166,

169
rational functions, 279, 

288–289
in three dimensions, 792

y-variables, 6

z-axis, 790
Zero Product Property, 89
zeros

bounds, 254–256
complex, 310–313, 317
complex polynomials, 307–313
conjugate, 309–313
Factor Theorem and, 252–253
multiplicity, 265, 283, 308–309
orbits, 302–304
polynomials, 240, 245–248, 

250–257, 265, 308–313, 
316–317

rational, 250–254, 316
of unity, 298–299

zero vectors, 658
z-values, 894–896, 900

a sin x � b cos x � c,

U

V W

X

Y

Z



Difference of Squares:

Perfect Squares:

Difference of Cubes:

Sum of Cubes:

Perfect Cubes:
1u � v23 � u3 � 3u2v � 3uv2 � v3

1u � v23 � u3 � 3u2v � 3uv2 � v3

u3 � v3 � 1u � v2 1u2 � uv � v22
u3 � v3 � 1u � v2 1u2 � uv � v22
1u � v22 � u2 � 2uv � v2

1u � v22 � u2 � 2uv � v2

u2 � v2 � 1u � v2 1u � v2

b

a

c

b

h

Change of Base Formula

log bv �
ln  v
ln  b

r

Algebra
Exponents Multiplication & Factoring Patterns

The Quadratic Formula

If then the solutions of are

Equations and Graphs

x �
�b ± 2b2 � 4ac

2a .ax2 � bx � c � 0a � 0,

1c � 02 c�r �
1
cr

1d � 02 a c
d
br

�
cr

dr

 1cd2r � crdr

 1cr2s � crs

cr

c s � cr�s

 crcs � cr�s

The solutions of the equation 
are the x-intercepts of the graph of y � f 1x2.f 1x2 � 0

Natural Logarithms Logarithms to Base b Special Notation

For v, w 0 and any u: For v, and any u: ln v means 

means 

Geometry
The Pythagorean Theorem Area of a Triangle Circle

 Area � pr2

 Circumference � 2pr

 Diameter � 2rA �
1
2bhc2 � a2 � b2

log b 1vk 2 � k 1log b v2ln 1vk2 � k1ln  v2
log b a v

wb � log bv � log bwln a v
wb � ln  v � ln  w

log b 1vw2 � log bv � log bwln 1vw2 � ln  v � ln  w

log 10 vlog vlog bv � u means bu � vln  v � u means eu � v

log e vw 7 07



M

P

Q

(x1, y1)

(x2, y2)

k

h

k
h

k

h

 y � r sin t � k
10 � t � 2p2 x � r cos t � h

 y � b sin t � k
10 � t � 2p2 x � a cos t � h (t any real)

 y �
1t � h22

4p � k

 x � t

Parabola Hyperbola Hyperbola
Vertex (h, k) Center (h, k) Center (h, k)

1y � k22
a2 �

1x � h22
b2 � 1

1x � h22
a2 �

1y � k22
b2 � 11y � k22 � 4p1x � h2

k

h
k

h

k

h

(t any real) y � t

 x �
1t � k22

4p � h

 y � b tan t � k
10 � t � 2p2 x �

a
cos t � h

 y �
a

cos t � k
10 � t � 2p2 x � b tan t � h

Distance Formula Midpoint Formula

Slope

Slope of line 

The equation of the straight line through with slope m is 
The equation of line with slope m and y-intercept b is 

Rectangular and Parametric Equations for Conic Sections

Circle Ellipse Parabola
Center (h, k), radius r Center (h, k) Vertex (h, k)

1x � h22 � 4p1y � k21x � h22
a2 �

1y � k22
b2 � 11x � h22 � 1y � k22 � r2

y � mx � b.
y � y1 � m1x � x12.1x1, y12

m �
y2 � y1
x2 � x1

x1 � x2PQ,

Max1 � x2

2 , 
y1 � y2

2 bd � 21x1 � x222 � 1y1 � y222
Midpoint M of segment PQLength of segment PQ



Trigonometry
If t is a real number and P is the point where the terminal side of an angle of t radians in standard position
meets the unit circle, then

Trigonometric Ratios in the Coordinate Plane

For any real number t and point (x, y) on the terminal side of an angle of t radians in standard position:

Periodic Graphs

If and then each of and has

• amplitude • period •

Right Triangle Trigonometry Special Values

Special Right Triangles

Law of Cosines Law of Sines

Area Formulas for Triangles

Heron’s Formula: where s �
1
2 1a � b � c2Area � 1s1s � a2 1s � b2 1s � c2,Area �

1
2 ab sin C

 c2 � a2 � b2 � 2ab cos C

 b2 � a2 � c2 � 2ac cos B

 a2 � b2 � c2 � 2bc cos A

 cos u �
adjacent

hypotenuse

 tan u �
opposite
adjacent

 sin u �
opposite

hypotenuse

phase shift �
c
b

2p
b

0 a 0
g1t2 � a sin1bt � c2f 1t2 � a sin1bt � c2b 7 0,a � 0

 cot t �
x
y  1y � 02 sec t �

r
x  1x � 02 csc t �

r
y  1y � 02

 tan t �
y
x  1x � 02 cos t �

x
r sin t �

y
r

cot t �
cos t
sin tsec t �

1
cos tcsc t �

1
sin ttan t �

sin t
cos t

sin t � y-coordinate of Pcos t � x-coordinate of P

Degrees Radians

0 0 1 0

1

1 0 undefinedp

290°

131
2

13
2

p
360°

12
2

12
2

p
445°

13
3

13
2

1
2

p
630°

0°

tan Ucos Usin U
U

adjacent

oppositehypotenuse

θ

t x

y

r

(x, y)

1
45°

45°2
1 1

3
30°

2
60°

B

a

C
bA

c
a

sin A �
b

sin B �
c

sin C



Trigonometric Identities
Reciprocal Identities Pythagorean Identities Negative Angle Identities

Periodicity Identities Cofunction Identities

Quotient Identities Addition and Subtraction Identities

Double Angle Identities Half-Angle Identities

Product-to-Sum Identities Sum-to-Product Identities

cos x � cos y � �2 sin ax � y
2 b sin ax � y

2 bcos x sin y �
1
2 1sin1x � y2 � sin1x � y2 2

cos x � cos y � 2 cos ax � y
2 b cos ax � y

2 bcos x cos y �
1
2 1cos1x � y2 � cos1x � y2 2

sin x � sin y � 2 cos ax � y
2 b sin ax � y

2 bsin x sin y �
1
2 1cos1x � y2 � cos1x � y2 2

sin x � sin y � 2 sin ax � y
2 b cos ax � y

2 bsin x cos y �
1
2 1sin1x � y2 � sin1x � y2 2

cos 2x � 2 cos2x � 1

tan x2 �
sin x

1 � cos xcos x2 � ±
B

1 � cos x
2tan 2x �

2 tan x
1 � tan2x

cos 2x � cos2x � sin2x

tan x2 �
1 � cos x

sin xsin x2 � ±
B

1 � cos x
2cos 2x � 1 � 2 sin2xsin 2x � 2 sin x cos x

cos1x � y2 � cos x cos y � sin x sin y

tan1x � y2 �
tan x � tan y

1 � tan x tan ycos1x � y2 � cos x cos y � sin x sin y

sin1x � y2 � sin x cos y � cos x sin y

tan1x � y2 �
tan x � tan y

1 � tan x tan ysin1x � y2 � sin x cos y � cos x sin ycot x �
cos x
sin xtan x �

sin x
cos x

csc x � sec ap2 � xbsec x � csc ap2 � xbcot1x ± p2 � cot xtan1x ± p2 � tan x

cot x � tan ap2 � xbtan x � cot ap2 � xbsec1x ± 2p2 � sec xcsc1x ± 2p2 � csc x

cos x � sin ap2 � xbsin x � cos ap2 � xbcos1x ± 2p2 � cos xsin1x ± 2p2 � sin x

tan1�x2 � �tan x 1 � cot2x � csc2xtan x �
1

cot xcot x �
1

tan x

cos1�x2 � cos x tan2x � 1 � sec2xsec x �
1

cos xcsc x �
1

sin x

sin1�x2 � �sin x sin2x � cos2x � 1cos x �
1

sec xsin x �
1

csc x
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